metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 March 2020; accepted 3 April 2020; online 7 April 2020)

The reaction of ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination poly­mer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supra­molecular framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We have recently shown that the reaction of the title pyrazine­thio­phane ligand, 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine (L), with silver(I) nitrate leads to the formation of a two-dimensional coordination polymer, with the silver(I) atom coordinated by three S atoms of the ligand and an O atom of the nitrate anion (Assoumatine & Stoeckli-Evans, 2020[Assoumatine, T. & Stoeckli-Evans, H. (2020). Acta Cryst. E76, 539-546.]). A series of pyrazine­thio­phanes, including ligand L, has been synthesized to study their coordination chemistry with transition metals (Assoumatine, 1999[Assoumatine, T. (1999). PhD Thesis. University of Neuchâtel, Switzerland.]).

The reaction of L with CuI leads to the formation of a two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine]di-μ-iodido-dicopper(I)], incorporating a [Cu2I2] motif (Fig. 1[link]). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I ions. The layers lie parallel to (102), and there are C—H⋯S and C—H⋯I intra­layer hydrogen bonds present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯S4 0.97 2.80 3.409 (6) 122
C9—H9A⋯I1 0.97 2.99 3.771 (6) 138
C6—H6A⋯I1i 0.97 2.89 3.702 (6) 142
Symmetry code: (i) -x+1, -y, -z.
[Figure 1]
Figure 1
A view of the asymmetric unit of complex I, expanded to show the coordination environments of the two copper(I) atoms. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) –x, –y, –z; (ii) –x, –y + 1, –z; (iii) x – 1, –y + [{1\over 2}], z + [{1\over 2}]; (iv) x + 1, –y + [{1\over 2}], z − [{1\over 2}]].

Selected bond lengths and bond angles involving the copper(I) atoms in I are given in Table 2[link]. In I, both copper(I) atoms are considered to be fourfold S2I2 coordinate. The fourfold index parameter τ4 is 0.89 for atom Cu1 and 0.84 for atom Cu2 (τ4 = 1 for a perfect tetra­hedral environment, 0 for a perfect square-planar environment and 0.85 for a perfect trigonal–pyramidal environment; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Hence, both metal atoms have similar trigonal–pyramidal coordination environments. The distance Cu1⋯Cu2 is 2.7759 (11) Å. The Cu—S and Cu—I bond lengths involving atom Cu1 are noticeably different to those involving atom Cu2 (Table 2[link]). Bond lengths Cu1—S1 and Cu1—S4 [2.3955 (16) and 2.3187 (16) Å, respectively] are longer than bond lengths Cu2—S2 and Cu2—S3 [2.3030 (16) and 2.3039 (16) Å, respectively]. In contrast, it can be seen that bond lengths Cu1—I1 and Cu1—I2 [2.6190 (10) and 2.5915 (10) Å, respectively] are shorter than bond lengths Cu2—I1 and Cu2—I2 [2.7117 (10) and 2.6460 (9) Å, respectively]. As in the silver nitrate complex of L mentioned above, the pyrazine N atoms are not involved in coordination to the copper(I) atoms.

Table 2
Selected geometric parameters (Å, °)

Cu1—S1 2.3955 (16) Cu2—S2 2.3030 (16)
Cu1—S4 2.3187 (16) Cu2—S3 2.3039 (16)
Cu1—I1 2.6190 (9) Cu2—I1 2.7117 (10)
Cu1—I2 2.5915 (10) Cu2—I2 2.6460 (9)
Cu1—Cu2 2.7759 (11)    
       
S4—Cu1—S1 101.91 (6) S2—Cu2—S3 129.92 (6)
S4—Cu1—I2 118.12 (5) S2—Cu2—I2 108.76 (5)
S1—Cu1—I2 104.83 (5) S3—Cu2—I2 106.63 (5)
S4—Cu1—I1 102.76 (5) S2—Cu2—I1 90.49 (5)
S1—Cu1—I1 111.80 (5) S3—Cu2—I1 107.95 (5)
I2—Cu1—I1 116.62 (3) I2—Cu2—I1 111.68 (3)

In the complex, the ligand is step-shaped, as in the solid-state structure of the ligand itself (Assoumatine & Stoeckli-Evans, 2020[Assoumatine, T. & Stoeckli-Evans, H. (2020). Acta Cryst. E76, 539-546.]). The conformation of the eight-membered rings fits best to the definition of a twist-boat-chair (Evans & Boeyens, 1988[Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.]; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), with a pseudo-twofold rotation axis bis­ecting bonds C1—C2 and C6—C7 in one ring and bonds C3—C4 and C10—C11 in the second ring.

A search of the Cambridge Structural Database (CSD; Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the benzene analogue of L, or complexes of this analogue, gave no hits. A search for the S2CuI2CuS2 motif gave 34 hits for 33 structures (see file S1 in the supporting information). The Cu⋯Cu distances of the majority of these compounds vary from ca 2.580 to 3.087 Å (largest observed distance is 3.706 Å). For the majority of the compounds, the Cu—S bond lengths vary from 2.246 to 2.374 Å (largest observed distance is 2.531 Å), while the Cu—I bond lengths vary from 2.498 to 2.762 Å (largest observed bond length is 3.086 Å). It is evident from Table 2[link] that the bond lengths observed in complex I fall within these limits.

In the crystal of I, the layers lying parallel to plane (102) (Fig. 2[link]) are linked by C—H⋯I hydrogen bonds forming a supra­molecular framework (Fig. 3[link] and Table 1[link]). There are no other significant inter­molecular inter­actions present in the crystal.

[Figure 2]
Figure 2
A view, almost normal to plane (102), of the crystal packing of complex I.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of complex I. Hydrogen bonds are shown as dashed lines (Table 1[link]). For clarity, only the hydrogen atoms involved in these inter­actions have been included.

Synthesis and crystallization

The synthesis and crystal structure of the title ligand, 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine (L), have been reported (Assoumatine & Stoeckli-Evans, 2020[Assoumatine, T. & Stoeckli-Evans, H. (2020). Acta Cryst. E76, 539-546.]).

Synthesis of complex I: A solution of L (20 mg, 0.06 mmol) in CHCl3 (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of CuI (11 mg, 0.06 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed under an atmosphere of nitro­gen and left in the dark at room temperature for at least 3 weeks, whereupon pale-yellow block-like crystals of complex I were isolated at the inter­face between the two solutions. Analysis for C12H16N2S4Cu2I2 (Mr = 697.46); calculated (%): C 20.66, H 2.32, N 4.02; found (%): C 20.90, H 2.31, N 3.93. The IR spectrum for I is shown in Fig. S1 of the supporting information.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The data were collected with a four-circle diffractometer at RT and only one equivalent of data were measured, hence Rint = 0.0. No suitable ψ scans could be found so the crystal was equated to a sphere and the ABSSphere absorption correction was applied (PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 3
Experimental details

Crystal data
Chemical formula [Cu2I2(C12H16N2S4)]
Mr 697.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 8.7612 (8), 13.1852 (13), 16.4458 (19)
β (°) 94.400 (9)
V3) 1894.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.94
Crystal size (mm) 0.42 × 0.25 × 0.23
 
Data collection
Diffractometer STOE–Siemens AED2, 4-circle
Absorption correction For a sphere (ABSSphere; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.281, 0.295
No. of measured, independent and observed [I > 2σ(I)] reflections 3481, 3481, 3032
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.16
No. of reflections 3481
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.71, −0.69
Computer programs: STADI4 and X-RED (Stoe & Cie, 1998[Stoe & Cie (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: STADI4 (Stoe & Cie, 1998); cell refinement: STADI4 (Stoe & Cie, 1998); data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Poly[[µ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine]di-µ-iodido-dicopper(I)] top
Crystal data top
[Cu2I2(C12H16N2S4)]F(000) = 1320
Mr = 697.39Dx = 2.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7612 (8) ÅCell parameters from 25 reflections
b = 13.1852 (13) Åθ = 12.6–18.8°
c = 16.4458 (19) ŵ = 5.94 mm1
β = 94.400 (9)°T = 293 K
V = 1894.2 (3) Å3Block, yellow
Z = 40.42 × 0.25 × 0.23 mm
Data collection top
STOE–Siemens AED2, 4-circle
diffractometer
3032 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
Plane graphite monochromatorθmax = 25.5°, θmin = 2.5°
ω/\2q scansh = 1010
Absorption correction: for a sphere
(ABSSphere; Spek, 2020)
k = 015
Tmin = 0.281, Tmax = 0.295l = 019
3481 measured reflections3 standard reflections every 60 min
3481 independent reflections intensity decay: 2.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0312P)2 + 6.7359P]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25837 (9)0.05716 (6)0.12025 (5)0.03502 (19)
Cu20.12846 (9)0.24930 (6)0.12571 (5)0.03483 (19)
I10.29009 (5)0.17469 (3)0.00833 (2)0.03617 (12)
I20.04113 (5)0.10364 (3)0.22976 (3)0.03942 (13)
S10.48581 (17)0.05318 (11)0.19226 (9)0.0303 (3)
S20.34612 (17)0.32435 (11)0.16802 (9)0.0279 (3)
S30.09175 (18)0.32212 (11)0.08436 (10)0.0321 (3)
S40.25769 (18)0.10386 (11)0.06361 (10)0.0312 (3)
N10.3515 (6)0.3124 (4)0.1619 (3)0.0293 (11)
N20.2450 (5)0.4626 (3)0.0627 (3)0.0269 (10)
C10.5775 (7)0.0972 (4)0.3460 (3)0.0283 (13)
C20.3672 (6)0.5213 (4)0.1047 (3)0.0250 (12)
C30.1754 (6)0.3721 (4)0.0703 (3)0.0241 (12)
C40.2279 (6)0.2971 (4)0.1210 (4)0.0285 (13)
C50.4370 (7)0.0879 (5)0.2977 (4)0.0312 (13)
H5A0.3689150.0369710.3229890.037*
H5B0.3827040.1520440.2994580.037*
C60.5233 (7)0.0809 (4)0.2035 (4)0.0304 (13)
H6A0.5191700.1131860.1507590.036*
H6B0.4422550.1098680.2397910.036*
C70.3230 (7)0.3938 (5)0.2633 (4)0.0295 (13)
H7A0.2623930.3535670.3032390.035*
H7B0.2676800.4561700.2548450.035*
C80.4350 (6)0.4182 (4)0.0976 (4)0.0276 (12)
H8A0.4277900.3941360.0423260.033*
H8B0.5428300.4228770.1068180.033*
C90.0402 (7)0.3558 (4)0.0216 (4)0.0308 (13)
H9A0.0226990.3021540.0468410.037*
H9B0.0207610.4172280.0230670.037*
C100.2260 (7)0.2176 (5)0.0786 (4)0.0327 (13)
H10A0.3156140.2431390.0540620.039*
H10B0.2587260.1972870.1338640.039*
C110.1717 (7)0.1229 (4)0.0318 (4)0.0290 (13)
H11A0.1935150.0641800.0662130.035*
H11B0.0614860.1268640.0206450.035*
C120.1564 (7)0.1940 (4)0.1323 (4)0.0325 (13)
H12A0.0495390.1970570.1209520.039*
H12B0.1617060.1720850.1883630.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0399 (4)0.0265 (4)0.0396 (4)0.0031 (3)0.0092 (3)0.0012 (3)
Cu20.0321 (4)0.0366 (4)0.0377 (4)0.0002 (3)0.0149 (3)0.0002 (3)
I10.0411 (2)0.0373 (2)0.0302 (2)0.00574 (18)0.00281 (17)0.00025 (17)
I20.0331 (2)0.0469 (3)0.0380 (2)0.00192 (19)0.00058 (17)0.00704 (19)
S10.0302 (8)0.0294 (8)0.0332 (8)0.0000 (6)0.0142 (6)0.0026 (6)
S20.0321 (7)0.0208 (7)0.0325 (8)0.0023 (6)0.0140 (6)0.0019 (6)
S30.0345 (8)0.0267 (8)0.0371 (8)0.0040 (6)0.0165 (6)0.0062 (6)
S40.0356 (8)0.0218 (7)0.0382 (8)0.0004 (6)0.0153 (7)0.0020 (6)
N10.032 (3)0.025 (3)0.033 (3)0.001 (2)0.014 (2)0.003 (2)
N20.031 (3)0.022 (2)0.030 (3)0.002 (2)0.013 (2)0.006 (2)
C10.034 (3)0.025 (3)0.028 (3)0.002 (3)0.014 (2)0.007 (2)
C20.026 (3)0.022 (3)0.028 (3)0.003 (2)0.008 (2)0.006 (2)
C30.023 (3)0.022 (3)0.027 (3)0.005 (2)0.006 (2)0.002 (2)
C40.027 (3)0.026 (3)0.033 (3)0.000 (2)0.011 (2)0.009 (2)
C50.024 (3)0.035 (3)0.037 (3)0.005 (3)0.015 (3)0.010 (3)
C60.034 (3)0.028 (3)0.032 (3)0.005 (3)0.013 (3)0.005 (3)
C70.030 (3)0.031 (3)0.028 (3)0.005 (3)0.005 (2)0.005 (3)
C80.026 (3)0.030 (3)0.027 (3)0.001 (2)0.007 (2)0.000 (2)
C90.031 (3)0.022 (3)0.041 (4)0.001 (2)0.017 (3)0.003 (3)
C100.033 (3)0.033 (3)0.033 (3)0.001 (3)0.009 (3)0.003 (3)
C110.030 (3)0.027 (3)0.032 (3)0.002 (2)0.011 (2)0.000 (2)
C120.035 (3)0.031 (3)0.032 (3)0.005 (3)0.007 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu1—S12.3955 (16)C2—C81.485 (8)
Cu1—S42.3187 (16)C3—C4iii1.395 (8)
Cu1—I12.6190 (9)C3—C91.495 (7)
Cu1—I22.5915 (10)C4—C121.502 (8)
Cu1—Cu22.7759 (11)C5—H5A0.9700
Cu2—S22.3030 (16)C5—H5B0.9700
Cu2—S32.3039 (16)C6—C7i1.529 (8)
Cu2—I12.7117 (10)C6—H6A0.9700
Cu2—I22.6460 (9)C6—H6B0.9700
S1—C61.810 (6)C7—H7A0.9700
S1—C51.812 (6)C7—H7B0.9700
S2—C71.812 (6)C8—H8A0.9700
S2—C81.827 (6)C8—H8B0.9700
S3—C101.819 (6)C9—H9A0.9700
S3—C91.821 (6)C9—H9B0.9700
S4—C111.809 (6)C10—C11iii1.524 (8)
S4—C121.823 (6)C10—H10A0.9700
N1—C41.333 (7)C10—H10B0.9700
N1—C1i1.346 (8)C11—H11A0.9700
N2—C2ii1.334 (7)C11—H11B0.9700
N2—C31.341 (7)C12—H12A0.9700
C1—C2i1.399 (8)C12—H12B0.9700
C1—C51.520 (7)
S4—Cu1—S1101.91 (6)C1—C5—S1112.3 (4)
S4—Cu1—I2118.12 (5)C1—C5—H5A109.2
S1—Cu1—I2104.83 (5)S1—C5—H5A109.2
S4—Cu1—I1102.76 (5)C1—C5—H5B109.2
S1—Cu1—I1111.80 (5)S1—C5—H5B109.1
I2—Cu1—I1116.62 (3)H5A—C5—H5B107.9
S4—Cu1—Cu2146.61 (5)C7i—C6—S1115.0 (4)
S1—Cu1—Cu2111.01 (5)C7i—C6—H6A108.5
I2—Cu1—Cu258.95 (3)S1—C6—H6A108.5
I1—Cu1—Cu260.27 (3)C7i—C6—H6B108.5
S2—Cu2—S3129.92 (6)S1—C6—H6B108.5
S2—Cu2—I2108.76 (5)H6A—C6—H6B107.5
S3—Cu2—I2106.63 (5)C6iv—C7—S2112.1 (4)
S2—Cu2—I190.49 (5)C6iv—C7—H7A109.2
S3—Cu2—I1107.95 (5)S2—C7—H7A109.2
I2—Cu2—I1111.68 (3)C6iv—C7—H7B109.2
S2—Cu2—Cu193.15 (5)S2—C7—H7B109.2
S3—Cu2—Cu1136.16 (5)H7A—C7—H7B107.9
I2—Cu2—Cu157.04 (3)C2—C8—S2115.0 (4)
I1—Cu2—Cu157.00 (2)C2—C8—H8A108.5
Cu1—I1—Cu262.73 (3)S2—C8—H8A108.5
Cu1—I2—Cu264.00 (3)C2—C8—H8B108.5
C6—S1—C5100.4 (3)S2—C8—H8B108.5
C6—S1—Cu1103.67 (19)H8A—C8—H8B107.5
C5—S1—Cu1108.86 (19)C3—C9—S3113.5 (4)
C7—S2—C8102.7 (3)C3—C9—H9A108.9
C7—S2—Cu2116.0 (2)S3—C9—H9A108.9
C8—S2—Cu2114.97 (19)C3—C9—H9B108.9
C10—S3—C9104.4 (3)S3—C9—H9B108.9
C10—S3—Cu2105.0 (2)H9A—C9—H9B107.7
C9—S3—Cu2103.4 (2)C11iii—C10—S3118.0 (4)
C11—S4—C12103.4 (3)C11iii—C10—H10A107.8
C11—S4—Cu1119.3 (2)S3—C10—H10A107.8
C12—S4—Cu1111.3 (2)C11iii—C10—H10B107.8
C4—N1—C1i118.2 (5)S3—C10—H10B107.8
C2ii—N2—C3118.1 (5)H10A—C10—H10B107.2
N1iv—C1—C2i120.8 (5)C10iii—C11—S4114.7 (4)
N1iv—C1—C5114.1 (5)C10iii—C11—H11A108.6
C2i—C1—C5125.1 (5)S4—C11—H11A108.6
N2ii—C2—C1iv120.9 (5)C10iii—C11—H11B108.6
N2ii—C2—C8116.0 (5)S4—C11—H11B108.6
C1iv—C2—C8123.1 (5)H11A—C11—H11B107.6
N2—C3—C4iii121.2 (5)C4—C12—S4109.5 (4)
N2—C3—C9116.9 (5)C4—C12—H12A109.8
C4iii—C3—C9121.9 (5)S4—C12—H12A109.8
N1—C4—C3iii120.8 (5)C4—C12—H12B109.8
N1—C4—C12114.9 (5)S4—C12—H12B109.8
C3iii—C4—C12124.3 (5)H12A—C12—H12B108.2
C2ii—N2—C3—C4iii0.6 (8)C7—S2—C8—C243.6 (5)
C2ii—N2—C3—C9179.1 (5)Cu2—S2—C8—C283.2 (4)
C1i—N1—C4—C3iii1.2 (9)N2—C3—C9—S380.9 (6)
C1i—N1—C4—C12179.4 (5)C4iii—C3—C9—S398.9 (6)
N1iv—C1—C5—S183.4 (6)C10—S3—C9—C350.9 (5)
C2i—C1—C5—S196.8 (7)Cu2—S3—C9—C3160.6 (4)
C6—S1—C5—C177.1 (5)C9—S3—C10—C11iii58.6 (5)
Cu1—S1—C5—C1174.4 (4)Cu2—S3—C10—C11iii49.8 (5)
C5—S1—C6—C7i76.2 (5)C12—S4—C11—C10iii77.0 (5)
Cu1—S1—C6—C7i171.3 (4)Cu1—S4—C11—C10iii158.8 (4)
C8—S2—C7—C6iv67.3 (5)N1—C4—C12—S483.0 (6)
Cu2—S2—C7—C6iv166.5 (3)C3iii—C4—C12—S495.2 (6)
N2ii—C2—C8—S285.1 (6)C11—S4—C12—C482.9 (5)
C1iv—C2—C8—S292.7 (6)Cu1—S4—C12—C4147.8 (4)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x, y+1, z; (iii) x, y, z; (iv) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···S40.972.803.409 (6)122
C9—H9A···I10.972.993.771 (6)138
C6—H6A···I1v0.972.893.702 (6)142
Symmetry code: (v) x+1, y, z.
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel .

References

First citationAssoumatine, T. (1999). PhD Thesis. University of Neuchâtel, Switzerland.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2020). Acta Cryst. E76, 539–546.  CSD CrossRef IUCr Journals Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663–671.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds