metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[[aqua­copper(II)]-μ-(bi­phenyl-2,2′-di­carboxyl­ato)-μ-[N,N′-bis­­(pyridin-4-yl)urea]] 1.25-hydrate]

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 17 February 2020; accepted 28 April 2020; online 5 May 2020)

In the title compound, {[Cu(C14H8O4)(C11H10N4O)(H2O)]·1.25H2O}n, the CuII cations are coordinated in a square-pyramidal fashion by trans carboxyl­ate O-atom donors from two diphenate (dip) ligands, trans pyridyl N-atom donors from two bis­(4-pyrid­yl)urea (bpu) ligands, and a ligated water mol­ecule in the apical position. [Cu(H2O)(dip)(bpu)]n coordination polymer layer motifs are oriented parallel to ([\overline{1}]02). These layer motifs display a standard (4,4) rectangular grid topology and stack in an AAA pattern along the a-axis direction to form the full three-dimensional crystal structure of the title compound, mediated by N—H⋯O and O—H⋯O hydrogen bonding patterns involving the water mol­ecules of crystallization.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a copper coordination polymer containing both diphenate (dip) and bis­(4-pyrid­yl)urea (bpu) ligands. The bpu ligand has seldom been used in coordination polymer chemistry to date (Kumar et al., 2007[Kumar, D. K., Das, A. & Dastidar, P. (2007). Cryst. Growth Des. 7, 2096-2105.]). Our group recently published a series of zinc diphenate coordination polymers that acted as turn-off luminescence sensors for nitroaromatic detection analyses (Martinez, Shrode, et al., 2018[Martinez, B. L., Shrode, A. D., Staples, R. J. & LaDuca, R. L. (2018). Polyhedron, 151, 369-380.])

The asymmetric unit of the title compound contains a CuII ion, a bound water mol­ecule, a fully deprotonated diphenate (dip) ligand, a bis­(4-pyrid­yl)urea (bpu) ligand, a water mol­ecule of crystallization best refined at full occupancy, and a water mol­ecule of crystallization best refined at one-quarter occupancy. The CuII ion displays a {CuN2O3} square-pyramidal coordination environment (Fig. 1[link]), with the bound water mol­ecule in the elongated apical position. The basal plane is defined by trans carboxyl­ate O-atom donors from two dip ligands, and trans pyridyl N-atom donors from two bpu ligands. Bond lengths and angles within the coordination environment are listed in Table 1[link]. Adjacent [Cu(H2O)]2+ coordination fragments are connected by dip ligands into [Cu(H2O)(dip)]n chain motifs, which are oriented parallel to b (Fig. 2[link]). The Cu⋯Cu inter­nuclear distance within the chain motifs measures 5.394 (1) Å. The dip ligands show an inter-ring twist of 112.7°. In turn, the [Cu(H2O)(dip)]n chain motifs are pillared by dipodal bpu ligands into two-dimensional [Cu(H2O)(dip)(bpu)]n coordination polymer layer motifs that are situated parallel to the [[\overline{1}]02] crystal planes (Fig. 3[link]). The Cu⋯Cu inter­nuclear distance spanned by the bpu ligands measures 14.03 (1) Å. A side view of a single layer motif is shown in Fig. 4[link]. If the copper atoms are considered to be 4-connected nodes, and the organic ligands considered as simple linkers, the topology of the layer is that of a common (4,4) rectangular grid (Fig. 5[link]).

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.960 (2) Cu1—N1 2.003 (3)
Cu1—O3i 2.205 (3) Cu1—N4ii 2.016 (3)
Cu1—O6 1.981 (2)    
       
O1—Cu1—O3i 105.34 (10) O6—Cu1—N1 88.00 (11)
O1—Cu1—O6 162.28 (11) O6—Cu1—N4ii 93.20 (11)
O1—Cu1—N1 91.02 (11) N1—Cu1—O3i 93.24 (12)
O1—Cu1—N4ii 86.57 (11) N1—Cu1—N4ii 175.68 (12)
O6—Cu1—O3i 92.38 (10) N4ii—Cu1—O3i 90.86 (12)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The coordination environment of the title compound, showing the distorted square-pyramidal coordination at the Cu1 atom. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu, dark blue; O, red; N, light blue; C, black. H atom positions are shown as sticks [symmetry code: (ii) x + 1, −y + [{3\over 2}], z + [{1\over 2}]].
[Figure 2]
Figure 2
The [Cu(H2O)(dip)]n chain motif in the title compound, oriented parallel to b.
[Figure 3]
Figure 3
A face-view perspective of the two-dimensional [Cu(H2O)(dip)(bpu)]n coordination polymer layer motif in the title compound. [Cu(H2O)(dip)]n chain motifs are drawn in red.
[Figure 4]
Figure 4
A side-view perspective of the two-dimensional [Cu(H2O)(dip)(bpu)]n coordination polymer layer motif in the title compound. [Cu(H2O)(dip)]n chain motifs are drawn in red.
[Figure 5]
Figure 5
Schematic perspective of the (4,4) rectangular grid topology in the title compound. The spheres represent the copper atoms, the red lines represent the dip ligands, and the blue lines represent the bpu ligands.

Adjacent [Cu(H2O)(dip)(bpu)]n layers stack in an AAA pattern along the a-axis direction (Fig. 6[link]). Inter­layer aggregation is caused by hydrogen-bonding pathways involving the water mol­ecules of crystallization (O1W). N—H⋯O hydrogen-bonding donation between bpu N—H groups and water mol­ecules of crystallization anchors these water mol­ecules to one coordination polymer layer. In turn, the water mol­ecules of crystallization donate O—H⋯O hydrogen bonds to unligated dip carboxyl­ate O atoms in the neighboring layer. Details regarding the hydrogen bonding in the title compound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O1i 0.89 1.84 2.650 (3) 152
O6—H6B⋯O4iii 0.89 1.78 2.598 (4) 152
N2—H2⋯O1Wiv 0.88 2.03 2.852 (4) 155
N3—H3⋯O1Wiv 0.88 2.18 2.968 (4) 149
O1W—H1WA⋯O4 0.92 1.90 2.786 (4) 162
O1W—H1WB⋯O2v 0.86 2.04 2.873 (4) 164
O2W—H2WA⋯O5 0.87 2.48 3.055 (18) 124
O2W—H2WB⋯O5vi 1.09 2.27 3.125 (18) 134
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x, y-1, z; (vi) -x+1, -y+2, -z+1.
[Figure 6]
Figure 6
AAA stacking of [Cu(dip)(bpu)]n coordination polymer layer motifs in the title compound.

Synthesis and crystallization

Cu(NO3)2·2.5 H2O (87 mg, 0.37 mmol), diphenic acid (90 mg, 0.37 mmol), bis­(4-pyrid­yl)urea (79 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 373 K for 24 h, and then cooled slowly to 273 K. Green–blue crystals of the title complex were obtained along with a flocculent green powder.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C14H8O4)(C11H10N4O)(H2O)]·1.25H2O
Mr 558.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.3175 (8), 10.3927 (8), 22.9891 (18)
β (°) 100.133 (1)
V3) 2426.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.21 × 0.18 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.657, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 19136, 4459, 3228
Rint 0.069
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.05
No. of reflections 4459
No. of parameters 344
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.36
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ?; software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[aquacopper(II)]-µ-(biphenyl-2,2'-dicarboxylato)-µ-[N,N'-bis(pyridin-4-yl)urea]] 1.25-hydrate] top
Crystal data top
[Cu(C14H8O4)(C11H10N4O)(H2O)]·1.25H2OF(000) = 1150
Mr = 558.51Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3175 (8) ÅCell parameters from 4863 reflections
b = 10.3927 (8) Åθ = 2.5–24.7°
c = 22.9891 (18) ŵ = 0.96 mm1
β = 100.133 (1)°T = 173 K
V = 2426.6 (3) Å3Block, green
Z = 40.21 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
4459 independent reflections
Radiation source: sealed tube3228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.36 pixels mm-1θmax = 25.4°, θmin = 1.8°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1212
Tmin = 0.657, Tmax = 0.745l = 2727
19136 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.2521P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4459 reflectionsΔρmax = 0.55 e Å3
344 parametersΔρmin = 0.35 e Å3
3 restraints
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.95431 (4)0.76599 (4)0.77058 (2)0.02581 (16)
O10.9668 (2)0.6029 (2)0.81409 (10)0.0297 (6)
O20.8465 (3)0.6933 (2)0.87424 (12)0.0416 (7)
O30.8956 (3)0.2538 (2)0.78666 (13)0.0392 (7)
O40.7695 (3)0.0878 (2)0.80223 (13)0.0445 (8)
O50.5035 (3)0.7162 (3)0.50224 (13)0.0508 (8)
O60.8988 (2)0.9403 (2)0.74133 (11)0.0311 (6)
H6A0.96600.98240.73080.047*
H6B0.87850.98780.77050.047*
N10.8120 (3)0.6945 (3)0.70842 (13)0.0270 (7)
N20.4890 (3)0.5856 (3)0.58155 (13)0.0322 (8)
H20.44150.52330.59310.039*
N30.3297 (3)0.5784 (3)0.49940 (13)0.0321 (7)
H30.29960.51540.51890.039*
N40.0890 (3)0.6655 (3)0.33768 (13)0.0292 (7)
C10.9148 (4)0.6047 (3)0.86083 (16)0.0278 (8)
C20.9467 (4)0.4880 (3)0.90033 (15)0.0258 (8)
C31.0709 (4)0.4818 (4)0.93635 (16)0.0324 (9)
H3A1.13250.54910.93490.039*
C41.1048 (4)0.3788 (4)0.97396 (16)0.0351 (9)
H41.18870.37610.99880.042*
C51.0159 (4)0.2797 (4)0.97530 (17)0.0357 (10)
H51.03830.20931.00150.043*
C60.8942 (4)0.2830 (4)0.93849 (17)0.0363 (10)
H60.83480.21330.93870.044*
C70.8574 (4)0.3885 (3)0.90069 (16)0.0288 (9)
C80.7259 (4)0.3897 (3)0.86209 (17)0.0316 (9)
C90.6290 (4)0.4775 (4)0.87134 (19)0.0407 (10)
H90.64730.53790.90270.049*
C100.5066 (4)0.4771 (4)0.8353 (2)0.0492 (12)
H100.44230.53830.84200.059*
C110.4763 (4)0.3902 (4)0.7901 (2)0.0433 (11)
H110.39250.39190.76510.052*
C120.5699 (4)0.2998 (4)0.78130 (19)0.0377 (10)
H120.54840.23680.75120.045*
C130.6941 (4)0.3000 (3)0.81582 (17)0.0299 (9)
C140.7959 (4)0.2074 (4)0.80076 (16)0.0295 (9)
C150.7264 (4)0.6020 (3)0.71812 (17)0.0307 (9)
H150.73990.56010.75540.037*
C160.6215 (4)0.5662 (3)0.67659 (16)0.0322 (9)
H160.56310.50140.68550.039*
C170.6000 (3)0.6242 (3)0.62140 (16)0.0282 (8)
C180.6892 (4)0.7167 (3)0.61037 (16)0.0303 (9)
H180.67940.75770.57290.036*
C190.7921 (4)0.7478 (3)0.65451 (17)0.0309 (9)
H190.85300.81110.64630.037*
C200.4464 (4)0.6351 (4)0.52610 (16)0.0329 (9)
C210.0631 (4)0.5687 (4)0.37300 (17)0.0321 (9)
H210.01370.51840.36070.039*
C220.1413 (4)0.5392 (3)0.42540 (17)0.0327 (9)
H220.11840.47010.44860.039*
C230.2551 (4)0.6106 (3)0.44496 (16)0.0277 (8)
C240.2860 (4)0.7074 (4)0.40816 (17)0.0331 (9)
H240.36420.75650.41880.040*
C250.2010 (4)0.7312 (3)0.35587 (17)0.0309 (9)
H250.22290.79820.33120.037*
O1W0.7281 (3)0.0656 (3)0.89666 (14)0.0534 (8)
H1WA0.72470.02270.86150.080*
H1WB0.74820.14190.88730.080*
O2W0.4163 (16)0.9950 (17)0.4781 (9)0.109 (6)0.25
H2WA0.44410.93130.45910.164*0.25
H2WB0.49461.06630.48740.164*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0267 (3)0.0211 (3)0.0296 (3)0.00063 (19)0.00458 (19)0.00122 (18)
O10.0414 (16)0.0211 (13)0.0276 (15)0.0011 (11)0.0090 (12)0.0012 (10)
O20.0485 (18)0.0313 (16)0.0497 (18)0.0106 (14)0.0221 (15)0.0067 (13)
O30.0289 (15)0.0466 (18)0.0440 (18)0.0064 (13)0.0115 (13)0.0084 (13)
O40.0420 (17)0.0271 (16)0.067 (2)0.0036 (13)0.0167 (15)0.0046 (14)
O50.0465 (18)0.061 (2)0.0392 (18)0.0210 (16)0.0078 (15)0.0174 (15)
O60.0362 (16)0.0199 (13)0.0376 (16)0.0017 (11)0.0081 (12)0.0021 (11)
N10.0301 (17)0.0224 (16)0.0289 (18)0.0027 (13)0.0061 (14)0.0018 (13)
N20.0296 (18)0.0345 (18)0.0323 (19)0.0067 (14)0.0049 (14)0.0051 (14)
N30.0307 (18)0.0334 (18)0.0321 (19)0.0042 (14)0.0047 (15)0.0020 (14)
N40.0270 (17)0.0227 (16)0.0373 (19)0.0013 (13)0.0039 (14)0.0009 (14)
C10.030 (2)0.0214 (19)0.031 (2)0.0023 (16)0.0029 (17)0.0036 (16)
C20.034 (2)0.0225 (19)0.0233 (19)0.0034 (16)0.0102 (17)0.0019 (15)
C30.044 (2)0.027 (2)0.027 (2)0.0011 (18)0.0090 (19)0.0012 (16)
C40.039 (2)0.035 (2)0.030 (2)0.0130 (19)0.0023 (18)0.0029 (17)
C50.052 (3)0.029 (2)0.027 (2)0.0075 (19)0.010 (2)0.0011 (16)
C60.050 (3)0.027 (2)0.035 (2)0.0014 (18)0.018 (2)0.0031 (17)
C70.036 (2)0.026 (2)0.027 (2)0.0004 (16)0.0138 (17)0.0024 (16)
C80.038 (2)0.0210 (19)0.039 (2)0.0005 (16)0.0165 (19)0.0046 (16)
C90.042 (3)0.033 (2)0.049 (3)0.0040 (19)0.015 (2)0.0054 (19)
C100.038 (3)0.037 (3)0.077 (4)0.012 (2)0.022 (2)0.004 (2)
C110.027 (2)0.043 (3)0.060 (3)0.0014 (19)0.009 (2)0.014 (2)
C120.035 (2)0.033 (2)0.047 (3)0.0069 (18)0.012 (2)0.0043 (19)
C130.024 (2)0.027 (2)0.040 (2)0.0026 (16)0.0106 (18)0.0074 (17)
C140.025 (2)0.038 (2)0.025 (2)0.0004 (17)0.0040 (17)0.0014 (16)
C150.032 (2)0.030 (2)0.030 (2)0.0004 (17)0.0060 (17)0.0052 (16)
C160.034 (2)0.027 (2)0.036 (2)0.0066 (17)0.0072 (18)0.0008 (17)
C170.027 (2)0.027 (2)0.031 (2)0.0037 (16)0.0047 (17)0.0024 (16)
C180.035 (2)0.033 (2)0.023 (2)0.0035 (17)0.0057 (17)0.0011 (16)
C190.031 (2)0.028 (2)0.035 (2)0.0042 (16)0.0078 (17)0.0012 (17)
C200.035 (2)0.034 (2)0.030 (2)0.0003 (18)0.0056 (18)0.0010 (17)
C210.029 (2)0.032 (2)0.035 (2)0.0023 (17)0.0049 (18)0.0002 (17)
C220.035 (2)0.024 (2)0.039 (2)0.0040 (17)0.0042 (18)0.0043 (17)
C230.030 (2)0.025 (2)0.029 (2)0.0029 (16)0.0060 (17)0.0010 (16)
C240.029 (2)0.031 (2)0.039 (2)0.0047 (17)0.0036 (18)0.0016 (17)
C250.031 (2)0.027 (2)0.034 (2)0.0012 (17)0.0032 (18)0.0019 (16)
O1W0.060 (2)0.0444 (18)0.061 (2)0.0091 (15)0.0258 (17)0.0006 (15)
O2W0.083 (12)0.093 (14)0.152 (18)0.000 (11)0.022 (12)0.007 (12)
Geometric parameters (Å, º) top
Cu1—O11.960 (2)C6—C71.409 (5)
Cu1—O3i2.205 (3)C7—C81.485 (5)
Cu1—O61.981 (2)C8—C91.397 (5)
Cu1—N12.003 (3)C8—C131.409 (5)
Cu1—N4ii2.016 (3)C9—H90.9500
O1—C11.283 (4)C9—C101.383 (6)
O2—C11.231 (4)C10—H100.9500
O3—Cu1iii2.205 (3)C10—C111.372 (6)
O3—C141.230 (4)C11—H110.9500
O4—C141.274 (4)C11—C121.387 (6)
O5—C201.213 (4)C12—H120.9500
O6—H6A0.8881C12—C131.383 (5)
O6—H6B0.8878C13—C141.510 (5)
N1—C151.351 (4)C15—H150.9500
N1—C191.340 (5)C15—C161.363 (5)
N2—H20.8800C16—H160.9500
N2—C171.393 (5)C16—C171.387 (5)
N2—C201.373 (5)C17—C181.385 (5)
N3—H30.8800C18—H180.9500
N3—C201.384 (5)C18—C191.372 (5)
N3—C231.390 (5)C19—H190.9500
N4—Cu1iv2.016 (3)C21—H210.9500
N4—C211.349 (5)C21—C221.362 (5)
N4—C251.344 (5)C22—H220.9500
C1—C21.516 (5)C22—C231.394 (5)
C2—C31.399 (5)C23—C241.387 (5)
C2—C71.386 (5)C24—H240.9500
C3—H3A0.9500C24—C251.380 (5)
C3—C41.382 (5)C25—H250.9500
C4—H40.9500O1W—H1WA0.9177
C4—C51.383 (6)O1W—H1WB0.8564
C5—H50.9500O2W—H2WA0.8696
C5—C61.386 (6)O2W—H2WB1.0893
C6—H60.9500
O1—Cu1—O3i105.34 (10)C10—C9—C8120.7 (4)
O1—Cu1—O6162.28 (11)C10—C9—H9119.7
O1—Cu1—N191.02 (11)C9—C10—H10119.4
O1—Cu1—N4ii86.57 (11)C11—C10—C9121.2 (4)
O6—Cu1—O3i92.38 (10)C11—C10—H10119.4
O6—Cu1—N188.00 (11)C10—C11—H11120.5
O6—Cu1—N4ii93.20 (11)C10—C11—C12119.0 (4)
N1—Cu1—O3i93.24 (12)C12—C11—H11120.5
N1—Cu1—N4ii175.68 (12)C11—C12—H12119.6
N4ii—Cu1—O3i90.86 (12)C13—C12—C11120.9 (4)
C1—O1—Cu1114.5 (2)C13—C12—H12119.6
C14—O3—Cu1iii152.6 (3)C8—C13—C14121.1 (3)
Cu1—O6—H6A110.5C12—C13—C8120.2 (4)
Cu1—O6—H6B110.1C12—C13—C14118.6 (3)
H6A—O6—H6B103.3O3—C14—O4125.6 (4)
C15—N1—Cu1124.4 (2)O3—C14—C13117.3 (3)
C19—N1—Cu1118.7 (2)O4—C14—C13117.1 (3)
C19—N1—C15116.7 (3)N1—C15—H15118.7
C17—N2—H2116.8N1—C15—C16122.7 (3)
C20—N2—H2116.8C16—C15—H15118.7
C20—N2—C17126.4 (3)C15—C16—H16119.9
C20—N3—H3116.6C15—C16—C17120.1 (3)
C20—N3—C23126.7 (3)C17—C16—H16119.9
C23—N3—H3116.6C16—C17—N2117.2 (3)
C21—N4—Cu1iv122.8 (2)C18—C17—N2125.1 (3)
C25—N4—Cu1iv119.8 (2)C18—C17—C16117.7 (3)
C25—N4—C21116.3 (3)C17—C18—H18120.6
O1—C1—C2114.3 (3)C19—C18—C17118.8 (3)
O2—C1—O1124.2 (3)C19—C18—H18120.6
O2—C1—C2121.5 (3)N1—C19—C18124.0 (3)
C3—C2—C1118.1 (3)N1—C19—H19118.0
C7—C2—C1121.7 (3)C18—C19—H19118.0
C7—C2—C3120.2 (3)O5—C20—N2125.3 (4)
C2—C3—H3A119.6O5—C20—N3123.3 (4)
C4—C3—C2120.7 (4)N2—C20—N3111.3 (3)
C4—C3—H3A119.6N4—C21—H21118.3
C3—C4—H4120.2N4—C21—C22123.4 (4)
C3—C4—C5119.7 (4)C22—C21—H21118.3
C5—C4—H4120.2C21—C22—H22120.0
C4—C5—H5120.0C21—C22—C23120.0 (4)
C4—C5—C6120.1 (4)C23—C22—H22120.0
C6—C5—H5120.0N3—C23—C22117.6 (3)
C5—C6—H6119.6C24—C23—N3125.0 (3)
C5—C6—C7120.9 (4)C24—C23—C22117.4 (3)
C7—C6—H6119.6C23—C24—H24120.6
C2—C7—C6118.5 (4)C25—C24—C23118.8 (4)
C2—C7—C8121.9 (3)C25—C24—H24120.6
C6—C7—C8119.6 (3)N4—C25—C24124.0 (4)
C9—C8—C7121.2 (3)N4—C25—H25118.0
C9—C8—C13118.0 (4)C24—C25—H25118.0
C13—C8—C7120.9 (3)H1WA—O1W—H1WB101.6
C8—C9—H9119.7H2WA—O2W—H2WB108.5
Cu1—O1—C1—O29.6 (5)C7—C8—C13—C145.2 (5)
Cu1—O1—C1—C2169.0 (2)C8—C9—C10—C110.8 (6)
Cu1iii—O3—C14—O444.2 (8)C8—C13—C14—O359.1 (5)
Cu1iii—O3—C14—C13133.8 (5)C8—C13—C14—O4122.8 (4)
Cu1—N1—C15—C16172.2 (3)C9—C8—C13—C120.4 (5)
Cu1—N1—C19—C18172.8 (3)C9—C8—C13—C14176.3 (3)
Cu1iv—N4—C21—C22165.6 (3)C9—C10—C11—C121.2 (6)
Cu1iv—N4—C25—C24166.3 (3)C10—C11—C12—C132.8 (6)
O1—C1—C2—C377.6 (4)C11—C12—C13—C82.4 (6)
O1—C1—C2—C7101.5 (4)C11—C12—C13—C14174.4 (4)
O2—C1—C2—C3101.1 (4)C12—C13—C14—O3117.7 (4)
O2—C1—C2—C779.8 (5)C12—C13—C14—O460.4 (5)
N1—C15—C16—C170.8 (6)C13—C8—C9—C101.1 (6)
N2—C17—C18—C19178.1 (3)C15—N1—C19—C182.1 (5)
N3—C23—C24—C25178.3 (3)C15—C16—C17—N2178.3 (3)
N4—C21—C22—C230.2 (6)C15—C16—C17—C181.0 (5)
C1—C2—C3—C4179.0 (3)C16—C17—C18—C191.2 (5)
C1—C2—C7—C6179.9 (3)C17—N2—C20—O54.0 (6)
C1—C2—C7—C80.6 (5)C17—N2—C20—N3177.4 (3)
C2—C3—C4—C51.1 (5)C17—C18—C19—N10.3 (6)
C2—C7—C8—C968.6 (5)C19—N1—C15—C162.4 (5)
C2—C7—C8—C13113.0 (4)C20—N2—C17—C16176.6 (4)
C3—C2—C7—C60.8 (5)C20—N2—C17—C182.7 (6)
C3—C2—C7—C8178.5 (3)C20—N3—C23—C22178.6 (3)
C3—C4—C5—C60.9 (6)C20—N3—C23—C240.5 (6)
C4—C5—C6—C72.1 (6)C21—N4—C25—C241.9 (5)
C5—C6—C7—C21.2 (5)C21—C22—C23—N3178.5 (3)
C5—C6—C7—C8179.5 (3)C21—C22—C23—C242.2 (5)
C6—C7—C8—C9112.2 (4)C22—C23—C24—C252.5 (5)
C6—C7—C8—C1366.3 (5)C23—N3—C20—O55.5 (6)
C7—C2—C3—C41.9 (5)C23—N3—C20—N2175.8 (3)
C7—C8—C9—C10179.6 (4)C23—C24—C25—N40.5 (6)
C7—C8—C13—C12178.1 (3)C25—N4—C21—C222.2 (5)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1, y+3/2, z+1/2; (iii) x+2, y1/2, z+3/2; (iv) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O1i0.891.842.650 (3)152
O6—H6B···O4v0.891.782.598 (4)152
N2—H2···O1Wvi0.882.032.852 (4)155
N3—H3···O1Wvi0.882.182.968 (4)149
O1W—H1WA···O40.921.902.786 (4)162
O1W—H1WB···O2vii0.862.042.873 (4)164
O2W—H2WA···O50.872.483.055 (18)124
O2W—H2WB···O5viii1.092.273.125 (18)134
Symmetry codes: (i) x+2, y+1/2, z+3/2; (v) x, y+1, z; (vi) x+1, y+1/2, z+3/2; (vii) x, y1, z; (viii) x+1, y+2, z+1.
 

Funding information

Funding for this work was provided by the Honors College of Michigan State University.

References

First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. (2007). Cryst. Growth Des. 7, 2096–2105.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartinez, B. L., Shrode, A. D., Staples, R. J. & LaDuca, R. L. (2018). Polyhedron, 151, 369–380.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds