organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3-Di­methyl-1H-imidazol-3-ium benzene­sulfonate–1,2-di­methyl-1H-imidazole co-crystal

aDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, FL, 33965, USA, bPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana USA, 47907, USA, and cAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA
*Correspondence e-mail: amirjafari@fgcu.edu

Edited by R. J. Butcher, Howard University, USA (Received 30 March 2020; accepted 21 May 2020; online 27 May 2020)

In the title co-crystal, C5H9N2+·C6H5O3S·C5H8N2, the two 1,2-di­methyl­imidazole rings exist as partially protonated moieties in the asymmetric unit as a two-part disordered unit wherein the acidic hydrogen atom is bound to each ring. The two imidazolium cations share a strong hydrogen bond via the acidic hydrogen atom, which is disordered between two positions, being bonded to the first versus second imidazole ring in a 0.33 (2) to 0.67 (2) ratio. A benzene sulfonate anion is present for charge balance and inter­acts with the aromatic H atoms on both imidazole rings as well as with the methyl groups on the rings.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) crystallizes with two 1,2-di­methyl­imidazolium cations in the asymmetric unit. The two imidazole rings are each partially protonated, wherein the acidic hydrogen atom is bound between the two N atoms of the aromatic ring in a 0.33 (2) to 0.67 (2) ratio. Hydrogen bonding appears to the dominant inter­molecular inter­action with each molecule or ion exhibiting inter­actions (Fig. 2[link]). For instance, the shortest hydrogen bonds are N—H⋯N links between the imidazolium rings with H⋯N = 1.83 (8) and 1.90 (8) Å. This bonding arises from the disordered hydrogen atom, which appears to be shared between the two rings. Further, cation–anion C—H⋯O inter­actions occur between the aromatic H atoms and the sulfonate O atoms. Finally, there are anion–anion inter­actions wherein O atoms of the sulfonate group interact with hydrogens on the benzene rings. A summary of the distances for the hydrogen bonds is found in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.83 1.90 2.6970 (11) 163
N3—H3N⋯N1 0.89 1.81 2.6970 (11) 170
C1—H1⋯O1 0.95 2.43 3.3741 (13) 170
C4—H4B⋯O3i 0.98 2.33 3.2956 (12) 170
C6—H6⋯O2 0.95 2.60 3.4288 (14) 146
C7—H7⋯O2ii 0.95 2.41 3.3254 (12) 162
C9—H9A⋯O3iii 0.98 2.53 3.4846 (14) 164
C9—H9B⋯O3ii 0.98 2.46 3.4381 (14) 173
C13—H13⋯O1i 0.95 2.67 3.4738 (14) 143
C14—H14⋯O1iv 0.95 2.48 3.3920 (13) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z.
[Figure 1]
Figure 1
The title compound shown with 50% probability ellipsoids. Only the major component is shown.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed down the (010) plane showing a layered network of ion pairs held together through hydrogen inter­actions. Both parts of the disorder are shown.

For a related structure with a chloride anion, see Kelley et al. (2013[Kelley, S. P., Narita, A., Holbrey, J. D., Green, K. D., Reichert, W. M. & Rogers, R. D. (2013). Cryst. Growth Des. 13, 965-975.]).

Synthesis and crystallization

The reaction was conducted in a Biotage Initiator+ microwave reactor. To a microwave vial was added a stir bar as well as 7.5 mmol (721 mg) of 1,2 di­methyl­imidazole and 7.5 mmol (901 μL) of benzene­sulfonyl fluoride. The vial was sealed and placed into the microwave reactor. The reaction was performed at 105°C for 5 minutes and 38 s with very high microwave absorption, stirring at 600 rpm. Once finished and cooled to room temperature, the solution was transferred to an oven-dried amber scintillation vial and sealed with parafilm. After one week, crystals suitable for diffraction were found growing in the vial.

A proposed mechanism leading to the formation of the crystallized product reported herein is shown in Fig. 3[link].

[Figure 3]
Figure 3
Proposed mechanism leading to the formation of the crystallized product reported herein.

1H NMR (400 MHz, chloro­form-D) δ 8.01–7.99 (m, 1H), 7.89–7.87 (m, 1H), 7.77 (dd, J = 8.1, 6.7 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 2.6 Hz, 1H), 7.25 (s, 1H), 6.98–6.83 (m, 2H), 3.61 (d, J = 9.1 Hz, 3H), 2.46 (d, J = 14.0 Hz, 3H)

13C NMR (101 MHz, chloro­form-D) δ 206.7, 144.8, 135.7, 130.0, 129.8, 128.5, 128.3, 126.0, 121.2, 121.0, 77.4, 77.1, 76.8, 76.6, 33.5, 12.0, −1.6.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H9N2+·C6H5O3S·C5H8N2
Mr 350.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.8820 (6), 8.4029 (4), 18.9678 (11)
β (°) 95.440 (2)
V3) 1726.61 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.55 × 0.42 × 0.33
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.716, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 74762, 6612, 5787
Rint 0.032
(sin θ/λ)max−1) 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.05
No. of reflections 6612
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.44
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010), enCIFer (Allen et al., 2004).

2,3-Dimethyl-1H-imidazol-3-ium benzenesulfonate; 1,2-dimethyl-1H-imidazole top
Crystal data top
C5H9N2+·C6H5O3S·C5H8N2F(000) = 744
Mr = 350.43Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8820 (6) ÅCell parameters from 9689 reflections
b = 8.4029 (4) Åθ = 2.7–33.2°
c = 18.9678 (11) ŵ = 0.21 mm1
β = 95.440 (2)°T = 150 K
V = 1726.61 (16) Å3Block, colourless
Z = 40.55 × 0.42 × 0.33 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
6612 independent reflections
Radiation source: fine focus sealed tube X-ray source5787 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.032
Detector resolution: 10.4167 pixels mm-1θmax = 33.2°, θmin = 2.3°
ω and phi scansh = 1616
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.716, Tmax = 0.747l = 2928
74762 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.6618P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6612 reflectionsΔρmax = 0.40 e Å3
225 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0085 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for aromatic and alkene C—H moieties, and to 0.98 Å for CH3 moieties, respectively. The N—H proton hydrogen bonding between atoms N1 and N3 was found to be disordered and was refined as split between two positions. The H atoms were assigned as bonded to a planar (sp2 hybridized) N atom, respectively with fixed bond angles and torsion angles, but the N—H bond distances were allowed to refine to account for asymmetry induced by charge and hydrogen bonding (AFIX 44 command). N—H distances refined to 0.83 (5) for N1—H1 and to 0.89 (2) for N3—H3, occupancies refined to 0.33 (2) for H1 and 0.67 (2) for H3. Methyl CH3 were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C/N) with 1.5 for CH3 and 1.2 for C—H and NH+, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.07995 (8)0.11974 (12)0.12505 (5)0.02370 (17)
H10.1625070.1545700.1364250.028*
C20.01650 (8)0.02111 (12)0.16550 (5)0.02268 (16)
H20.0455370.0251780.2096610.027*
C30.10216 (8)0.08832 (10)0.06876 (4)0.01832 (14)
C40.20228 (9)0.08561 (12)0.15402 (5)0.02410 (17)
H4A0.2647610.0102980.1674460.036*
H4B0.1729250.1503610.1951870.036*
H4C0.2386140.1549750.1160710.036*
C50.21283 (8)0.09673 (13)0.01670 (5)0.02515 (18)
H5A0.1943810.1623460.0236870.038*
H5B0.2815060.1441350.0392310.038*
H5C0.2356310.0107510.0002060.038*
C60.23459 (9)0.40162 (12)0.00734 (5)0.02566 (18)
H60.2857700.3724470.0340040.031*
C70.26716 (8)0.49589 (12)0.06067 (6)0.02502 (18)
H70.3450070.5452910.0636950.030*
C80.07312 (8)0.42021 (10)0.08640 (4)0.01863 (14)
C90.15832 (10)0.59191 (13)0.17707 (5)0.02847 (19)
H9A0.1428960.5162940.2162460.043*
H9B0.2365340.6472820.1813020.043*
H9C0.0909720.6696530.1787800.043*
C100.05084 (9)0.40053 (13)0.12482 (5)0.02596 (18)
H10A0.0902490.5049310.1318240.039*
H10B0.1014530.3325700.0971200.039*
H10C0.0428760.3510540.1709540.039*
C110.43346 (7)0.00325 (9)0.14618 (4)0.01514 (13)
C120.36079 (8)0.06738 (10)0.19405 (4)0.01852 (14)
H120.3260610.0043390.2286960.022*
C130.33919 (9)0.23035 (11)0.19101 (5)0.02475 (18)
H130.2899720.2787630.2238100.030*
C140.38933 (10)0.32262 (12)0.14020 (6)0.0293 (2)
H140.3755700.4342690.1387220.035*
C150.45951 (9)0.25157 (13)0.09161 (6)0.02817 (19)
H150.4923040.3144410.0562200.034*
C160.48217 (8)0.08834 (11)0.09445 (5)0.02151 (16)
H160.5305780.0399280.0612470.026*
N10.00522 (7)0.16129 (10)0.06471 (4)0.02100 (14)
H1N0.0238 (11)0.220 (3)0.0325 (19)0.025*0.33 (2)
N20.09869 (7)0.00209 (9)0.12923 (4)0.01850 (13)
N30.11314 (7)0.35581 (10)0.02425 (4)0.02125 (14)
H3N0.0690 (11)0.2936 (16)0.0021 (7)0.026*0.67 (2)
N40.16511 (7)0.50600 (9)0.10967 (4)0.02018 (14)
O10.35734 (8)0.28443 (9)0.17511 (6)0.0439 (2)
O20.49875 (9)0.26229 (11)0.08516 (4)0.0383 (2)
O30.57130 (9)0.21999 (10)0.20780 (5)0.0400 (2)
S10.46799 (2)0.20953 (2)0.15392 (2)0.01791 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0187 (4)0.0277 (4)0.0242 (4)0.0014 (3)0.0009 (3)0.0018 (3)
C20.0207 (4)0.0263 (4)0.0202 (4)0.0008 (3)0.0024 (3)0.0030 (3)
C30.0179 (3)0.0208 (4)0.0163 (3)0.0012 (3)0.0019 (3)0.0019 (3)
C40.0218 (4)0.0268 (4)0.0244 (4)0.0017 (3)0.0057 (3)0.0059 (3)
C50.0206 (4)0.0326 (5)0.0214 (4)0.0007 (3)0.0025 (3)0.0057 (3)
C60.0217 (4)0.0257 (4)0.0285 (4)0.0007 (3)0.0032 (3)0.0017 (3)
C70.0176 (4)0.0236 (4)0.0338 (5)0.0029 (3)0.0020 (3)0.0033 (3)
C80.0182 (3)0.0197 (3)0.0183 (3)0.0019 (3)0.0032 (3)0.0005 (3)
C90.0367 (5)0.0263 (4)0.0240 (4)0.0061 (4)0.0108 (4)0.0020 (3)
C100.0209 (4)0.0326 (5)0.0237 (4)0.0051 (3)0.0017 (3)0.0037 (3)
C110.0138 (3)0.0151 (3)0.0160 (3)0.0013 (2)0.0009 (2)0.0004 (2)
C120.0195 (3)0.0185 (3)0.0174 (3)0.0033 (3)0.0012 (3)0.0012 (3)
C130.0264 (4)0.0195 (4)0.0271 (4)0.0066 (3)0.0035 (3)0.0064 (3)
C140.0310 (5)0.0154 (4)0.0388 (5)0.0007 (3)0.0104 (4)0.0017 (3)
C150.0254 (4)0.0259 (4)0.0320 (5)0.0068 (3)0.0036 (3)0.0108 (4)
C160.0171 (3)0.0271 (4)0.0203 (4)0.0017 (3)0.0017 (3)0.0031 (3)
N10.0185 (3)0.0238 (3)0.0208 (3)0.0010 (3)0.0027 (2)0.0026 (3)
N20.0179 (3)0.0203 (3)0.0174 (3)0.0002 (2)0.0017 (2)0.0026 (2)
N30.0206 (3)0.0230 (3)0.0199 (3)0.0013 (3)0.0008 (2)0.0010 (3)
N40.0199 (3)0.0193 (3)0.0219 (3)0.0027 (2)0.0051 (2)0.0011 (3)
O10.0321 (4)0.0167 (3)0.0868 (7)0.0008 (3)0.0267 (5)0.0041 (4)
O20.0559 (5)0.0311 (4)0.0288 (4)0.0159 (4)0.0089 (4)0.0088 (3)
O30.0445 (5)0.0265 (4)0.0438 (5)0.0125 (3)0.0235 (4)0.0020 (3)
S10.01652 (9)0.01532 (9)0.02171 (10)0.00380 (6)0.00082 (7)0.00194 (6)
Geometric parameters (Å, º) top
C1—C21.3612 (13)C9—H9A0.9800
C1—N11.3845 (12)C9—H9B0.9800
C1—H10.9500C9—H9C0.9800
C2—N21.3809 (11)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C3—N11.3283 (11)C10—H10C0.9800
C3—N21.3541 (11)C11—C161.3910 (12)
C3—C51.4848 (12)C11—C121.3921 (11)
C4—N21.4613 (11)C11—S11.7767 (8)
C4—H4A0.9800C12—C131.3897 (12)
C4—H4B0.9800C12—H120.9500
C4—H4C0.9800C13—C141.3883 (15)
C5—H5A0.9800C13—H130.9500
C5—H5B0.9800C14—C151.3866 (16)
C5—H5C0.9800C14—H140.9500
C6—C71.3580 (14)C15—C161.3937 (14)
C6—N31.3847 (12)C15—H150.9500
C6—H60.9500C16—H160.9500
C7—N41.3815 (12)N1—H1N0.83 (5)
C7—H70.9500N3—H3N0.89 (2)
C8—N31.3322 (11)O1—S11.4489 (8)
C8—N41.3418 (11)O2—S11.4465 (8)
C8—C101.4805 (12)O3—S11.4484 (8)
C9—N41.4639 (12)
C2—C1—N1109.27 (8)C8—C10—H10C109.5
C2—C1—H1125.4H10A—C10—H10C109.5
N1—C1—H1125.4H10B—C10—H10C109.5
C1—C2—N2105.94 (8)C16—C11—C12120.15 (8)
C1—C2—H2127.0C16—C11—S1120.42 (6)
N2—C2—H2127.0C12—C11—S1119.39 (6)
N1—C3—N2110.00 (7)C13—C12—C11119.83 (8)
N1—C3—C5127.01 (8)C13—C12—H12120.1
N2—C3—C5122.99 (8)C11—C12—H12120.1
N2—C4—H4A109.5C14—C13—C12120.20 (9)
N2—C4—H4B109.5C14—C13—H13119.9
H4A—C4—H4B109.5C12—C13—H13119.9
N2—C4—H4C109.5C15—C14—C13119.89 (9)
H4A—C4—H4C109.5C15—C14—H14120.1
H4B—C4—H4C109.5C13—C14—H14120.1
C3—C5—H5A109.5C14—C15—C16120.31 (9)
C3—C5—H5B109.5C14—C15—H15119.8
H5A—C5—H5B109.5C16—C15—H15119.8
C3—C5—H5C109.5C11—C16—C15119.60 (9)
H5A—C5—H5C109.5C11—C16—H16120.2
H5B—C5—H5C109.5C15—C16—H16120.2
C7—C6—N3107.48 (8)C3—N1—C1106.66 (8)
C7—C6—H6126.3C3—N1—H1N126.7
N3—C6—H6126.3C1—N1—H1N126.7
C6—C7—N4106.69 (8)C3—N2—C2108.13 (7)
C6—C7—H7126.7C3—N2—C4125.59 (7)
N4—C7—H7126.7C2—N2—C4126.12 (7)
N3—C8—N4108.53 (8)C8—N3—C6108.47 (8)
N3—C8—C10126.61 (8)C8—N3—H3N125.8
N4—C8—C10124.85 (8)C6—N3—H3N125.8
N4—C9—H9A109.5C8—N4—C7108.83 (8)
N4—C9—H9B109.5C8—N4—C9125.08 (8)
H9A—C9—H9B109.5C7—N4—C9126.06 (8)
N4—C9—H9C109.5O2—S1—O3112.77 (6)
H9A—C9—H9C109.5O2—S1—O1112.73 (6)
H9B—C9—H9C109.5O3—S1—O1112.82 (7)
C8—C10—H10A109.5O2—S1—C11106.84 (4)
C8—C10—H10B109.5O3—S1—C11105.15 (4)
H10A—C10—H10B109.5O1—S1—C11105.78 (4)
N1—C1—C2—N20.06 (11)C1—C2—N2—C30.06 (10)
N3—C6—C7—N40.20 (11)C1—C2—N2—C4175.75 (9)
C16—C11—C12—C131.40 (12)N4—C8—N3—C60.12 (10)
S1—C11—C12—C13176.27 (7)C10—C8—N3—C6179.13 (9)
C11—C12—C13—C140.33 (13)C7—C6—N3—C80.20 (11)
C12—C13—C14—C151.04 (14)N3—C8—N4—C70.00 (10)
C13—C14—C15—C161.35 (15)C10—C8—N4—C7179.28 (9)
C12—C11—C16—C151.09 (12)N3—C8—N4—C9178.37 (8)
S1—C11—C16—C15176.55 (7)C10—C8—N4—C90.91 (14)
C14—C15—C16—C110.28 (14)C6—C7—N4—C80.13 (10)
N2—C3—N1—C10.00 (10)C6—C7—N4—C9178.22 (9)
C5—C3—N1—C1179.55 (9)C16—C11—S1—O224.77 (8)
C2—C1—N1—C30.04 (11)C12—C11—S1—O2157.57 (7)
N1—C3—N2—C20.03 (10)C16—C11—S1—O395.30 (8)
C5—C3—N2—C2179.54 (9)C12—C11—S1—O382.36 (8)
N1—C3—N2—C4175.76 (8)C16—C11—S1—O1145.10 (8)
C5—C3—N2—C43.81 (14)C12—C11—S1—O137.24 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.831.902.6970 (11)163
N3—H3N···N10.891.812.6970 (11)170
C1—H1···O10.952.433.3741 (13)170
C4—H4B···O3i0.982.333.2956 (12)170
C6—H6···O20.952.603.4288 (14)146
C7—H7···O2ii0.952.413.3254 (12)162
C9—H9A···O3iii0.982.533.4846 (14)164
C9—H9B···O3ii0.982.463.4381 (14)173
C13—H13···O1i0.952.673.4738 (14)143
C14—H14···O1iv0.952.483.3920 (13)162
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1/2, y+1/2, z1/2; (iv) x, y1, z.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE 11625543); American Chemical Society Petroleum Research Fund (grant No. PRF 58975-UR4); Ave Maria University Department of Chemistry and Physics .

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKelley, S. P., Narita, A., Holbrey, J. D., Green, K. D., Reichert, W. M. & Rogers, R. D. (2013). Cryst. Growth Des. 13, 965–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds