metal-organic compounds
Diammonium potassium citrate, (NH4)2KC6H5O7
aIllinois Mathematics and Science Academy, 1500 Sullivan Road, Aurora IL 60506 , USA, and bDepartment of Chemistry, North Central College, 131 S. Loomis, St., Naperville IL, 60540 , USA
*Correspondence e-mail: kaduk@polycrystallography.com
The 4+·K+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data and optimized using density functional theory. The KO7 coordination polyhedra are isolated. The ammonium cations and the hydrophobic methylene sides of the citrate anions occupy the spaces between the coordination polyhedra. Each hydrogen atom of the ammonium ions acts as a donor in a charge-assisted N—H⋯O, N—H⋯(O,O) or N—H⋯(O,O,O) hydrogen bond. There is an intramolecular O—H⋯O hydrogen bond in the citrate anion between the hydroxide group and one of the terminal carboxylate groups.
of diammonium potassium citrate, 2NHKeywords: powder diffraction; density functional theory; citrate anion; ammonium; potasssium.
Structure description
A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported by Rammohan & Kaduk (2018). The study was extended to ammonium citrates by Wheatley & Kaduk (2019). The title compound represents a further extension to mixed ammonium Group 1 citrates, specifically diammonium potassium citrate, (NH4)2KC6H5O7.
The structure of (NH4)2KC6H5O7 was solved and refined from powder X-ray data and optimized by density functional theory (DFT) calculations (see Experimental section) and is illustrated in Fig. 1. The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld-refined and DFT-optimized structures is 0.108 Å (Fig. 2). The maximum deviation is 0.211 Å, at O14. The r.m.s. displacement of the potassium ions is 0.054 Å. The r.m.s. displacements of the ammonium ions N19 and N20 are 0.111 and 0.151 Å respectively. The good agreement between the two structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2020). The citrate anion occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018). The central carboxylate group and the hydroxyl group exhibit a small twist [O16—C6—C3—O17 torsion angle = 7.0°] from the normal planar arrangement. The Mulliken overlap populations indicate that the K—O bonds are ionic.
The citrate anion doubly chelates to K21 through the hydroxyl group O17 and the terminal carboxylate group (atom O11). The anion doubly chelates to another potassium cation through the hydroxyl group and the other terminal carboxylate group (atom O14). Each oxygen atom bonds to a single potassium cation. As a result, K21 is seven-coordinate (capped trigonal prismatic), with a bond-valence sum of 0.98.
The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) method suggests that we might expect block morphology for diammonium potassium citrate. A 2nd order spherical harmonic model was included in the the texture index was 1.179, indicating that was significant for this rotated flat sheet specimen.
The KO7 coordination polyhedra are isolated (Fig. 3). The ammonium cations and the hydrophobic methylene sides of the citrate anions occupy the spaces between the coordination polyhedra. Each hydrogen atom of the ammonium ions acts as a donor in a charge-assisted N—H⋯O hydrogen bond; there is one bifurcated M—H⋯(O,O) bond and one trifurcated N—H⋯(O,O,O) bond (Table 1). There is an intramolecular hydrogen bond between the hydroxide group and one of the terminal carboxylate groups. The N—H⋯O hydrogen-bond energies were calculated by the correlation of Wheatley & Kaduk (2019), and the O—H⋯O hydrogen was calculated by the correlation of Rammohan & Kaduk (2018).
Diammonium potassium citrate is isostructural to trimmonium citrate (Wheatley & Kaduk, 2019; Fig. 4). Comparison of the powder patterns (Fig. 5) confirms the similarity.
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018). The powder pattern of (NH4)2KC6H5O7 was indexed using N-TREOR (Altomare et al., 2013). A reduced-cell search of the cell of diammonium potassium citrate in the Cambridge Structural Database (Groom et al., 2016) resulted in no hits.
Synthesis and crystallization
Diammonium potassium citrate was synthesized by dissolving 1.1217 g diammonium hydrogen citrate (Fisher Lot #995047) and 0.3279 g potassium carbonate (Sigma–Aldrich Lot #098 K0064) in ∼5 ml of deionized water. The clear solution was dried at 363 K for two days to yield a white solid.
Refinement
Crystal data, data collection and structure . A Rietveld plot is presented in Fig. 6.
details are summarized in Table 2
|
The structure was solved using Monte Carlo simulated annealing techniques with FOX (Favre-Nicolin & Černý 2002) using a citrate anion, one K+ cation and two ammonium cations as fragments. The structure was refined by the using GSAS-II (Toby & Von Dreele, 2013). The hydrogen atoms were included in fixed positions, which were recalculated during the course of the using Materials Studio (Dassault Systems, 2019). All C—C and C—O bond distances and all bond angles were restrained based on a Mercury/Mogul Geometry Check (Sykes et al., 2011; Bruno et al., 2004) of the molecule. The Uiso values of the atoms in the central and outer portions of the citrate were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3× those of the atoms to which they are attached. A Chebyschev background function with three coefficients was used to model the background. A ten-term diffuse scattering function was used to describe the scattering from the capillary and any amorphous component. A density functional geometry optimization was carried out using CRYSTAL14 (Dovesi et al., 2014). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994), and the basis set for K was that of Peintinger et al. (2013). The calculation was run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, using 8 k-points and the B3LYP functional, and took ∼5 days.
Structural data
https://doi.org/10.1107/S2414314620006124/hb4336sup1.cif
contains datablocks global, I, I_DFT. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314620006124/hb4336Isup2.cml
Data collection: Data Collector (Bruker, 2015) for (I). Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for (I). Program(s) used to refine structure: GSAS-II (Toby & Von Dreele, 2013) for (I). Molecular graphics: DIAMOND (Crystal Impact, 2015) and Mercury (Macrae et al., 2020) for (I). Software used to prepare material for publication: DIAMOND (Crystal Impact, 2015) and Mercury (Macrae et al., 2020) for (I).
2NH4+·K+·C6H5O73− | Z = 4 |
Mr = 264.27 | Dx = 1.637 Mg m−3 |
Monoclinic, P21/c | Kα1,2 radiation, λ = 1.54059, 1.54445 Å |
Hall symbol: -P 2ybc | T = 300 K |
a = 6.0238 (5) Å | Particle morphology: powder |
b = 13.2925 (6) Å | white |
c = 13.4155 (8) Å | flat_sheet, 25 × 25 mm |
β = 93.131 (4)° | Specimen preparation: Prepared at 363 K and 101 kPa |
V = 1072.60 (12) Å3 |
Bruker D2 Phaser diffractometer | Data collection mode: reflection |
Radiation source: sealed X-ray tube | Scan method: step |
Ni filter monochromator | 2θmin = 5.051°, 2θmax = 100.038°, 2θstep = 0.020° |
Specimen mounting: standard sample holder with Kapton window |
Least-squares matrix: full | 78 parameters |
Rp = 0.056 | 3 constraints |
Rwp = 0.072 | Only H-atom displacement parameters refined |
Rexp = 0.038 | Weighting scheme based on measured s.u.'s |
R(F2) = 0.16190 | (Δ/σ)max < 0.001 |
4700 data points | Background function: Background function: "chebyschev" function with 3 terms: 434.7(23), -456(8), 208(14), Background Debye function parameters: A, R, U: 11.0(8), 1.430, 0.100, 30(5), 2.270, 0.100, 95(21), 2.940, 0.100, -4.4(4), 8.740, 0.100, -28(3), 1.970, 0.100, -104(22), 2.880, 0.100, -8.4(18), 3.580, 0.100, 8.2(6), 14.000, 0.100, 2.5(7), 17.810, 0.100, -0.4(8), 4.000, 0.100, |
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 3.537, -1.411, 1.973, 2.482, 0.000, 0.048, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 14695.026, 1.365, 571.072, 1337.970, 183.112, -17.422, 2458.309, -70.133, 156.113, 1.000, | Preferred orientation correction: Simple spherical harmonic correction Order = 0 Coefficients: |
x | y | z | Uiso*/Ueq | ||
C1 | 0.886 (3) | 0.0374 (11) | 0.8584 (14) | 0.012 (2)* | |
C2 | 0.757 (2) | 0.0812 (8) | 0.9422 (10) | 0.036 (7)* | |
C3 | 0.7931 (14) | 0.1942 (7) | 0.9608 (7) | 0.036* | |
C4 | 0.669 (2) | 0.2264 (7) | 1.0527 (10) | 0.036* | |
C5 | 0.656 (2) | 0.3389 (7) | 1.0721 (15) | 0.0123* | |
C6 | 0.7043 (15) | 0.2540 (13) | 0.8679 (10) | 0.0123* | |
H7 | 0.77670 | 0.04320 | 0.99960 | 0.046* | |
H8 | 0.57450 | 0.06940 | 0.92620 | 0.046* | |
H9 | 0.50370 | 0.20020 | 1.04630 | 0.046* | |
H10 | 0.71580 | 0.19530 | 1.10950 | 0.046* | |
O12 | 0.807 (2) | −0.0389 (9) | 0.8144 (10) | 0.0123* | |
O13 | 0.473 (2) | 0.3730 (9) | 1.0971 (13) | 0.0123* | |
O14 | 0.827 (2) | 0.3899 (9) | 1.0640 (13) | 0.0123* | |
O15 | 0.4977 (17) | 0.2596 (12) | 0.8525 (10) | 0.0123* | |
O16 | 0.845 (2) | 0.2922 (10) | 0.8155 (9) | 0.0123* | |
O17 | 1.0258 (16) | 0.2132 (9) | 0.9785 (9) | 0.0123* | |
O11 | 1.061 (2) | 0.0808 (9) | 0.8363 (12) | 0.0123* | |
H18 | 1.08650 | 0.16790 | 0.93840 | 0.016* | |
N19 | 0.825 (4) | 0.6005 (14) | 0.0743 (17) | 0.040000* | |
N20 | 0.369 (4) | 0.9754 (16) | 0.7422 (14) | 0.040* | |
K21 | 0.8415 (12) | 0.7585 (6) | 0.3071 (5) | 0.040* | |
H22 | 0.93790 | 0.61560 | 0.05380 | 0.052000* | |
H23 | 0.90790 | 0.60060 | 0.13800 | 0.052000* | |
H24 | 0.69960 | 0.62600 | 0.08460 | 0.052000* | |
H25 | 0.79170 | 0.52180 | 0.07060 | 0.052000* | |
H26 | 0.30840 | 0.91370 | 0.72030 | 0.052000* | |
H27 | 0.26010 | 1.01030 | 0.77260 | 0.052000* | |
H28 | 0.38690 | 1.01050 | 0.67920 | 0.052000* | |
H29 | 0.50180 | 0.97670 | 0.76900 | 0.052000* |
C1—C2 | 1.520 (3) | O15—K21iv | 2.887 (13) |
C1—O12 | 1.254 (5) | O16—C6 | 1.238 (6) |
C1—O11 | 1.249 (4) | O16—K21v | 2.659 (15) |
C2—C1 | 1.520 (3) | O17—C3 | 1.431 (4) |
C2—C3 | 1.536 (3) | O17—H18 | 0.899 |
C2—H7 | 0.923 | O17—K21iii | 3.004 (14) |
C2—H8 | 1.119 | O11—C1 | 1.249 (4) |
C3—C2 | 1.536 (3) | O11—K21v | 2.956 (15) |
C3—C4 | 1.537 (3) | H18—O17 | 0.899 |
C3—C6 | 1.549 (3) | N19—H22 | 0.774 |
C3—O17 | 1.431 (4) | N19—H23 | 0.966 |
C4—C3 | 1.537 (3) | N19—H24 | 0.847 |
C4—C5 | 1.520 (3) | N19—H25 | 1.065 |
C4—H9 | 1.055 | N20—H26 | 0.937 |
C4—H10 | 0.899 | N20—H27 | 0.916 |
C5—C4 | 1.520 (3) | N20—H28 | 0.977 |
C5—O13 | 1.251 (5) | N20—H29 | 0.861 |
C5—O14 | 1.244 (4) | K21—O12vi | 2.928 (14) |
C6—C3 | 1.549 (3) | K21—O13vii | 2.799 (16) |
C6—O15 | 1.253 (6) | K21—O14viii | 3.108 (16) |
C6—O16 | 1.238 (6) | K21—O15iv | 2.887 (13) |
H7—C2 | 0.923 | K21—O16v | 2.659 (15) |
H8—C2 | 1.119 | K21—O17viii | 3.004 (14) |
H9—C4 | 1.055 | K21—O11v | 2.956 (15) |
H9—H10 | 1.4957 | H22—N19 | 0.774 |
H10—C4 | 0.899 | H23—N19 | 0.966 |
O12—C1 | 1.254 (5) | H24—N19 | 0.847 |
O12—K21i | 2.928 (14) | H25—N19 | 1.065 |
O13—C5 | 1.251 (5) | H26—N20 | 0.937 |
O13—K21ii | 2.799 (16) | H27—N20 | 0.916 |
O14—C5 | 1.244 (4) | H28—N20 | 0.977 |
O14—K21iii | 3.108 (16) | H29—N20 | 0.861 |
O15—C6 | 1.253 (6) | ||
C2—C1—O12 | 117.5 (5) | C4—C5—O13 | 117.3 (5) |
C2—C1—O11 | 118.1 (4) | C4—C5—O14 | 118.0 (4) |
O12—C1—O11 | 124.4 (4) | O13—C5—O14 | 124.7 (4) |
C1—C2—C3 | 114.9 (4) | C3—C6—O15 | 117.4 (3) |
C1—C2—H7 | 111.1 | C3—C6—O16 | 116.8 (3) |
C3—C2—H7 | 112.9 | O15—C6—O16 | 125.9 (4) |
C1—C2—H8 | 110.0 | C6—O16—K21v | 141.1 (13) |
C3—C2—H8 | 107.3 | C3—O17—H18 | 102.1 |
H7—C2—H8 | 99.4 | H22—N19—H23 | 83.8 |
C2—C3—C4 | 109.4 (4) | H22—N19—H24 | 139.7 |
C2—C3—C6 | 109.4 (4) | H23—N19—H24 | 106.1 |
C4—C3—C6 | 109.9 (4) | H22—N19—H25 | 113.9 |
C2—C3—O17 | 109.2 (4) | H23—N19—H25 | 97.5 |
C4—C3—O17 | 109.4 (4) | H24—N19—H25 | 103.5 |
C6—C3—O17 | 109.6 (4) | H26—N20—H27 | 108.0 |
C3—C4—C5 | 116.4 (5) | H26—N20—H28 | 102.0 |
C3—C4—H9 | 110.0 | H27—N20—H28 | 105.1 |
C5—C4—H9 | 106.2 | H26—N20—H29 | 119.0 |
C3—C4—H10 | 114.1 | H27—N20—H29 | 118.4 |
C5—C4—H10 | 108.9 | H28—N20—H29 | 101.9 |
H9—C4—H10 | 99.6 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vi) x, −y+1/2, z−1/2; (vii) −x+1, y+1/2, −z+3/2; (viii) −x+2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O11 | 0.90 | 1.79 | 2.613 (19) | 150 |
N19—H22···O14v | 0.77 | 2.18 | 2.88 (3) | 150 |
N19—H22···O16v | 0.77 | 2.46 | 2.80 (3) | 109 |
N19—H22···O17v | 0.77 | 2.33 | 2.74 (2) | 114 |
N19—H23···O16v | 0.97 | 2.13 | 2.80 (3) | 125 |
N19—H24···O15iv | 0.85 | 2.13 | 2.90 (3) | 151 |
N19—H25···O14ix | 1.07 | 1.77 | 2.80 (2) | 162 |
N20—H26···O15vii | 0.94 | 2.58 | 3.26 (3) | 130 |
N20—H26···O16vii | 0.94 | 1.91 | 2.84 (3) | 173 |
N20—H27···O11x | 0.92 | 1.78 | 2.69 (3) | 177 |
N20—H28···O13xi | 0.98 | 1.99 | 2.89 (3) | 154 |
N20—H29···O12xii | 0.86 | 1.92 | 2.77 (3) | 170 |
Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vii) −x+1, y+1/2, −z+3/2; (ix) x, y, z−1; (x) x−1, y+1, z; (xi) x, −y+3/2, z−1/2; (xii) x, y+1, z. |
C6H13KN2O7 | c = 13.4156 Å |
Mr = 264.27 | β = 93.1310° |
Monoclinic, P21/c | V = 1072.60 Å3 |
Hall symbol: -P 2ybc | Z = 4 |
a = 6.0238 Å | Dx = 1.637 Mg m−3 |
b = 13.2926 Å |
x | y | z | Uiso*/Ueq | ||
C1 | 0.87318 | 0.03565 | 0.86687 | 0.01230* | |
C2 | 0.72599 | 0.08314 | 0.94344 | 0.03600* | |
C3 | 0.76903 | 0.19496 | 0.96828 | 0.03600* | |
C4 | 0.63480 | 0.22315 | 1.05833 | 0.03600* | |
C5 | 0.63310 | 0.33416 | 1.08863 | 0.01230* | |
C6 | 0.68765 | 0.25946 | 0.87689 | 0.01230* | |
H7 | 0.75607 | 0.03931 | 1.01180 | 0.04600* | |
H8 | 0.55188 | 0.07301 | 0.91973 | 0.04600* | |
H9 | 0.46410 | 0.19855 | 1.04385 | 0.04600* | |
H10 | 0.70341 | 0.18054 | 1.12249 | 0.04600* | |
O12 | 0.80347 | −0.04262 | 0.82266 | 0.01230* | |
O13 | 0.44391 | 0.37143 | 1.10579 | 0.01230* | |
O14 | 0.81343 | 0.38194 | 1.09793 | 0.01230* | |
O15 | 0.48252 | 0.26029 | 0.85377 | 0.01230* | |
O16 | 0.83050 | 0.30870 | 0.83032 | 0.01230* | |
O17 | 0.99968 | 0.21047 | 0.99448 | 0.01230* | |
O11 | 1.06265 | 0.07558 | 0.85523 | 0.01230* | |
H18 | 1.07924 | 0.17143 | 0.94538 | 0.01600* | |
N20 | 0.37168 | 0.98204 | 0.74458 | 0.04000* | |
K21 | 0.86217 | 0.75540 | 0.30100 | 0.04000* | |
H22 | 0.78800 | 0.60364 | 0.00308 | 0.05200* | |
H23 | 0.95796 | 0.62600 | 0.10404 | 0.05200* | |
N19 | 0.81121 | 0.59136 | 1.07827 | 0.04000* | |
H24 | 0.68536 | 0.63002 | 0.11046 | 0.05200* | |
H25 | 0.80797 | 0.51452 | 0.09426 | 0.05200* | |
H26 | 0.30306 | 0.91502 | 0.71752 | 0.05200* | |
H27 | 0.25619 | 1.01594 | 0.78942 | 0.05200* | |
H28 | 0.40466 | 1.03125 | 0.68656 | 0.05200* | |
H29 | 0.52233 | 0.96762 | 0.78341 | 0.05200* |
C1—C2 | 1.530 | C6—O16 | 1.272 |
C1—O12 | 1.258 | O17—H18 | 0.984 |
C1—O11 | 1.276 | N20—H26 | 1.039 |
C2—C3 | 1.542 | N20—H27 | 1.046 |
C2—H7 | 1.093 | N20—H28 | 1.044 |
C2—H8 | 1.088 | N20—H29 | 1.039 |
C3—C4 | 1.536 | H22—N19i | 1.024 |
C3—C6 | 1.553 | H23—N19i | 1.039 |
C3—O17 | 1.429 | N19—H23ii | 1.039 |
C4—C5 | 1.531 | N19—H22ii | 1.024 |
C4—H9 | 1.086 | N19—H24ii | 1.030 |
C4—H10 | 1.093 | N19—H25ii | 1.044 |
C5—O13 | 1.275 | H24—N19i | 1.030 |
C5—O14 | 1.259 | H25—N19i | 1.044 |
C6—O15 | 1.257 |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N20—H29···O12 | 1.039 | 1.751 | 2.770 | 165.64 |
N20—H28···O13 | 1.044 | 1.712 | 2.746 | 169.62 |
N20—H27···O11 | 1.046 | 1.697 | 2.742 | 176.08 |
N20—H26···O16 | 1.039 | 1.732 | 2.769 | 175.39 |
N19—H25···O14 | 1.044 | 1.763 | 2.796 | 159.41 |
N19—H24···O15 | 1.030 | 1.853 | 2.833 | 157.81 |
N19—H23···O16 | 1.039 | 1.741 | 2.764 | 167.24 |
N19—H22···O13 | 1.024 | 1.993 | 2.879 | 143.23 |
O17—H18···O11 | 0.984 | 1.756 | 2.632 | 146.38 |
Acknowledgements
We thank North Central College for allowing us the space and resources to pursue this research project. We also thank the Illinois Mathematics and Science Academy for offering us the opportunity to work on this project. We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.
References
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars. Google Scholar
Bruker (2015). Data Collector. Bruker AXS Inc., Maddison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systems. (2019). Materials Studio, BIOVIA, San Diego, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317. Web of Science CrossRef CAS Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459. Web of Science CrossRef CAS PubMed Google Scholar
Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882–886. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wheatley, A. M. & Kaduk, J. A. (2019). Powder Diffr. 34, 35–43. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.