metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ammonium potassium citrate, (NH4)2KC6H5O7

aIllinois Mathematics and Science Academy, 1500 Sullivan Road, Aurora IL 60506 , USA, and bDepartment of Chemistry, North Central College, 131 S. Loomis, St., Naperville IL, 60540 , USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 February 2020; accepted 5 May 2020; online 12 May 2020)

The crystal structure of di­ammonium potassium citrate, 2NH4+·K+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data and optimized using density functional theory. The KO7 coordination polyhedra are isolated. The ammonium cations and the hydro­phobic methyl­ene sides of the citrate anions occupy the spaces between the coordination polyhedra. Each hydrogen atom of the ammonium ions acts as a donor in a charge-assisted N—H⋯O, N—H⋯(O,O) or N—H⋯(O,O,O) hydrogen bond. There is an intra­molecular O—H⋯O hydrogen bond in the citrate anion between the hydroxide group and one of the terminal carboxyl­ate groups.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported by Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The study was extended to ammonium citrates by Wheatley & Kaduk (2019[Wheatley, A. M. & Kaduk, J. A. (2019). Powder Diffr. 34, 35-43.]). The title compound represents a further extension to mixed ammonium Group 1 citrates, specifically di­ammonium potassium citrate, (NH4)2KC6H5O7.

The structure of (NH4)2KC6H5O7 was solved and refined from powder X-ray data and optimized by density functional theory (DFT) calculations (see Experimental section) and is illustrated in Fig. 1[link]. The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld-refined and DFT-optimized structures is 0.108 Å (Fig. 2[link]). The maximum deviation is 0.211 Å, at O14. The r.m.s. displacement of the potassium ions is 0.054 Å. The r.m.s. displacements of the ammonium ions N19 and N20 are 0.111 and 0.151 Å respectively. The good agreement between the two structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The citrate anion occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The central carboxyl­ate group and the hydroxyl group exhibit a small twist [O16—C6—C3—O17 torsion angle = 7.0°] from the normal planar arrangement. The Mulliken overlap populations indicate that the K—O bonds are ionic.

[Figure 1]
Figure 1
The asymmetric unit of (NH4)2KC6H5O7 with the atom numbering and 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of (NH4)2KC6H5O7. The refined structure is in red, and the DFT-optimized structure is in blue.

The citrate anion doubly chelates to K21 through the hydroxyl group O17 and the terminal carboxyl­ate group (atom O11). The anion doubly chelates to another potassium cation through the hydroxyl group and the other terminal carboxyl­ate group (atom O14). Each oxygen atom bonds to a single potassium cation. As a result, K21 is seven-coordinate (capped trigonal prismatic), with a bond-valence sum of 0.98.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) method suggests that we might expect block morphology for di­ammonium potassium citrate. A 2nd order spherical harmonic preferred orientation model was included in the Rietveld refinement; the texture index was 1.179, indicating that preferred orientation was significant for this rotated flat sheet specimen.

The KO7 coordination polyhedra are isolated (Fig. 3[link]). The ammonium cations and the hydro­phobic methyl­ene sides of the citrate anions occupy the spaces between the coordination polyhedra. Each hydrogen atom of the ammonium ions acts as a donor in a charge-assisted N—H⋯O hydrogen bond; there is one bifurcated M—H⋯(O,O) bond and one trifurcated N—H⋯(O,O,O) bond (Table 1[link]). There is an intra­molecular hydrogen bond between the hydroxide group and one of the terminal carboxyl­ate groups. The N—H⋯O hydrogen-bond energies were calculated by the correlation of Wheatley & Kaduk (2019[Wheatley, A. M. & Kaduk, J. A. (2019). Powder Diffr. 34, 35-43.]), and the O—H⋯O hydrogen bond energy was calculated by the correlation of Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O11 0.90 1.79 2.613 (19) 150
N19—H22⋯O14i 0.77 2.18 2.88 (3) 150
N19—H22⋯O16i 0.77 2.46 2.80 (3) 109
N19—H22⋯O17i 0.77 2.33 2.74 (2) 114
N19—H23⋯O16i 0.97 2.13 2.80 (3) 125
N19—H24⋯O15ii 0.85 2.13 2.90 (3) 151
N19—H25⋯O14iii 1.07 1.77 2.80 (2) 162
N20—H26⋯O15iv 0.94 2.58 3.26 (3) 130
N20—H26⋯O16iv 0.94 1.91 2.84 (3) 173
N20—H27⋯O11v 0.92 1.78 2.69 (3) 177
N20—H28⋯O13vi 0.98 1.99 2.89 (3) 154
N20—H29⋯O12vii 0.86 1.92 2.77 (3) 170
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x-1, y+1, z; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) x, y+1, z.
[Figure 3]
Figure 3
The crystal structure of (NH4)2KC6H5O7, viewed along the a axis.

Di­ammonium potassium citrate is isostructural to trimmonium citrate (Wheatley & Kaduk, 2019[Wheatley, A. M. & Kaduk, J. A. (2019). Powder Diffr. 34, 35-43.]; Fig. 4[link]). Comparison of the powder patterns (Fig. 5[link]) confirms the similarity.

[Figure 4]
Figure 4
Overlay of the crystal structures of di­ammonium potassium citrate and tri­ammonium citrate, showing that they are isostructural.
[Figure 5]
Figure 5
Comparison of the X-ray powder diffraction patterns of di­ammonium potassium citrate (black) and tri­ammonium citrate (green).

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The powder pattern of (NH4)2KC6H5O7 was indexed using N-TREOR (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]). A reduced-cell search of the cell of di­ammonium potassium citrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in no hits.

Synthesis and crystallization

Di­ammonium potassium citrate was synthesized by dissolving 1.1217 g di­ammonium hydrogen citrate (Fisher Lot #995047) and 0.3279 g potassium carbonate (Sigma–Aldrich Lot #098 K0064) in ∼5 ml of deionized water. The clear solution was dried at 363 K for two days to yield a white solid.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A Rietveld plot is presented in Fig. 6[link].

Table 2
Experimental details

Crystal data
Chemical formula 2NH4+·K+·C6H5O73−
Mr 264.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 6.0238 (5), 13.2925 (6), 13.4155 (8)
β (°) 93.131 (4)
V3) 1072.60 (12)
Z 4
Radiation type Kα1,2, λ = 1.54059, 1.54445 Å
Specimen shape, size (mm) Flat sheet, 25 × 25
 
Data collection
Diffractometer Bruker D2 Phaser
Specimen mounting Standard sample holder with Kapton window
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 5.051, 2θmax = 100.038, 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.056, Rwp = 0.072, Rexp = 0.038, R(F2) = 0.16190, χ2 = 3.656
No. of parameters 78
H-atom treatment Only H-atom displacement parameters refined
The same symmetry and lattice parameters were used for the DFT calculations as for the powder diffraction study. Computer programs: Data Collector (Bruker, 2015[Bruker (2015). Data Collector. Bruker AXS Inc., Maddison, Wisconsin, USA.]), FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]), GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 6]
Figure 6
Rietveld plot for (NH4)2KC6H5O7. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 10× for 2θ > 50.0°. The row of blue tick marks indicates the calculated reflection positions. The red line is the background curve.

The structure was solved using Monte Carlo simulated annealing techniques with FOX (Favre-Nicolin & Černý 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]) using a citrate anion, one K+ cation and two ammonium cations as fragments. The structure was refined by the Rietveld method using GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]). The hydrogen atoms were included in fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systems, 2019[Dassault Systems. (2019). Materials Studio, BIOVIA, San Diego, USA.]). All C—C and C—O bond distances and all bond angles were restrained based on a Mercury/Mogul Geometry Check (Sykes et al., 2011[Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882-886.]; Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) of the mol­ecule. The Uiso values of the atoms in the central and outer portions of the citrate were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3× those of the atoms to which they are attached. A Chebyschev background function with three coefficients was used to model the background. A ten-term diffuse scattering function was used to describe the scattering from the capillary and any amorphous component. A density functional geometry optimization was carried out using CRYSTAL14 (Dovesi et al., 2014[Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287-1317.]). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for K was that of Peintinger et al. (2013[Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451-459.]). The calculation was run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, using 8 k-points and the B3LYP functional, and took ∼5 days.

Structural data


Computing details top

Data collection: Data Collector (Bruker, 2015) for (I). Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for (I). Program(s) used to refine structure: GSAS-II (Toby & Von Dreele, 2013) for (I). Molecular graphics: DIAMOND (Crystal Impact, 2015) and Mercury (Macrae et al., 2020) for (I). Software used to prepare material for publication: DIAMOND (Crystal Impact, 2015) and Mercury (Macrae et al., 2020) for (I).

Diammonium potassium citrate (I) top
Crystal data top
2NH4+·K+·C6H5O73Z = 4
Mr = 264.27Dx = 1.637 Mg m3
Monoclinic, P21/c Kα1,2 radiation, λ = 1.54059, 1.54445 Å
Hall symbol: -P 2ybcT = 300 K
a = 6.0238 (5) ÅParticle morphology: powder
b = 13.2925 (6) Åwhite
c = 13.4155 (8) Åflat_sheet, 25 × 25 mm
β = 93.131 (4)°Specimen preparation: Prepared at 363 K and 101 kPa
V = 1072.60 (12) Å3
Data collection top
Bruker D2 Phaser
diffractometer
Data collection mode: reflection
Radiation source: sealed X-ray tubeScan method: step
Ni filter monochromator2θmin = 5.051°, 2θmax = 100.038°, 2θstep = 0.020°
Specimen mounting: standard sample holder with Kapton window
Refinement top
Least-squares matrix: full78 parameters
Rp = 0.0563 constraints
Rwp = 0.072Only H-atom displacement parameters refined
Rexp = 0.038Weighting scheme based on measured s.u.'s
R(F2) = 0.16190(Δ/σ)max < 0.001
4700 data pointsBackground function: Background function: "chebyschev" function with 3 terms: 434.7(23), -456(8), 208(14), Background Debye function parameters: A, R, U: 11.0(8), 1.430, 0.100, 30(5), 2.270, 0.100, 95(21), 2.940, 0.100, -4.4(4), 8.740, 0.100, -28(3), 1.970, 0.100, -104(22), 2.880, 0.100, -8.4(18), 3.580, 0.100, 8.2(6), 14.000, 0.100, 2.5(7), 17.810, 0.100, -0.4(8), 4.000, 0.100,
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 3.537, -1.411, 1.973, 2.482, 0.000, 0.048, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 14695.026, 1.365, 571.072, 1337.970, 183.112, -17.422, 2458.309, -70.133, 156.113, 1.000,Preferred orientation correction: Simple spherical harmonic correction Order = 0 Coefficients:
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.886 (3)0.0374 (11)0.8584 (14)0.012 (2)*
C20.757 (2)0.0812 (8)0.9422 (10)0.036 (7)*
C30.7931 (14)0.1942 (7)0.9608 (7)0.036*
C40.669 (2)0.2264 (7)1.0527 (10)0.036*
C50.656 (2)0.3389 (7)1.0721 (15)0.0123*
C60.7043 (15)0.2540 (13)0.8679 (10)0.0123*
H70.776700.043200.999600.046*
H80.574500.069400.926200.046*
H90.503700.200201.046300.046*
H100.715800.195301.109500.046*
O120.807 (2)0.0389 (9)0.8144 (10)0.0123*
O130.473 (2)0.3730 (9)1.0971 (13)0.0123*
O140.827 (2)0.3899 (9)1.0640 (13)0.0123*
O150.4977 (17)0.2596 (12)0.8525 (10)0.0123*
O160.845 (2)0.2922 (10)0.8155 (9)0.0123*
O171.0258 (16)0.2132 (9)0.9785 (9)0.0123*
O111.061 (2)0.0808 (9)0.8363 (12)0.0123*
H181.086500.167900.938400.016*
N190.825 (4)0.6005 (14)0.0743 (17)0.040000*
N200.369 (4)0.9754 (16)0.7422 (14)0.040*
K210.8415 (12)0.7585 (6)0.3071 (5)0.040*
H220.937900.615600.053800.052000*
H230.907900.600600.138000.052000*
H240.699600.626000.084600.052000*
H250.791700.521800.070600.052000*
H260.308400.913700.720300.052000*
H270.260101.010300.772600.052000*
H280.386901.010500.679200.052000*
H290.501800.976700.769000.052000*
Geometric parameters (Å, º) top
C1—C21.520 (3)O15—K21iv2.887 (13)
C1—O121.254 (5)O16—C61.238 (6)
C1—O111.249 (4)O16—K21v2.659 (15)
C2—C11.520 (3)O17—C31.431 (4)
C2—C31.536 (3)O17—H180.899
C2—H70.923O17—K21iii3.004 (14)
C2—H81.119O11—C11.249 (4)
C3—C21.536 (3)O11—K21v2.956 (15)
C3—C41.537 (3)H18—O170.899
C3—C61.549 (3)N19—H220.774
C3—O171.431 (4)N19—H230.966
C4—C31.537 (3)N19—H240.847
C4—C51.520 (3)N19—H251.065
C4—H91.055N20—H260.937
C4—H100.899N20—H270.916
C5—C41.520 (3)N20—H280.977
C5—O131.251 (5)N20—H290.861
C5—O141.244 (4)K21—O12vi2.928 (14)
C6—C31.549 (3)K21—O13vii2.799 (16)
C6—O151.253 (6)K21—O14viii3.108 (16)
C6—O161.238 (6)K21—O15iv2.887 (13)
H7—C20.923K21—O16v2.659 (15)
H8—C21.119K21—O17viii3.004 (14)
H9—C41.055K21—O11v2.956 (15)
H9—H101.4957H22—N190.774
H10—C40.899H23—N190.966
O12—C11.254 (5)H24—N190.847
O12—K21i2.928 (14)H25—N191.065
O13—C51.251 (5)H26—N200.937
O13—K21ii2.799 (16)H27—N200.916
O14—C51.244 (4)H28—N200.977
O14—K21iii3.108 (16)H29—N200.861
O15—C61.253 (6)
C2—C1—O12117.5 (5)C4—C5—O13117.3 (5)
C2—C1—O11118.1 (4)C4—C5—O14118.0 (4)
O12—C1—O11124.4 (4)O13—C5—O14124.7 (4)
C1—C2—C3114.9 (4)C3—C6—O15117.4 (3)
C1—C2—H7111.1C3—C6—O16116.8 (3)
C3—C2—H7112.9O15—C6—O16125.9 (4)
C1—C2—H8110.0C6—O16—K21v141.1 (13)
C3—C2—H8107.3C3—O17—H18102.1
H7—C2—H899.4H22—N19—H2383.8
C2—C3—C4109.4 (4)H22—N19—H24139.7
C2—C3—C6109.4 (4)H23—N19—H24106.1
C4—C3—C6109.9 (4)H22—N19—H25113.9
C2—C3—O17109.2 (4)H23—N19—H2597.5
C4—C3—O17109.4 (4)H24—N19—H25103.5
C6—C3—O17109.6 (4)H26—N20—H27108.0
C3—C4—C5116.4 (5)H26—N20—H28102.0
C3—C4—H9110.0H27—N20—H28105.1
C5—C4—H9106.2H26—N20—H29119.0
C3—C4—H10114.1H27—N20—H29118.4
C5—C4—H10108.9H28—N20—H29101.9
H9—C4—H1099.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x, y+1/2, z1/2; (vii) x+1, y+1/2, z+3/2; (viii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O110.901.792.613 (19)150
N19—H22···O14v0.772.182.88 (3)150
N19—H22···O16v0.772.462.80 (3)109
N19—H22···O17v0.772.332.74 (2)114
N19—H23···O16v0.972.132.80 (3)125
N19—H24···O15iv0.852.132.90 (3)151
N19—H25···O14ix1.071.772.80 (2)162
N20—H26···O15vii0.942.583.26 (3)130
N20—H26···O16vii0.941.912.84 (3)173
N20—H27···O11x0.921.782.69 (3)177
N20—H28···O13xi0.981.992.89 (3)154
N20—H29···O12xii0.861.922.77 (3)170
Symmetry codes: (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vii) x+1, y+1/2, z+3/2; (ix) x, y, z1; (x) x1, y+1, z; (xi) x, y+3/2, z1/2; (xii) x, y+1, z.
(I_DFT) top
Crystal data top
C6H13KN2O7c = 13.4156 Å
Mr = 264.27β = 93.1310°
Monoclinic, P21/cV = 1072.60 Å3
Hall symbol: -P 2ybcZ = 4
a = 6.0238 ÅDx = 1.637 Mg m3
b = 13.2926 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.873180.035650.866870.01230*
C20.725990.083140.943440.03600*
C30.769030.194960.968280.03600*
C40.634800.223151.058330.03600*
C50.633100.334161.088630.01230*
C60.687650.259460.876890.01230*
H70.756070.039311.011800.04600*
H80.551880.073010.919730.04600*
H90.464100.198551.043850.04600*
H100.703410.180541.122490.04600*
O120.803470.042620.822660.01230*
O130.443910.371431.105790.01230*
O140.813430.381941.097930.01230*
O150.482520.260290.853770.01230*
O160.830500.308700.830320.01230*
O170.999680.210470.994480.01230*
O111.062650.075580.855230.01230*
H181.079240.171430.945380.01600*
N200.371680.982040.744580.04000*
K210.862170.755400.301000.04000*
H220.788000.603640.003080.05200*
H230.957960.626000.104040.05200*
N190.811210.591361.078270.04000*
H240.685360.630020.110460.05200*
H250.807970.514520.094260.05200*
H260.303060.915020.717520.05200*
H270.256191.015940.789420.05200*
H280.404661.031250.686560.05200*
H290.522330.967620.783410.05200*
Bond lengths (Å) top
C1—C21.530C6—O161.272
C1—O121.258O17—H180.984
C1—O111.276N20—H261.039
C2—C31.542N20—H271.046
C2—H71.093N20—H281.044
C2—H81.088N20—H291.039
C3—C41.536H22—N19i1.024
C3—C61.553H23—N19i1.039
C3—O171.429N19—H23ii1.039
C4—C51.531N19—H22ii1.024
C4—H91.086N19—H24ii1.030
C4—H101.093N19—H25ii1.044
C5—O131.275H24—N19i1.030
C5—O141.259H25—N19i1.044
C6—O151.257
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H29···O121.0391.7512.770165.64
N20—H28···O131.0441.7122.746169.62
N20—H27···O111.0461.6972.742176.08
N20—H26···O161.0391.7322.769175.39
N19—H25···O141.0441.7632.796159.41
N19—H24···O151.0301.8532.833157.81
N19—H23···O161.0391.7412.764167.24
N19—H22···O131.0241.9932.879143.23
O17—H18···O110.9841.7562.632146.38
 

Acknowledgements

We thank North Central College for allowing us the space and resources to pursue this research project. We also thank the Illinois Mathematics and Science Academy for offering us the opportunity to work on this project. We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.

References

First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2015). Data Collector. Bruker AXS Inc., Maddison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systems. (2019). Materials Studio, BIOVIA, San Diego, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.  Web of Science CrossRef CAS Google Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882–886.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWheatley, A. M. & Kaduk, J. A. (2019). Powder Diffr. 34, 35–43.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds