organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3-Di­methyl-1H-imidazol-3-ium chloride

aDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, FL, 33965, USA, bPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, 47907, USA, and cAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA
*Correspondence e-mail: Patrick.Hillesheim@avemaria.edu

Edited by R. J. Butcher, Howard University, USA (Received 30 March 2020; accepted 16 May 2020; online 19 May 2020)

The title salt, C5H9N2+·Cl, exhibits multiple hydrogen-bonding inter­actions between the cationic imidazole moiety and the chloride anion. The protonated aromatic nitro­gen moiety displays the shortest hydrogen-bonding inter­actions while weaker hydrogen bonding is observed between the aromatic H atoms and the chloride anion. The crystal studied was refined as a two-component inversion twin with a twin ratio of 0.71 (5) to 0.29 (5).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title structure, 2,3-dimethyl-1H-imidazol-3-ium chloride (Fig. 1[link]), crystallizes in the P212121 ortho­rhom­bic space group with a single cation–anion pair in the asymmetric unit. The acidic hydrogen, H1, exhibits a strong hydrogen bond to the chloride anion with a distance of 2.122 (19) Å. Longer hydrogen bonds between the chloride anion and H atoms on both methyl groups on the imidazolium ring as well as to the aromatic H atoms on adjacent cations form the dominant inter­molecular inter­actions in the overall network (see Table 1[link]). The positioning of the cations, likely to facilitate hydrogen bonding, also precludes any possible long-distance ππ inter­actions given the canted angles of the rings with respect to each other (see Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.923 (19) 2.122 (19) 3.0396 (10) 172.3 (17)
C2—H2⋯Cl1i 0.955 (17) 2.695 (17) 3.6084 (11) 160.2 (13)
C4—H4C⋯Cl1ii 1.005 (19) 2.85 (2) 3.6601 (12) 138.3 (14)
C5—H5A⋯Cl1ii 0.94 (2) 2.887 (19) 3.6415 (13) 138.0 (14)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The title compound shown with 50% probability ellipsoids. Carbon (grey), hydrogen (white), nitro­gen (blue), chlorine (green).
[Figure 2]
Figure 2
Packing diagram of the title compound showing a zigzag network of ion pairs held together through hydrogen bonds.

Synthesis and crystallization

1,2-Di­methyl­imidazole (0.2568 g, 2.662 mmol) and trityl chloride (0.7439 g, 2.668 mmol) were dissolved in separate 50 mL beakers with toluene. The reactants were then combined in a single-necked 100 mL round-bottom flask equipped with a magnetic stir bar and left to stir for 2 d at room temperature. The solvent was removed under vacuum leaving a white solid residue. This solid was washed twice with tetra­hydro­furan and recovered via vacuum filtration. Crystals were grown at room temperature by vapor diffusion with aceto­nitrile as the solvent and tetra­hydro­furan as the anti-solvent. Colorless crystals of the hydrolyzed byproduct (2,3-dimethyl-1H-imidazol-3-ium chloride) were observed within one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was refined as a two-component inversion twin with a twin ratio of 0.71 (5) to 0.29 (5).

Table 2
Experimental details

Crystal data
Chemical formula C5H9N2+·Cl
Mr 132.59
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 6.3076 (4), 9.5490 (6), 11.3951 (8)
V3) 686.34 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.53 × 0.49 × 0.42
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.713, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 13899, 2602, 2499
Rint 0.029
(sin θ/λ)max−1) 0.768
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.050, 1.11
No. of reflections 2602
No. of parameters 111
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.21, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.29 (5)
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2,3-Dimethyl-1H-imidazol-3-ium chloride top
Crystal data top
C5H9N2+·ClDx = 1.283 Mg m3
Mr = 132.59Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9928 reflections
a = 6.3076 (4) Åθ = 2.8–33.1°
b = 9.5490 (6) ŵ = 0.46 mm1
c = 11.3951 (8) ÅT = 150 K
V = 686.34 (8) Å3Prism, colourless
Z = 40.53 × 0.49 × 0.42 mm
F(000) = 280
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
2499 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.029
ω and phi scansθmax = 33.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 79
Tmin = 0.713, Tmax = 0.747k = 1412
13899 measured reflectionsl = 1517
2602 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.0624P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.21 e Å3
2602 reflectionsΔρmin = 0.14 e Å3
111 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.034 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.29 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23376 (4)0.42563 (3)0.59746 (2)0.02230 (7)
N10.57372 (15)0.53197 (10)0.43072 (8)0.02210 (18)
H10.481 (3)0.497 (2)0.4861 (17)0.046 (5)*
N20.70984 (13)0.65758 (9)0.29255 (7)0.01820 (16)
C10.75982 (19)0.46689 (11)0.39763 (10)0.0272 (2)
H1A0.814 (3)0.3832 (18)0.4356 (15)0.034 (4)*
C20.84515 (17)0.54576 (12)0.31046 (10)0.0244 (2)
H20.975 (3)0.5379 (16)0.2678 (15)0.030 (4)*
C30.54531 (15)0.64734 (11)0.36651 (9)0.01807 (17)
C40.73381 (19)0.76456 (11)0.20131 (9)0.0250 (2)
H4A0.872 (3)0.7478 (19)0.1651 (14)0.030 (4)*
H4B0.715 (3)0.8557 (16)0.2354 (13)0.029 (4)*
H4C0.619 (3)0.753 (2)0.1407 (17)0.043 (5)*
C50.36645 (18)0.74662 (14)0.37712 (11)0.0272 (2)
H5A0.296 (3)0.7479 (19)0.3043 (18)0.049 (5)*
H5B0.418 (3)0.834 (2)0.3930 (19)0.063 (6)*
H5C0.271 (3)0.713 (2)0.4340 (17)0.054 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02118 (10)0.02475 (11)0.02096 (11)0.00241 (8)0.00199 (8)0.00210 (8)
N10.0232 (4)0.0225 (4)0.0205 (4)0.0032 (3)0.0033 (3)0.0009 (3)
N20.0171 (4)0.0185 (3)0.0191 (3)0.0025 (3)0.0016 (3)0.0015 (3)
C10.0284 (5)0.0239 (4)0.0294 (5)0.0040 (4)0.0037 (5)0.0045 (4)
C20.0204 (4)0.0250 (5)0.0277 (5)0.0025 (4)0.0038 (4)0.0007 (4)
C30.0170 (4)0.0199 (4)0.0173 (4)0.0033 (3)0.0009 (3)0.0035 (3)
C40.0286 (5)0.0219 (4)0.0245 (4)0.0042 (4)0.0042 (4)0.0045 (4)
C50.0228 (4)0.0294 (5)0.0295 (6)0.0044 (4)0.0033 (4)0.0041 (4)
Geometric parameters (Å, º) top
N1—H10.923 (19)C2—H20.955 (17)
N1—C11.3806 (14)C3—C51.4786 (15)
N1—C31.3346 (14)C4—H4A0.980 (17)
N2—C21.3821 (14)C4—H4B0.960 (15)
N2—C31.3405 (12)C4—H4C1.005 (19)
N2—C41.4654 (13)C5—H5A0.94 (2)
C1—H1A0.971 (17)C5—H5B0.92 (2)
C1—C21.3578 (16)C5—H5C0.94 (2)
C1—N1—H1124.4 (11)N2—C3—C5126.54 (10)
C3—N1—H1125.8 (11)N2—C4—H4A106.1 (10)
C3—N1—C1109.63 (9)N2—C4—H4B109.4 (9)
C2—N2—C4125.43 (9)N2—C4—H4C109.6 (11)
C3—N2—C2109.20 (9)H4A—C4—H4B115.3 (15)
C3—N2—C4125.23 (9)H4A—C4—H4C109.4 (13)
N1—C1—H1A123.3 (10)H4B—C4—H4C107.0 (15)
C2—C1—N1106.69 (10)C3—C5—H5A107.2 (12)
C2—C1—H1A129.9 (10)C3—C5—H5B109.3 (14)
N2—C2—H2121.0 (10)C3—C5—H5C108.9 (12)
C1—C2—N2106.96 (10)H5A—C5—H5B109.3 (18)
C1—C2—H2131.9 (10)H5A—C5—H5C108.1 (16)
N1—C3—N2107.52 (9)H5B—C5—H5C113.8 (18)
N1—C3—C5125.94 (10)
N1—C1—C2—N20.25 (13)C3—N1—C1—C20.20 (13)
C1—N1—C3—N20.06 (12)C3—N2—C2—C10.22 (12)
C1—N1—C3—C5178.91 (10)C4—N2—C2—C1175.97 (10)
C2—N2—C3—N10.10 (11)C4—N2—C3—N1175.86 (9)
C2—N2—C3—C5179.06 (10)C4—N2—C3—C55.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.923 (19)2.122 (19)3.0396 (10)172.3 (17)
C2—H2···Cl1i0.955 (17)2.695 (17)3.6084 (11)160.2 (13)
C4—H4C···Cl1ii1.005 (19)2.85 (2)3.6601 (12)138.3 (14)
C5—H5A···Cl1ii0.94 (2)2.887 (19)3.6415 (13)138.0 (14)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE 11625543); American Chemical Society Petroleum Research Fund (grant No. PRF 58975-UR4); Ave Maria University Department of Chemistry and Physics .

References

First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds