organic compounds
Dipropylammonium 4-aminobenzenesulfonate
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane, Seck de Ziguinchor (UASZ), BP 523 Ziguinchor, Senegal, and cService Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, 6, avenue Victor Le Gorgeu, CS 93837, F-29238 BREST cedex 3, France
*Correspondence e-mail: bouks89@gmail.com
In the title molecular salt, NH2(C3H7)2+·[NH2C6H4SO3]−, the cation displays an extended conformation. In the crystal, anion-to-anion N—H⋯O and N—H⋯(O,O) hydrogen bonds generate (101) layers. Cation-to-anion N—H⋯O hydrogen bonds connect the layers into a three-dimensional network.
Keywords: crystal structure; hydrogen bonds; sulfanilate.
CCDC reference: 2004571
Structure description
Some sulfanilate-based compounds have high optical non-linearity and may be candidates for applications in optoelectronics and photonics in combination with organic cations such as guanidinium (Russell et al., 1994), triethylammonium (Li et al., 2007), diisopropylammonium (Sarr et al., 2016) and cyclohexylammonium (Kama et al., 2019). As part of our ongoing studies in this area (Sarr et al., 2016), we now describe the synthesis and of the title molecular salt, which crystallizes in the non-centrosymmetric Pn.
The , consists of one dipropylammonium NH2(C3H7)2+ cation and one 4-aminobenzenesulfonate [NH2C6H4SO3]− anion. The cation adopts an extended structure with a minimum torsion angle of 174.7 (4)° for N2—C10—C11—C12. The involvement of the oxygen atoms of the sulfonate group in the anion as hydrogen-bond acceptors is manifested in a slight difference in the S—O bond lengths [S1—O1 = 1.446 (2), S1—O2 = 1.454 (2), S1—O3 = 1.449 (2) Å]: these data are consistent with those in sulfanilate anions previously reported (Sarr et al., 2016; Kama et al., 2019).
shown in Fig. 1In the extended structure, each sulfanilate anion interacts with four neighbours via simple N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds (Table 1) to generate (101) layers (Fig. 2). The dipropylammonium cations play the role of bridges between the infinite anion layers via cation-to-anion N—H⋯O hydrogen bonds (Fig. 3) to generate a three-dimensional network. Each sulfanilate anion is thus surrounded by four anions and two cations.
Synthesis and crystallization
A 1:2 mixture of sulfanilic acid (1.00 g, 5.80 mmol) and dipropylammine (1.16 g, 11.50 mmol) was dissolved in water and the colourless solution obtained was stirred for an hour. After a few days of evaporation in an oven at 333 K, some yellowish crystals were collected from the solution and then dried in air. The IR spectrum and peak assignments are given in the supporting information.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2004571
https://doi.org/10.1107/S2414314620006598/hb4347sup1.cif
contains datablocks global, I. DOI:IR spectrum. DOI: https://doi.org/10.1107/S2414314620006598/hb4347sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2414314620006598/hb4347Isup3.cml
Data collection: ?; cell
?; data reduction: ?; program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) ORTEP-3 for Windows (Farrugia, 2012) Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 2012), PLATON (Spek, 2020), enCIFer (Allen et al., 2004).C6H16N+·C6H6NO3S− | F(000) = 296 |
Mr = 274.38 | Dx = 1.244 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2564 (7) Å | Cell parameters from 38522 reflections |
b = 6.5369 (5) Å | θ = 3.5–37.4° |
c = 10.9683 (9) Å | µ = 0.22 mm−1 |
β = 95.067 (7)° | T = 293 K |
V = 732.50 (10) Å3 | Block, clear light colourless |
Z = 2 | 0.38 × 0.28 × 0.19 mm |
Agilent Xcalibur, Sapphire2 diffractometer | 3387 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.149 |
ω scans | θmax = 29.8°, θmin = 6.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −13→14 |
Tmin = 0.669, Tmax = 0.746 | k = −9→9 |
21351 measured reflections | l = −15→15 |
4018 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.P)2 + 0.0621P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.003 |
4018 reflections | Δρmax = 0.21 e Å−3 |
181 parameters | Δρmin = −0.28 e Å−3 |
13 restraints | Absolute structure: Flack (1983) |
34 constraints | Absolute structure parameter: 0.09 (6) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The C-bound H atoms were geometrically placed and refined as riding atoms. The N-bound H atoms were located in difference maps and their positions were freely refined. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2799 (2) | 0.3112 (4) | 0.2052 (2) | 0.0367 (5) | |
C2 | 0.2417 (3) | 0.1097 (4) | 0.2172 (3) | 0.0445 (6) | |
H2 | 0.265741 | 0.011733 | 0.161908 | 0.053* | |
C3 | 0.1673 (3) | 0.0538 (4) | 0.3118 (3) | 0.0478 (6) | |
H3 | 0.142230 | −0.082099 | 0.319082 | 0.057* | |
C4 | 0.1296 (3) | 0.1968 (4) | 0.3958 (2) | 0.0422 (6) | |
C5 | 0.1670 (3) | 0.4010 (4) | 0.3810 (3) | 0.0437 (6) | |
H5 | 0.141106 | 0.500353 | 0.434520 | 0.052* | |
C6 | 0.2419 (3) | 0.4561 (4) | 0.2879 (2) | 0.0413 (6) | |
H6 | 0.267171 | 0.591786 | 0.280253 | 0.050* | |
N1 | 0.0600 (3) | 0.1413 (5) | 0.4919 (3) | 0.0648 (8) | |
O1 | 0.3872 (3) | 0.2145 (4) | 0.0083 (2) | 0.0685 (7) | |
O2 | 0.4990 (2) | 0.4606 (4) | 0.1461 (2) | 0.0629 (6) | |
O3 | 0.3054 (2) | 0.5583 (3) | 0.02517 (18) | 0.0554 (6) | |
H1A | 0.012 (4) | 0.243 (5) | 0.520 (4) | 0.088 (14)* | |
H1B | 0.018 (3) | 0.024 (5) | 0.488 (4) | 0.072 (12)* | |
C7 | 0.9403 (4) | 0.6507 (8) | 0.1124 (4) | 0.0829 (12) | |
H7A | 0.909563 | 0.612015 | 0.030421 | 0.124* | |
H7B | 1.021641 | 0.582605 | 0.135713 | 0.124* | |
H7C | 0.953392 | 0.796103 | 0.116045 | 0.124* | |
C8 | 0.8400 (3) | 0.5899 (5) | 0.1991 (3) | 0.0614 (9) | |
H8A | 0.867832 | 0.640996 | 0.280284 | 0.074* | |
H8B | 0.757055 | 0.654361 | 0.172644 | 0.074* | |
C9 | 0.8201 (3) | 0.3642 (5) | 0.2060 (3) | 0.0530 (7) | |
H9A | 0.901763 | 0.299306 | 0.235920 | 0.064* | |
H9B | 0.794755 | 0.311445 | 0.124654 | 0.064* | |
C10 | 0.6895 (3) | 0.0913 (5) | 0.3018 (3) | 0.0516 (8) | |
H10A | 0.768416 | 0.021660 | 0.334665 | 0.062* | |
H10B | 0.663027 | 0.033385 | 0.221981 | 0.062* | |
C11 | 0.5834 (4) | 0.0585 (5) | 0.3850 (3) | 0.0591 (8) | |
H11A | 0.507946 | 0.140033 | 0.355995 | 0.071* | |
H11B | 0.613660 | 0.106484 | 0.466270 | 0.071* | |
C12 | 0.5419 (4) | −0.1628 (7) | 0.3930 (5) | 0.0802 (12) | |
H12A | 0.512348 | −0.211830 | 0.312830 | 0.120* | |
H12B | 0.472165 | −0.173525 | 0.445549 | 0.120* | |
H12C | 0.614985 | −0.243529 | 0.425863 | 0.120* | |
N2 | 0.7169 (2) | 0.3125 (4) | 0.2888 (2) | 0.0435 (5) | |
S1 | 0.37479 (6) | 0.38949 (10) | 0.08711 (6) | 0.04080 (17) | |
H2A | 0.734 (3) | 0.372 (4) | 0.364 (2) | 0.064 (10)* | |
H2B | 0.644 (2) | 0.382 (4) | 0.264 (3) | 0.069 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0348 (12) | 0.0419 (13) | 0.0332 (11) | 0.0043 (10) | 0.0018 (9) | 0.0014 (9) |
C2 | 0.0517 (17) | 0.0382 (13) | 0.0438 (14) | 0.0021 (11) | 0.0060 (12) | −0.0044 (11) |
C3 | 0.0528 (16) | 0.0376 (13) | 0.0533 (16) | −0.0064 (12) | 0.0073 (13) | −0.0001 (12) |
C4 | 0.0381 (13) | 0.0457 (14) | 0.0427 (13) | −0.0032 (11) | 0.0033 (11) | 0.0007 (11) |
C5 | 0.0461 (15) | 0.0431 (14) | 0.0427 (14) | −0.0006 (11) | 0.0087 (12) | −0.0080 (10) |
C6 | 0.0455 (14) | 0.0349 (12) | 0.0437 (14) | −0.0006 (10) | 0.0049 (12) | −0.0033 (10) |
N1 | 0.072 (2) | 0.0622 (18) | 0.0641 (18) | −0.0099 (15) | 0.0292 (16) | 0.0007 (14) |
O1 | 0.0877 (17) | 0.0627 (14) | 0.0594 (13) | 0.0110 (13) | 0.0303 (12) | −0.0067 (12) |
O2 | 0.0394 (11) | 0.0936 (17) | 0.0546 (12) | −0.0071 (11) | −0.0020 (10) | 0.0245 (12) |
O3 | 0.0606 (13) | 0.0637 (13) | 0.0416 (11) | 0.0157 (11) | 0.0023 (10) | 0.0158 (10) |
C7 | 0.066 (2) | 0.116 (3) | 0.065 (2) | −0.023 (2) | 0.0032 (19) | 0.010 (2) |
C8 | 0.061 (2) | 0.073 (2) | 0.0502 (17) | −0.0077 (17) | 0.0041 (16) | 0.0003 (15) |
C9 | 0.0443 (16) | 0.069 (2) | 0.0448 (15) | 0.0084 (14) | 0.0000 (13) | −0.0059 (13) |
C10 | 0.058 (2) | 0.0487 (17) | 0.0464 (16) | 0.0045 (13) | −0.0052 (14) | −0.0062 (12) |
C11 | 0.062 (2) | 0.0575 (19) | 0.0567 (18) | 0.0025 (16) | −0.0017 (16) | 0.0008 (15) |
C12 | 0.075 (3) | 0.068 (2) | 0.096 (3) | −0.010 (2) | 0.000 (2) | 0.012 (2) |
N2 | 0.0454 (12) | 0.0454 (13) | 0.0383 (11) | 0.0061 (11) | −0.0038 (9) | −0.0062 (10) |
S1 | 0.0402 (3) | 0.0483 (3) | 0.0339 (3) | 0.0074 (3) | 0.0033 (2) | 0.0044 (3) |
C1—C2 | 1.384 (3) | C7—C8 | 1.515 (5) |
C1—C6 | 1.391 (3) | C8—H8A | 0.9700 |
C1—S1 | 1.763 (3) | C8—H8B | 0.9700 |
C2—H2 | 0.9300 | C8—C9 | 1.492 (5) |
C2—C3 | 1.390 (4) | C9—H9A | 0.9700 |
C3—H3 | 0.9300 | C9—H9B | 0.9700 |
C3—C4 | 1.391 (4) | C9—N2 | 1.493 (4) |
C4—C5 | 1.402 (4) | C10—H10A | 0.9700 |
C4—N1 | 1.373 (4) | C10—H10B | 0.9700 |
C5—H5 | 0.9300 | C10—C11 | 1.496 (5) |
C5—C6 | 1.378 (4) | C10—N2 | 1.483 (4) |
C6—H6 | 0.9300 | C11—H11A | 0.9700 |
N1—H1A | 0.90 (2) | C11—H11B | 0.9700 |
N1—H1B | 0.88 (2) | C11—C12 | 1.513 (5) |
O1—S1 | 1.446 (2) | C12—H12A | 0.9600 |
O2—S1 | 1.454 (2) | C12—H12B | 0.9600 |
O3—S1 | 1.449 (2) | C12—H12C | 0.9600 |
C7—H7A | 0.9600 | N2—H2A | 0.91 (2) |
C7—H7B | 0.9600 | N2—H2B | 0.90 (2) |
C7—H7C | 0.9600 | ||
C2—C1—C6 | 119.2 (2) | C8—C9—N2 | 111.2 (2) |
C2—C1—S1 | 121.7 (2) | H9A—C9—H9B | 108.0 |
C6—C1—S1 | 119.1 (2) | N2—C9—H9A | 109.4 |
C1—C2—H2 | 120.0 | N2—C9—H9B | 109.4 |
C1—C2—C3 | 120.0 (3) | H10A—C10—H10B | 108.1 |
C3—C2—H2 | 120.0 | C11—C10—H10A | 109.5 |
C2—C3—H3 | 119.3 | C11—C10—H10B | 109.5 |
C2—C3—C4 | 121.4 (3) | N2—C10—H10A | 109.5 |
C4—C3—H3 | 119.3 | N2—C10—H10B | 109.5 |
C3—C4—C5 | 117.9 (2) | N2—C10—C11 | 110.7 (3) |
N1—C4—C3 | 121.6 (3) | C10—C11—H11A | 108.9 |
N1—C4—C5 | 120.4 (3) | C10—C11—H11B | 108.9 |
C4—C5—H5 | 119.6 | C10—C11—C12 | 113.3 (3) |
C6—C5—C4 | 120.7 (2) | H11A—C11—H11B | 107.7 |
C6—C5—H5 | 119.6 | C12—C11—H11A | 108.9 |
C1—C6—H6 | 119.6 | C12—C11—H11B | 108.9 |
C5—C6—C1 | 120.8 (2) | C11—C12—H12A | 109.5 |
C5—C6—H6 | 119.6 | C11—C12—H12B | 109.5 |
C4—N1—H1A | 114 (3) | C11—C12—H12C | 109.5 |
C4—N1—H1B | 118 (3) | H12A—C12—H12B | 109.5 |
H1A—N1—H1B | 113 (4) | H12A—C12—H12C | 109.5 |
H7A—C7—H7B | 109.5 | H12B—C12—H12C | 109.5 |
H7A—C7—H7C | 109.5 | C9—N2—H2A | 112 (2) |
H7B—C7—H7C | 109.5 | C9—N2—H2B | 109 (2) |
C8—C7—H7A | 109.5 | C10—N2—C9 | 115.5 (2) |
C8—C7—H7B | 109.5 | C10—N2—H2A | 110.4 (19) |
C8—C7—H7C | 109.5 | C10—N2—H2B | 111 (2) |
C7—C8—H8A | 108.9 | H2A—N2—H2B | 98 (3) |
C7—C8—H8B | 108.9 | O1—S1—C1 | 107.05 (13) |
H8A—C8—H8B | 107.7 | O1—S1—O2 | 113.52 (17) |
C9—C8—C7 | 113.2 (3) | O1—S1—O3 | 112.81 (14) |
C9—C8—H8A | 108.9 | O2—S1—C1 | 106.52 (12) |
C9—C8—H8B | 108.9 | O3—S1—C1 | 106.58 (12) |
C8—C9—H9A | 109.4 | O3—S1—O2 | 109.88 (15) |
C8—C9—H9B | 109.4 | ||
C1—C2—C3—C4 | 0.1 (4) | C6—C1—S1—O1 | −173.8 (2) |
C2—C1—C6—C5 | 0.1 (4) | C6—C1—S1—O2 | 64.5 (2) |
C2—C1—S1—O1 | 5.8 (3) | C6—C1—S1—O3 | −52.8 (2) |
C2—C1—S1—O2 | −116.0 (2) | N1—C4—C5—C6 | 177.1 (3) |
C2—C1—S1—O3 | 126.7 (2) | C7—C8—C9—N2 | −177.9 (3) |
C2—C3—C4—C5 | 1.1 (4) | C8—C9—N2—C10 | 179.9 (3) |
C2—C3—C4—N1 | −177.7 (3) | C11—C10—N2—C9 | −179.1 (3) |
C3—C4—C5—C6 | −1.7 (4) | N2—C10—C11—C12 | 174.7 (3) |
C4—C5—C6—C1 | 1.2 (4) | S1—C1—C2—C3 | 179.8 (2) |
C6—C1—C2—C3 | −0.7 (4) | S1—C1—C6—C5 | 179.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.90 (2) | 2.39 (3) | 3.196 (4) | 149 (4) |
N1—H1A···O3i | 0.90 (2) | 2.49 (3) | 3.313 (4) | 153 (4) |
N1—H1B···O1ii | 0.88 (2) | 2.08 (2) | 2.940 (4) | 165 (4) |
N2—H2A···O3iii | 0.91 (2) | 1.91 (2) | 2.801 (3) | 164 (3) |
N2—H2B···O2 | 0.90 (2) | 1.95 (3) | 2.786 (3) | 154 (3) |
Symmetry codes: (i) x−1/2, −y+1, z+1/2; (ii) x−1/2, −y, z+1/2; (iii) x+1/2, −y+1, z+1/2. |
Acknowledgements
The authors thank the Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop de Dakar, Sénégal, the Laboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor (UASZ), Sénégal and the Service Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, France for financial support.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kama, A. B., Génois, R., Massuyeau, F., Sidibé, M., Diop, C. A. K. & Gautier, R. (2019). Mater. Lett. 241, 6–9. CrossRef CAS Google Scholar
Li, J., Liang, Z.-P. & Guo, H.-M. (2007). Acta Cryst. E63, o2884. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Russell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206–1217. CSD CrossRef CAS Web of Science Google Scholar
Sarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.