metal-organic compounds
Poly[[μ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer
aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The reaction of ligand 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The is composed of a ligand molecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supramolecular framework.
Keywords: crystal structure; copper(I) iodide; pyrazine; pyrazinethiophane; two-dimensional coordination polymer; supramolecular framework.
CCDC reference: 1994655
Structure description
We have recently shown that the reaction of the title pyrazinethiophane ligand, 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine (L), with silver(I) nitrate leads to the formation of a two-dimensional coordination polymer, with the silver(I) atom coordinated by three S atoms of the ligand and an O atom of the nitrate anion (Assoumatine & Stoeckli-Evans, 2020). A series of pyrazinethiophanes, including ligand L, has been synthesized to study their coordination chemistry with transition metals (Assoumatine, 1999).
The reaction of L with CuI leads to the formation of a two-dimensional coordination polymer, poly[[μ4-3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine]di-μ-iodido-dicopper(I)], incorporating a [Cu2I2] motif (Fig. 1). The is composed of a ligand molecule, two copper(I) atoms and two I− ions. The layers lie parallel to (102), and there are C—H⋯S and C—H⋯I intralayer hydrogen bonds present (Table 1).
|
Selected bond lengths and bond angles involving the copper(I) atoms in I are given in Table 2. In I, both copper(I) atoms are considered to be fourfold S2I2 coordinate. The fourfold index parameter τ4 is 0.89 for atom Cu1 and 0.84 for atom Cu2 (τ4 = 1 for a perfect tetrahedral environment, 0 for a perfect square-planar environment and 0.85 for a perfect trigonal–pyramidal environment; Yang et al., 2007). Hence, both metal atoms have similar trigonal–pyramidal coordination environments. The distance Cu1⋯Cu2 is 2.7759 (11) Å. The Cu—S and Cu—I bond lengths involving atom Cu1 are noticeably different to those involving atom Cu2 (Table 2). Bond lengths Cu1—S1 and Cu1—S4 [2.3955 (16) and 2.3187 (16) Å, respectively] are longer than bond lengths Cu2—S2 and Cu2—S3 [2.3030 (16) and 2.3039 (16) Å, respectively]. In contrast, it can be seen that bond lengths Cu1—I1 and Cu1—I2 [2.6190 (10) and 2.5915 (10) Å, respectively] are shorter than bond lengths Cu2—I1 and Cu2—I2 [2.7117 (10) and 2.6460 (9) Å, respectively]. As in the silver nitrate complex of L mentioned above, the pyrazine N atoms are not involved in coordination to the copper(I) atoms.
|
In the complex, the ligand is step-shaped, as in the solid-state structure of the ligand itself (Assoumatine & Stoeckli-Evans, 2020). The conformation of the eight-membered rings fits best to the definition of a twist-boat-chair (Evans & Boeyens, 1988; Spek, 2020), with a pseudo-twofold rotation axis bisecting bonds C1—C2 and C6—C7 in one ring and bonds C3—C4 and C10—C11 in the second ring.
A search of the Cambridge Structural Database (CSD; Version 5.41, last update November 2019; Groom et al., 2016) for the benzene analogue of L, or complexes of this analogue, gave no hits. A search for the S2CuI2CuS2 motif gave 34 hits for 33 structures (see file S1 in the supporting information). The Cu⋯Cu distances of the majority of these compounds vary from ca 2.580 to 3.087 Å (largest observed distance is 3.706 Å). For the majority of the compounds, the Cu—S bond lengths vary from 2.246 to 2.374 Å (largest observed distance is 2.531 Å), while the Cu—I bond lengths vary from 2.498 to 2.762 Å (largest observed bond length is 3.086 Å). It is evident from Table 2 that the bond lengths observed in complex I fall within these limits.
In the crystal of I, the layers lying parallel to plane (102) (Fig. 2) are linked by C—H⋯I hydrogen bonds forming a supramolecular framework (Fig. 3 and Table 1). There are no other significant intermolecular interactions present in the crystal.
Synthesis and crystallization
The synthesis and H,6H-bis([1,4]dithiocino)[6,7-b:6′,7′-e]pyrazine (L), have been reported (Assoumatine & Stoeckli-Evans, 2020).
of the title ligand, 3,4,8,10,11,13-hexahydro-1Synthesis of complex I: A solution of L (20 mg, 0.06 mmol) in CHCl3 (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of CuI (11 mg, 0.06 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed under an atmosphere of nitrogen and left in the dark at room temperature for at least 3 weeks, whereupon pale-yellow block-like crystals of complex I were isolated at the interface between the two solutions. Analysis for C12H16N2S4Cu2I2 (Mr = 697.46); calculated (%): C 20.66, H 2.32, N 4.02; found (%): C 20.90, H 2.31, N 3.93. The IR spectrum for I is shown in Fig. S1 of the supporting information.
Refinement
Crystal data, data collection and structure . The data were collected with a four-circle diffractometer at RT and only one equivalent of data were measured, hence Rint = 0.0. No suitable ψ scans could be found so the crystal was equated to a sphere and the ABSSphere absorption correction was applied (PLATON; Spek, 2020).
details are summarized in Table 3Structural data
CCDC reference: 1994655
https://doi.org/10.1107/S2414314620004678/wm4128sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620004678/wm4128Isup2.hkl
Scheme for CSD search. DOI: https://doi.org/10.1107/S2414314620004678/wm4128sup3.tif
CSD Search. DOI: https://doi.org/10.1107/S2414314620004678/wm4128sup4.pdf
IR spectrum for complex I. DOI: https://doi.org/10.1107/S2414314620004678/wm4128sup5.tif
Data collection: STADI4 (Stoe & Cie, 1998); cell
STADI4 (Stoe & Cie, 1998); data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).[Cu2I2(C12H16N2S4)] | F(000) = 1320 |
Mr = 697.39 | Dx = 2.445 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7612 (8) Å | Cell parameters from 25 reflections |
b = 13.1852 (13) Å | θ = 12.6–18.8° |
c = 16.4458 (19) Å | µ = 5.94 mm−1 |
β = 94.400 (9)° | T = 293 K |
V = 1894.2 (3) Å3 | Block, yellow |
Z = 4 | 0.42 × 0.25 × 0.23 mm |
STOE–Siemens AED2, 4-circle diffractometer | 3032 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.0000 |
Plane graphite monochromator | θmax = 25.5°, θmin = 2.5° |
ω/\2q scans | h = −10→10 |
Absorption correction: for a sphere (ABSSphere; Spek, 2020) | k = 0→15 |
Tmin = 0.281, Tmax = 0.295 | l = 0→19 |
3481 measured reflections | 3 standard reflections every 60 min |
3481 independent reflections | intensity decay: 2.5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0312P)2 + 6.7359P] where P = (Fo2 + 2Fc2)/3 |
3481 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.25837 (9) | 0.05716 (6) | −0.12025 (5) | 0.03502 (19) | |
Cu2 | 0.12846 (9) | 0.24930 (6) | −0.12571 (5) | 0.03483 (19) | |
I1 | 0.29009 (5) | 0.17469 (3) | 0.00833 (2) | 0.03617 (12) | |
I2 | 0.04113 (5) | 0.10364 (3) | −0.22976 (3) | 0.03942 (13) | |
S1 | 0.48581 (17) | 0.05318 (11) | −0.19226 (9) | 0.0303 (3) | |
S2 | 0.34612 (17) | 0.32435 (11) | −0.16802 (9) | 0.0279 (3) | |
S3 | −0.09175 (18) | 0.32212 (11) | −0.08436 (10) | 0.0321 (3) | |
S4 | 0.25769 (18) | −0.10386 (11) | −0.06361 (10) | 0.0312 (3) | |
N1 | 0.3515 (6) | −0.3124 (4) | −0.1619 (3) | 0.0293 (11) | |
N2 | −0.2450 (5) | 0.4626 (3) | 0.0627 (3) | 0.0269 (10) | |
C1 | 0.5775 (7) | 0.0972 (4) | −0.3460 (3) | 0.0283 (13) | |
C2 | 0.3672 (6) | 0.5213 (4) | −0.1047 (3) | 0.0250 (12) | |
C3 | −0.1754 (6) | 0.3721 (4) | 0.0703 (3) | 0.0241 (12) | |
C4 | 0.2279 (6) | −0.2971 (4) | −0.1210 (4) | 0.0285 (13) | |
C5 | 0.4370 (7) | 0.0879 (5) | −0.2977 (4) | 0.0312 (13) | |
H5A | 0.368915 | 0.036971 | −0.322989 | 0.037* | |
H5B | 0.382704 | 0.152044 | −0.299458 | 0.037* | |
C6 | 0.5233 (7) | −0.0809 (4) | −0.2035 (4) | 0.0304 (13) | |
H6A | 0.519170 | −0.113186 | −0.150759 | 0.036* | |
H6B | 0.442255 | −0.109868 | −0.239791 | 0.036* | |
C7 | 0.3230 (7) | 0.3938 (5) | −0.2633 (4) | 0.0295 (13) | |
H7A | 0.262393 | 0.353567 | −0.303239 | 0.035* | |
H7B | 0.267680 | 0.456170 | −0.254845 | 0.035* | |
C8 | 0.4350 (6) | 0.4182 (4) | −0.0976 (4) | 0.0276 (12) | |
H8A | 0.427790 | 0.394136 | −0.042326 | 0.033* | |
H8B | 0.542830 | 0.422877 | −0.106818 | 0.033* | |
C9 | −0.0402 (7) | 0.3558 (4) | 0.0216 (4) | 0.0308 (13) | |
H9A | 0.022699 | 0.302154 | 0.046841 | 0.037* | |
H9B | 0.020761 | 0.417228 | 0.023067 | 0.037* | |
C10 | −0.2260 (7) | 0.2176 (5) | −0.0786 (4) | 0.0327 (13) | |
H10A | −0.315614 | 0.243139 | −0.054062 | 0.039* | |
H10B | −0.258726 | 0.197287 | −0.133864 | 0.039* | |
C11 | 0.1717 (7) | −0.1229 (4) | 0.0318 (4) | 0.0290 (13) | |
H11A | 0.193515 | −0.064180 | 0.066213 | 0.035* | |
H11B | 0.061486 | −0.126864 | 0.020645 | 0.035* | |
C12 | 0.1564 (7) | −0.1940 (4) | −0.1323 (4) | 0.0325 (13) | |
H12A | 0.049539 | −0.197057 | −0.120952 | 0.039* | |
H12B | 0.161706 | −0.172085 | −0.188363 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0399 (4) | 0.0265 (4) | 0.0396 (4) | 0.0031 (3) | 0.0092 (3) | 0.0012 (3) |
Cu2 | 0.0321 (4) | 0.0366 (4) | 0.0377 (4) | −0.0002 (3) | 0.0149 (3) | −0.0002 (3) |
I1 | 0.0411 (2) | 0.0373 (2) | 0.0302 (2) | 0.00574 (18) | 0.00281 (17) | 0.00025 (17) |
I2 | 0.0331 (2) | 0.0469 (3) | 0.0380 (2) | 0.00192 (19) | 0.00058 (17) | −0.00704 (19) |
S1 | 0.0302 (8) | 0.0294 (8) | 0.0332 (8) | 0.0000 (6) | 0.0142 (6) | −0.0026 (6) |
S2 | 0.0321 (7) | 0.0208 (7) | 0.0325 (8) | −0.0023 (6) | 0.0140 (6) | −0.0019 (6) |
S3 | 0.0345 (8) | 0.0267 (8) | 0.0371 (8) | 0.0040 (6) | 0.0165 (6) | 0.0062 (6) |
S4 | 0.0356 (8) | 0.0218 (7) | 0.0382 (8) | −0.0004 (6) | 0.0153 (7) | 0.0020 (6) |
N1 | 0.032 (3) | 0.025 (3) | 0.033 (3) | −0.001 (2) | 0.014 (2) | −0.003 (2) |
N2 | 0.031 (3) | 0.022 (2) | 0.030 (3) | −0.002 (2) | 0.013 (2) | −0.006 (2) |
C1 | 0.034 (3) | 0.025 (3) | 0.028 (3) | 0.002 (3) | 0.014 (2) | 0.007 (2) |
C2 | 0.026 (3) | 0.022 (3) | 0.028 (3) | −0.003 (2) | 0.008 (2) | −0.006 (2) |
C3 | 0.023 (3) | 0.022 (3) | 0.027 (3) | −0.005 (2) | 0.006 (2) | −0.002 (2) |
C4 | 0.027 (3) | 0.026 (3) | 0.033 (3) | 0.000 (2) | 0.011 (2) | −0.009 (2) |
C5 | 0.024 (3) | 0.035 (3) | 0.037 (3) | 0.005 (3) | 0.015 (3) | 0.010 (3) |
C6 | 0.034 (3) | 0.028 (3) | 0.032 (3) | 0.005 (3) | 0.013 (3) | 0.005 (3) |
C7 | 0.030 (3) | 0.031 (3) | 0.028 (3) | −0.005 (3) | 0.005 (2) | −0.005 (3) |
C8 | 0.026 (3) | 0.030 (3) | 0.027 (3) | 0.001 (2) | 0.007 (2) | 0.000 (2) |
C9 | 0.031 (3) | 0.022 (3) | 0.041 (4) | −0.001 (2) | 0.017 (3) | −0.003 (3) |
C10 | 0.033 (3) | 0.033 (3) | 0.033 (3) | −0.001 (3) | 0.009 (3) | 0.003 (3) |
C11 | 0.030 (3) | 0.027 (3) | 0.032 (3) | −0.002 (2) | 0.011 (2) | 0.000 (2) |
C12 | 0.035 (3) | 0.031 (3) | 0.032 (3) | 0.005 (3) | 0.007 (3) | −0.003 (3) |
Cu1—S1 | 2.3955 (16) | C2—C8 | 1.485 (8) |
Cu1—S4 | 2.3187 (16) | C3—C4iii | 1.395 (8) |
Cu1—I1 | 2.6190 (9) | C3—C9 | 1.495 (7) |
Cu1—I2 | 2.5915 (10) | C4—C12 | 1.502 (8) |
Cu1—Cu2 | 2.7759 (11) | C5—H5A | 0.9700 |
Cu2—S2 | 2.3030 (16) | C5—H5B | 0.9700 |
Cu2—S3 | 2.3039 (16) | C6—C7i | 1.529 (8) |
Cu2—I1 | 2.7117 (10) | C6—H6A | 0.9700 |
Cu2—I2 | 2.6460 (9) | C6—H6B | 0.9700 |
S1—C6 | 1.810 (6) | C7—H7A | 0.9700 |
S1—C5 | 1.812 (6) | C7—H7B | 0.9700 |
S2—C7 | 1.812 (6) | C8—H8A | 0.9700 |
S2—C8 | 1.827 (6) | C8—H8B | 0.9700 |
S3—C10 | 1.819 (6) | C9—H9A | 0.9700 |
S3—C9 | 1.821 (6) | C9—H9B | 0.9700 |
S4—C11 | 1.809 (6) | C10—C11iii | 1.524 (8) |
S4—C12 | 1.823 (6) | C10—H10A | 0.9700 |
N1—C4 | 1.333 (7) | C10—H10B | 0.9700 |
N1—C1i | 1.346 (8) | C11—H11A | 0.9700 |
N2—C2ii | 1.334 (7) | C11—H11B | 0.9700 |
N2—C3 | 1.341 (7) | C12—H12A | 0.9700 |
C1—C2i | 1.399 (8) | C12—H12B | 0.9700 |
C1—C5 | 1.520 (7) | ||
S4—Cu1—S1 | 101.91 (6) | C1—C5—S1 | 112.3 (4) |
S4—Cu1—I2 | 118.12 (5) | C1—C5—H5A | 109.2 |
S1—Cu1—I2 | 104.83 (5) | S1—C5—H5A | 109.2 |
S4—Cu1—I1 | 102.76 (5) | C1—C5—H5B | 109.2 |
S1—Cu1—I1 | 111.80 (5) | S1—C5—H5B | 109.1 |
I2—Cu1—I1 | 116.62 (3) | H5A—C5—H5B | 107.9 |
S4—Cu1—Cu2 | 146.61 (5) | C7i—C6—S1 | 115.0 (4) |
S1—Cu1—Cu2 | 111.01 (5) | C7i—C6—H6A | 108.5 |
I2—Cu1—Cu2 | 58.95 (3) | S1—C6—H6A | 108.5 |
I1—Cu1—Cu2 | 60.27 (3) | C7i—C6—H6B | 108.5 |
S2—Cu2—S3 | 129.92 (6) | S1—C6—H6B | 108.5 |
S2—Cu2—I2 | 108.76 (5) | H6A—C6—H6B | 107.5 |
S3—Cu2—I2 | 106.63 (5) | C6iv—C7—S2 | 112.1 (4) |
S2—Cu2—I1 | 90.49 (5) | C6iv—C7—H7A | 109.2 |
S3—Cu2—I1 | 107.95 (5) | S2—C7—H7A | 109.2 |
I2—Cu2—I1 | 111.68 (3) | C6iv—C7—H7B | 109.2 |
S2—Cu2—Cu1 | 93.15 (5) | S2—C7—H7B | 109.2 |
S3—Cu2—Cu1 | 136.16 (5) | H7A—C7—H7B | 107.9 |
I2—Cu2—Cu1 | 57.04 (3) | C2—C8—S2 | 115.0 (4) |
I1—Cu2—Cu1 | 57.00 (2) | C2—C8—H8A | 108.5 |
Cu1—I1—Cu2 | 62.73 (3) | S2—C8—H8A | 108.5 |
Cu1—I2—Cu2 | 64.00 (3) | C2—C8—H8B | 108.5 |
C6—S1—C5 | 100.4 (3) | S2—C8—H8B | 108.5 |
C6—S1—Cu1 | 103.67 (19) | H8A—C8—H8B | 107.5 |
C5—S1—Cu1 | 108.86 (19) | C3—C9—S3 | 113.5 (4) |
C7—S2—C8 | 102.7 (3) | C3—C9—H9A | 108.9 |
C7—S2—Cu2 | 116.0 (2) | S3—C9—H9A | 108.9 |
C8—S2—Cu2 | 114.97 (19) | C3—C9—H9B | 108.9 |
C10—S3—C9 | 104.4 (3) | S3—C9—H9B | 108.9 |
C10—S3—Cu2 | 105.0 (2) | H9A—C9—H9B | 107.7 |
C9—S3—Cu2 | 103.4 (2) | C11iii—C10—S3 | 118.0 (4) |
C11—S4—C12 | 103.4 (3) | C11iii—C10—H10A | 107.8 |
C11—S4—Cu1 | 119.3 (2) | S3—C10—H10A | 107.8 |
C12—S4—Cu1 | 111.3 (2) | C11iii—C10—H10B | 107.8 |
C4—N1—C1i | 118.2 (5) | S3—C10—H10B | 107.8 |
C2ii—N2—C3 | 118.1 (5) | H10A—C10—H10B | 107.2 |
N1iv—C1—C2i | 120.8 (5) | C10iii—C11—S4 | 114.7 (4) |
N1iv—C1—C5 | 114.1 (5) | C10iii—C11—H11A | 108.6 |
C2i—C1—C5 | 125.1 (5) | S4—C11—H11A | 108.6 |
N2ii—C2—C1iv | 120.9 (5) | C10iii—C11—H11B | 108.6 |
N2ii—C2—C8 | 116.0 (5) | S4—C11—H11B | 108.6 |
C1iv—C2—C8 | 123.1 (5) | H11A—C11—H11B | 107.6 |
N2—C3—C4iii | 121.2 (5) | C4—C12—S4 | 109.5 (4) |
N2—C3—C9 | 116.9 (5) | C4—C12—H12A | 109.8 |
C4iii—C3—C9 | 121.9 (5) | S4—C12—H12A | 109.8 |
N1—C4—C3iii | 120.8 (5) | C4—C12—H12B | 109.8 |
N1—C4—C12 | 114.9 (5) | S4—C12—H12B | 109.8 |
C3iii—C4—C12 | 124.3 (5) | H12A—C12—H12B | 108.2 |
C2ii—N2—C3—C4iii | −0.6 (8) | C7—S2—C8—C2 | 43.6 (5) |
C2ii—N2—C3—C9 | 179.1 (5) | Cu2—S2—C8—C2 | −83.2 (4) |
C1i—N1—C4—C3iii | 1.2 (9) | N2—C3—C9—S3 | −80.9 (6) |
C1i—N1—C4—C12 | 179.4 (5) | C4iii—C3—C9—S3 | 98.9 (6) |
N1iv—C1—C5—S1 | −83.4 (6) | C10—S3—C9—C3 | −50.9 (5) |
C2i—C1—C5—S1 | 96.8 (7) | Cu2—S3—C9—C3 | −160.6 (4) |
C6—S1—C5—C1 | −77.1 (5) | C9—S3—C10—C11iii | −58.6 (5) |
Cu1—S1—C5—C1 | 174.4 (4) | Cu2—S3—C10—C11iii | 49.8 (5) |
C5—S1—C6—C7i | 76.2 (5) | C12—S4—C11—C10iii | 77.0 (5) |
Cu1—S1—C6—C7i | −171.3 (4) | Cu1—S4—C11—C10iii | −158.8 (4) |
C8—S2—C7—C6iv | 67.3 (5) | N1—C4—C12—S4 | −83.0 (6) |
Cu2—S2—C7—C6iv | −166.5 (3) | C3iii—C4—C12—S4 | 95.2 (6) |
N2ii—C2—C8—S2 | 85.1 (6) | C11—S4—C12—C4 | −82.9 (5) |
C1iv—C2—C8—S2 | −92.7 (6) | Cu1—S4—C12—C4 | 147.8 (4) |
Symmetry codes: (i) −x+1, y−1/2, −z−1/2; (ii) −x, −y+1, −z; (iii) −x, −y, −z; (iv) −x+1, y+1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···S4 | 0.97 | 2.80 | 3.409 (6) | 122 |
C9—H9A···I1 | 0.97 | 2.99 | 3.771 (6) | 138 |
C6—H6A···I1v | 0.97 | 2.89 | 3.702 (6) | 142 |
Symmetry code: (v) −x+1, −y, −z. |
Acknowledgements
HSE is grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel .
References
Assoumatine, T. (1999). PhD Thesis. University of Neuchâtel, Switzerland. Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2020). Acta Cryst. E76, 539–546. CSD CrossRef IUCr Journals Google Scholar
Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663–671. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.