metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­aqua­tetra­kis(μ-3-meth­­oxy­benzoato-κ2O1:O1′)dicopper(II)

aSchool of Chemical Sciences, Goa University, Goa 403206, India, and bSophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology Madras, Chennai 600036, India
*Correspondence e-mail: srini@unigoa.ac.in

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 March 2020; accepted 31 March 2020; online 7 April 2020)

The asymmetric unit of the binuclear title compound, [Cu2(C8H7O3)4(H2O)2], comprises two halves of diaquatetra­kis­(μ-3-meth­oxy­benzoato-κ2O1:O1′)dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-meth­oxy­benzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water mol­ecule. Inter­molecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds inter­linking adjacent layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A very early structure investigation of cupric acetate monohydrate revealed that it is dimeric in nature, represented by the formula [Cu2(CH3COO)4(H2O)2] (Van Niekerk & Schoening, 1953[Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature, 171, 36-37.]). In the dimer, each of the two cupric ions is bonded to four oxygen atoms of four bridging acetate ligands in addition to a terminal aqua ligand. This kind of coordination, wherein a pair of metal cations is bonded to four symmetrically bridging carboxyl­ate anions, is referred to as a paddle-wheel structure and is well documented for several dimeric copper carboxyl­ates (Doedens, 1976[Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209-231.]). The Cambridge Structural Database (CSD, version 5.40, update September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists the structures of several dicopper(II) compounds where the cupric cations are symmetrically bridged by four carboxyl­ate ligands. The fifth ligand can be a terminal water mol­ecule or any O– or N-donor ligand. A dinuclear copper compound with a paddle-wheel structure, viz. tetra­kis­(μ-3-meth­oxy­benzoato- κ2O1:O1′)bis­[aceto­nitrile­copper(II)] (2), was reported previously for the meth­oxy­benzoate anion (Kar et al., 2011[Kar, S., Garai, A., Bala, S. & Purohit, C. S. (2011). Acta Cryst. E67, m557.]). In the present study, we describe the structure of a related dinuclear copper complex where the aceto­nitrile ligands are replaced by aqua ligands.

The crystal structure of the title compound, [Cu2(C8H7O3)4(H2O)2], (1), consists of two crystallographically unique cupric cations, four crystallographically independent 3-meth­oxy­benzoate anions and two terminal water mol­ecules that build up two independent halves of a dimeric [Cu2(C8H7O3)4(H2O)2] complex, the other halves being generated by inversion symmetry. The inversion centre is situated at the midpoint of the line connecting two CuII atoms in each of the dimers (Fig. 1[link]). In each centrosymmetric dimer, a pair of CuII atoms is connected through four synsyn bis-monodentate 3-meth­oxy­benzoate bridges to generate a binuclear paddle-wheel unit. The fifth ligand, O7 on Cu1 and O14 on Cu2, is a terminal water mol­ecule, defining an overall square-pyramidal coordination sphere around the central metal cation. Bond lengths and angles of the 3-meth­oxy­benzoate anions are in normal ranges and are in agreement with reported data (Kar et al., 2011[Kar, S., Garai, A., Bala, S. & Purohit, C. S. (2011). Acta Cryst. E67, m557.]). The Cu—Owater bonds [2.171 (4) and 2.126 (4) Å for Cu1 and Cu2, respectively] are elongated as compared to the Cu—Ocarboxyl­ate distances ranging from 1.949 (4) to 1.959 (3) Å for Cu1 and from 1.936 (3) to 1.973 (3) Å for Cu2. The Cu⋯Cu separations in the dimers amount to 2.6060 (12) Å for Cu1 and 2.5961 (11) Å for Cu2, which are shorter than the Cu⋯Cu distance of 2.6433 (3) Å reported for (2) (Kar et al., 2011[Kar, S., Garai, A., Bala, S. & Purohit, C. S. (2011). Acta Cryst. E67, m557.]).

[Figure 1]
Figure 1
The two centrosymmetric binuclear complexes in the crystal structure of [Cu2(C8H7O3)4(H2O)2] with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 2, −y + 1, −z + 1.]

The water mol­ecules, and the phenyl groups C23—H23 and C27—H27, respectively, function as hydrogen-bond donors, while the meth­oxy oxygen atoms O3, O6 and O13 and the carboxyl­ate oxygen atoms O1, O5, O11 and O14 function as hydrogen-bond acceptors; parts of the O—H⋯O hydrogen bonds are bifurcated (Table 1[link]). Each Cu1 dimer is linked to six other symmetry-related Cu1 dimers with the aid of three O—H⋯O hydrogen bonds, and each Cu2 dimer is hydrogen-bonded to six other symmetry-related Cu2 dimers (Fig. 2[link]). As a result, O—H⋯O hydrogen-bonded layers parallel to (100) are formed. The two C—H⋯O hydrogen bonds inter­link adjacent layers into a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.84 (2) 2.11 (3) 2.912 (6) 161 (5)
O7—H7B⋯O1ii 0.83 (2) 2.42 (5) 3.107 (6) 141 (7)
O7—H7B⋯O5ii 0.83 (2) 2.60 (5) 3.306 (6) 144 (6)
O14—H14B⋯O13iii 0.84 (2) 2.00 (2) 2.831 (6) 169 (8)
O14—H14A⋯O11iv 0.83 (2) 2.11 (3) 2.905 (5) 160 (6)
O14—H14A⋯O14iv 0.83 (2) 2.57 (5) 3.055 (8) 118 (5)
C23—H23⋯O6v 0.93 2.52 3.355 (7) 149
C27—H27⋯O6vi 0.93 2.57 3.114 (7) 117
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along [100] showing the O—H⋯O hydrogen bonds (dashed lines) around the Cu1 dimer (left) and the Cu2 dimer (right).
[Figure 3]
Figure 3
A view along [001] showing the inter­linking of dimeric Cu1 units with adjacent dimeric Cu2 units with the aid of C—H⋯O hydrogen bonds.

Synthesis and crystallization

Cupric oxide (100 mg) was added in small portions to a hot aqueous solution of 3-meth­oxy­benzoic acid (0.304 g, 2 mmol) in water (100 ml). The hot reaction mixture was continuously stirred to dissolve the oxide. When most of the oxide had dissolved, the blue reaction mixture was filtered to remove the insoluble matter. The blue filtrate thus obtained was left aside for crystallization. After a few days blue–greenish crystals of (1) slowly separated. The crystals were filtered and dried in air. Yield 35%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal under investigation was a two-component twin with a refined batch scale factor (BASF) of 0.47. The matrix that was used for overlapping the twin domains is (101 0[\overline{1}]0 00[\overline{1}]). H atoms of water mol­ecules were discernible from a difference-Fourier map. To get a reasonable shape, water mol­ecules were refined with a target value of 0.85 (2) Å for O—H bond lengths and of 1.35 (2) Å for H⋯H distances.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C8H7O3)4(H2O)2]
Mr 767.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 22.515 (3), 7.5349 (6), 21.536 (2)
β (°) 118.429 (4)
V3) 3213.0 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker AXS Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.410, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 36309, 6704, 5194
Rint 0.082
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.02
No. of reflections 6704
No. of parameters 454
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.90, −0.83
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaquatetrakis(µ-3-methoxybenzoato-κ2O1:O1')dicopper(II) top
Crystal data top
[Cu2(C8H7O3)4(H2O)2]F(000) = 1576
Mr = 767.65Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.515 (3) ÅCell parameters from 9989 reflections
b = 7.5349 (6) Åθ = 2.2–26.2°
c = 21.536 (2) ŵ = 1.40 mm1
β = 118.429 (4)°T = 296 K
V = 3213.0 (6) Å3Block, bluish green
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker AXS Kappa APEXII CCD
diffractometer
6704 independent reflections
Radiation source: fine-focus sealed tube5194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω and φ scanθmax = 26.6°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2828
Tmin = 0.410, Tmax = 0.745k = 99
36309 measured reflectionsl = 2626
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0351P)2 + 3.0856P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6704 reflectionsΔρmax = 0.90 e Å3
454 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50684 (3)0.65510 (8)0.02260 (3)0.03022 (19)
C10.5402 (2)0.6223 (7)0.1219 (3)0.0341 (12)
C20.5610 (2)0.7024 (8)0.1931 (3)0.0352 (12)
C30.5619 (3)0.8829 (7)0.2013 (3)0.0473 (14)
H30.5538540.9573260.1636850.057*
C40.5745 (3)0.9535 (8)0.2649 (3)0.0565 (16)
H40.5725051.0757190.2696960.068*
C50.5900 (3)0.8450 (8)0.3216 (3)0.0483 (15)
H50.5985630.8933450.3647830.058*
C60.5929 (3)0.6635 (7)0.3145 (3)0.0451 (14)
C70.5772 (3)0.5917 (8)0.2496 (3)0.0409 (13)
H70.5775780.4693410.2440790.049*
C80.6299 (5)0.3893 (9)0.3737 (4)0.095 (3)
H8A0.5943610.3281940.3345270.142*
H8B0.6379570.3325410.4169710.142*
H8C0.6703530.3859730.3693590.142*
C90.3827 (2)0.5945 (7)0.0264 (3)0.0370 (11)
C100.3150 (3)0.6464 (7)0.0354 (3)0.0381 (12)
C110.2869 (3)0.8092 (8)0.0627 (3)0.0465 (14)
H110.3083080.8864440.0793080.056*
C120.2266 (3)0.8568 (8)0.0650 (3)0.0604 (17)
H120.2067010.9646550.0851640.073*
C130.1958 (3)0.7476 (9)0.0382 (4)0.0584 (19)
H130.1558160.7825400.0389090.070*
C140.2244 (3)0.5856 (9)0.0100 (3)0.0526 (15)
C150.2829 (3)0.5331 (8)0.0094 (3)0.0457 (13)
H150.3012050.4222110.0084020.055*
C160.2158 (4)0.3189 (9)0.0455 (5)0.083 (2)
H16A0.2115750.2380740.0091840.124*
H16B0.1912000.2734850.0682860.124*
H16C0.2625570.3314910.0796540.124*
O10.53588 (19)0.7269 (5)0.0746 (2)0.0403 (10)
O20.52749 (18)0.4584 (4)0.11476 (17)0.0380 (8)
O30.6108 (2)0.5671 (5)0.3743 (2)0.0639 (12)
O40.40388 (17)0.4427 (5)0.00258 (19)0.0419 (9)
O50.41505 (18)0.7099 (5)0.04147 (19)0.0412 (8)
O60.1892 (2)0.4862 (6)0.0153 (2)0.0651 (12)
O70.5378 (3)0.9096 (5)0.0449 (3)0.0582 (11)
H7A0.566 (2)0.927 (7)0.059 (3)0.050 (18)*
H7B0.530 (3)1.005 (5)0.031 (4)0.10 (3)*
Cu21.00357 (3)0.34185 (7)0.52545 (3)0.02704 (17)
C170.8821 (2)0.4364 (7)0.4052 (3)0.0344 (11)
C180.8143 (2)0.3902 (6)0.3454 (3)0.0335 (11)
C190.7823 (2)0.5098 (7)0.2908 (3)0.0378 (11)
H190.8004440.6221630.2932460.045*
C200.7232 (3)0.4598 (7)0.2326 (3)0.0416 (12)
C210.6958 (3)0.2923 (9)0.2304 (3)0.0511 (15)
H210.6557200.2585910.1912940.061*
C220.7275 (3)0.1787 (7)0.2854 (3)0.0509 (14)
H220.7089320.0674570.2837470.061*
C230.7873 (3)0.2266 (8)0.3437 (3)0.0450 (15)
H230.8087990.1486580.3814400.054*
C240.7133 (3)0.7314 (10)0.1710 (4)0.073 (2)
H24A0.7210940.7998660.2118080.110*
H24B0.6809160.7913420.1291570.110*
H24C0.7549010.7178870.1693880.110*
C251.0434 (2)0.3824 (7)0.4183 (2)0.0327 (11)
C261.0650 (2)0.3142 (7)0.3676 (3)0.0334 (11)
C271.0786 (3)0.1352 (7)0.3666 (3)0.0438 (13)
H271.0778610.0587670.4001950.053*
C281.0931 (3)0.0720 (8)0.3153 (3)0.0532 (16)
H281.1018250.0482610.3142300.064*
C291.0948 (3)0.1821 (8)0.2661 (3)0.0499 (15)
H291.1031290.1363880.2308610.060*
C301.0841 (3)0.3626 (7)0.2686 (3)0.0400 (13)
C311.0693 (2)0.4274 (7)0.3186 (3)0.0342 (12)
H311.0618630.5484150.3200890.041*
C321.1014 (4)0.6486 (8)0.2328 (4)0.0647 (18)
H32A1.0637530.7004480.2354400.097*
H32B1.1064030.7036430.1953490.097*
H32C1.1418200.6664870.2767690.097*
O80.91180 (17)0.3186 (4)0.44982 (19)0.0428 (9)
O90.90509 (18)0.5881 (4)0.40517 (17)0.0416 (9)
O100.68798 (18)0.5618 (5)0.1750 (2)0.0544 (10)
O111.0361 (2)0.2734 (4)0.4584 (2)0.0385 (9)
O121.0316 (2)0.5454 (4)0.41646 (19)0.0408 (9)
O131.0901 (2)0.4638 (5)0.2193 (2)0.0610 (12)
O141.0181 (3)0.0849 (5)0.5712 (2)0.0567 (12)
H14B1.034 (4)0.074 (8)0.6150 (11)0.10 (3)*
H14A0.998 (3)0.009 (6)0.552 (3)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0338 (4)0.0263 (3)0.0275 (4)0.0029 (2)0.0122 (3)0.0011 (2)
C10.019 (2)0.050 (3)0.029 (3)0.004 (2)0.008 (2)0.002 (2)
C20.025 (3)0.050 (3)0.027 (3)0.004 (2)0.010 (2)0.001 (2)
C30.051 (3)0.044 (3)0.043 (3)0.001 (3)0.019 (3)0.000 (3)
C40.066 (4)0.043 (3)0.059 (4)0.001 (3)0.029 (3)0.017 (3)
C50.045 (3)0.061 (4)0.034 (3)0.001 (3)0.014 (3)0.016 (3)
C60.041 (3)0.058 (3)0.035 (3)0.001 (3)0.017 (3)0.000 (3)
C70.045 (3)0.047 (3)0.033 (3)0.000 (2)0.020 (3)0.007 (2)
C80.157 (8)0.080 (5)0.048 (4)0.050 (5)0.050 (5)0.021 (4)
C90.032 (3)0.049 (3)0.025 (2)0.007 (2)0.009 (2)0.004 (2)
C100.032 (3)0.045 (3)0.029 (3)0.006 (2)0.008 (2)0.005 (2)
C110.038 (3)0.056 (4)0.038 (3)0.011 (3)0.012 (2)0.004 (3)
C120.040 (3)0.068 (4)0.060 (4)0.025 (3)0.013 (3)0.003 (3)
C130.033 (4)0.086 (5)0.056 (4)0.008 (3)0.020 (3)0.016 (3)
C140.034 (3)0.075 (4)0.048 (3)0.000 (3)0.018 (3)0.014 (3)
C150.039 (3)0.055 (3)0.036 (3)0.001 (3)0.012 (2)0.010 (3)
C160.080 (5)0.078 (5)0.103 (7)0.007 (4)0.053 (5)0.010 (5)
O10.047 (3)0.0385 (19)0.030 (2)0.0018 (16)0.0142 (19)0.0012 (16)
O20.044 (2)0.0358 (19)0.0291 (19)0.0007 (16)0.0129 (16)0.0034 (15)
O30.095 (3)0.066 (3)0.035 (2)0.022 (2)0.034 (2)0.004 (2)
O40.0324 (18)0.044 (2)0.046 (2)0.0060 (16)0.0161 (16)0.0035 (17)
O50.040 (2)0.042 (2)0.045 (2)0.0090 (17)0.0218 (18)0.0052 (17)
O60.047 (2)0.082 (3)0.072 (3)0.008 (2)0.033 (2)0.015 (3)
O70.092 (4)0.031 (2)0.070 (3)0.001 (2)0.053 (3)0.009 (2)
Cu20.0363 (4)0.0242 (3)0.0232 (3)0.0029 (2)0.0163 (3)0.0015 (2)
C170.033 (3)0.044 (3)0.030 (3)0.000 (2)0.018 (2)0.005 (2)
C180.031 (2)0.040 (3)0.033 (3)0.005 (2)0.018 (2)0.005 (2)
C190.033 (3)0.044 (3)0.034 (3)0.005 (2)0.014 (2)0.007 (2)
C200.033 (3)0.058 (3)0.030 (3)0.004 (2)0.012 (2)0.001 (2)
C210.042 (4)0.062 (4)0.041 (4)0.008 (3)0.014 (3)0.010 (3)
C220.045 (3)0.053 (3)0.046 (3)0.019 (3)0.015 (3)0.005 (3)
C230.045 (4)0.051 (3)0.034 (3)0.009 (3)0.016 (3)0.005 (3)
C240.065 (4)0.065 (4)0.070 (5)0.001 (4)0.016 (4)0.018 (4)
C250.036 (3)0.041 (3)0.021 (2)0.005 (2)0.014 (2)0.004 (2)
C260.032 (3)0.041 (3)0.033 (3)0.007 (2)0.019 (2)0.009 (2)
C270.054 (3)0.043 (3)0.038 (3)0.005 (3)0.025 (3)0.001 (2)
C280.074 (4)0.042 (3)0.054 (4)0.011 (3)0.039 (3)0.004 (3)
C290.063 (4)0.059 (4)0.042 (3)0.004 (3)0.037 (3)0.011 (3)
C300.045 (3)0.049 (3)0.032 (3)0.010 (3)0.023 (3)0.010 (2)
C310.039 (3)0.035 (3)0.029 (3)0.004 (2)0.016 (2)0.002 (2)
C320.084 (5)0.062 (4)0.060 (4)0.022 (3)0.044 (4)0.005 (3)
O80.038 (2)0.044 (2)0.038 (2)0.0101 (17)0.0114 (17)0.0004 (17)
O90.041 (2)0.0380 (18)0.0358 (19)0.0083 (16)0.0105 (17)0.0045 (16)
O100.044 (2)0.059 (2)0.042 (2)0.0012 (18)0.0057 (18)0.0023 (19)
O110.060 (3)0.0358 (18)0.033 (2)0.0010 (17)0.033 (2)0.0042 (15)
O120.065 (3)0.0319 (19)0.040 (2)0.0024 (17)0.036 (2)0.0039 (15)
O130.099 (3)0.058 (2)0.047 (2)0.019 (2)0.051 (2)0.013 (2)
O140.106 (4)0.0252 (19)0.036 (2)0.012 (2)0.032 (2)0.0034 (17)
Geometric parameters (Å, º) top
Cu1—O11.949 (4)Cu2—O81.936 (3)
Cu1—O2i1.951 (3)Cu2—O9ii1.953 (3)
Cu1—O51.951 (3)Cu2—O12ii1.964 (3)
Cu1—O4i1.959 (3)Cu2—O111.973 (3)
Cu1—O72.171 (4)Cu2—O142.126 (4)
Cu1—Cu1i2.6060 (12)Cu2—Cu2ii2.5961 (11)
C1—O11.254 (6)C17—O81.244 (6)
C1—O21.261 (6)C17—O91.255 (6)
C1—C21.500 (7)C17—C181.496 (7)
C2—C31.370 (7)C18—C231.367 (7)
C2—C71.374 (8)C18—C191.381 (7)
C3—C41.367 (9)C19—C201.377 (7)
C3—H30.9300C19—H190.9300
C4—C51.369 (8)C20—O101.351 (6)
C4—H40.9300C20—C211.396 (8)
C5—C61.381 (7)C21—C221.355 (8)
C5—H50.9300C21—H210.9300
C6—O31.362 (7)C22—C231.382 (8)
C6—C71.378 (8)C22—H220.9300
C7—H70.9300C23—H230.9300
C8—O31.409 (7)C24—O101.418 (8)
C8—H8A0.9600C24—H24A0.9600
C8—H8B0.9600C24—H24B0.9600
C8—H8C0.9600C24—H24C0.9600
C9—O41.252 (6)C25—O121.253 (6)
C9—O51.272 (6)C25—O111.258 (6)
C9—C101.495 (7)C25—C261.484 (7)
C10—C111.377 (7)C26—C271.385 (7)
C10—C151.397 (7)C26—C311.395 (7)
C11—C121.380 (8)C27—C281.379 (8)
C11—H110.9300C27—H270.9300
C12—C131.370 (9)C28—C291.361 (8)
C12—H120.9300C28—H280.9300
C13—C141.379 (9)C29—C301.387 (8)
C13—H130.9300C29—H290.9300
C14—C151.369 (8)C30—C311.361 (7)
C14—O61.376 (7)C30—O131.365 (7)
C15—H150.9300C31—H310.9300
C16—O61.414 (8)C32—O131.420 (6)
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
O7—H7A0.835 (19)O14—H14B0.84 (2)
O7—H7B0.830 (19)O14—H14A0.832 (19)
O1—Cu1—O2i169.12 (15)O8—Cu2—O9ii168.91 (14)
O1—Cu1—O586.87 (16)O8—Cu2—O12ii89.02 (16)
O2i—Cu1—O590.77 (15)O9ii—Cu2—O12ii89.57 (16)
O1—Cu1—O4i91.82 (16)O8—Cu2—O1188.84 (16)
O2i—Cu1—O4i88.52 (15)O9ii—Cu2—O1190.47 (16)
O5—Cu1—O4i169.26 (15)O12ii—Cu2—O11169.05 (14)
O1—Cu1—O790.79 (17)O8—Cu2—O14100.04 (17)
O2i—Cu1—O7100.09 (17)O9ii—Cu2—O1491.05 (17)
O5—Cu1—O7100.79 (17)O12ii—Cu2—O1496.79 (16)
O4i—Cu1—O789.89 (17)O11—Cu2—O1494.16 (15)
O1—Cu1—Cu1i83.50 (11)O8—Cu2—Cu2ii84.33 (10)
O2i—Cu1—Cu1i85.81 (10)O9ii—Cu2—Cu2ii84.59 (10)
O5—Cu1—Cu1i88.03 (11)O12ii—Cu2—Cu2ii84.78 (10)
O4i—Cu1—Cu1i81.23 (11)O11—Cu2—Cu2ii84.32 (11)
O7—Cu1—Cu1i169.25 (15)O14—Cu2—Cu2ii175.37 (14)
O1—C1—O2126.3 (5)O8—C17—O9125.4 (5)
O1—C1—C2116.3 (5)O8—C17—C18116.9 (4)
O2—C1—C2117.4 (5)O9—C17—C18117.6 (5)
C3—C2—C7120.4 (5)C23—C18—C19121.4 (5)
C3—C2—C1120.7 (5)C23—C18—C17119.4 (5)
C7—C2—C1118.9 (5)C19—C18—C17119.1 (4)
C4—C3—C2120.0 (6)C20—C19—C18118.8 (5)
C4—C3—H3120.0C20—C19—H19120.6
C2—C3—H3120.0C18—C19—H19120.6
C3—C4—C5120.2 (5)O10—C20—C19124.8 (5)
C3—C4—H4119.9O10—C20—C21115.3 (5)
C5—C4—H4119.9C19—C20—C21119.9 (5)
C4—C5—C6119.9 (5)C22—C21—C20120.0 (5)
C4—C5—H5120.1C22—C21—H21120.0
C6—C5—H5120.1C20—C21—H21120.0
O3—C6—C7124.6 (5)C21—C22—C23120.6 (5)
O3—C6—C5115.5 (5)C21—C22—H22119.7
C7—C6—C5119.9 (5)C23—C22—H22119.7
C2—C7—C6119.4 (5)C18—C23—C22119.2 (6)
C2—C7—H7120.3C18—C23—H23120.4
C6—C7—H7120.3C22—C23—H23120.4
O3—C8—H8A109.5O10—C24—H24A109.5
O3—C8—H8B109.5O10—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
O3—C8—H8C109.5O10—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
O4—C9—O5125.2 (5)O12—C25—O11124.5 (5)
O4—C9—C10117.3 (5)O12—C25—C26117.1 (4)
O5—C9—C10117.4 (5)O11—C25—C26118.4 (4)
C11—C10—C15119.7 (5)C27—C26—C31119.3 (5)
C11—C10—C9121.5 (5)C27—C26—C25119.9 (5)
C15—C10—C9118.6 (5)C31—C26—C25120.7 (4)
C10—C11—C12119.4 (6)C28—C27—C26119.1 (5)
C10—C11—H11120.3C28—C27—H27120.5
C12—C11—H11120.3C26—C27—H27120.5
C13—C12—C11121.0 (6)C29—C28—C27121.3 (5)
C13—C12—H12119.5C29—C28—H28119.3
C11—C12—H12119.5C27—C28—H28119.3
C12—C13—C14119.5 (6)C28—C29—C30119.8 (5)
C12—C13—H13120.2C28—C29—H29120.1
C14—C13—H13120.2C30—C29—H29120.1
C15—C14—O6124.8 (6)C31—C30—O13124.5 (5)
C15—C14—C13120.4 (6)C31—C30—C29119.7 (5)
O6—C14—C13114.8 (5)O13—C30—C29115.8 (5)
C14—C15—C10119.9 (5)C30—C31—C26120.6 (5)
C14—C15—H15120.0C30—C31—H31119.7
C10—C15—H15120.0C26—C31—H31119.7
O6—C16—H16A109.5O13—C32—H32A109.5
O6—C16—H16B109.5O13—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
O6—C16—H16C109.5O13—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C1—O1—Cu1123.6 (3)C17—O8—Cu2123.5 (3)
C1—O2—Cu1i120.6 (3)C17—O9—Cu2ii122.0 (3)
C6—O3—C8117.0 (5)C20—O10—C24119.4 (5)
C9—O4—Cu1i126.7 (3)C25—O11—Cu2123.2 (3)
C9—O5—Cu1118.7 (3)C25—O12—Cu2ii123.2 (3)
C14—O6—C16118.1 (5)C30—O13—C32117.6 (4)
Cu1—O7—H7A127 (4)Cu2—O14—H14B120 (4)
Cu1—O7—H7B123 (4)Cu2—O14—H14A128 (4)
H7A—O7—H7B109 (3)H14B—O14—H14A108 (3)
O1—C1—C2—C312.5 (7)O8—C17—C18—C232.6 (7)
O2—C1—C2—C3166.2 (5)O9—C17—C18—C23179.6 (5)
O1—C1—C2—C7169.6 (5)O8—C17—C18—C19173.4 (5)
O2—C1—C2—C711.8 (7)O9—C17—C18—C194.4 (7)
C7—C2—C3—C44.4 (9)C23—C18—C19—C202.3 (8)
C1—C2—C3—C4173.6 (5)C17—C18—C19—C20173.7 (5)
C2—C3—C4—C53.6 (10)C18—C19—C20—O10178.2 (5)
C3—C4—C5—C60.0 (10)C18—C19—C20—C211.6 (8)
C4—C5—C6—O3178.1 (6)O10—C20—C21—C22179.4 (5)
C4—C5—C6—C72.9 (10)C19—C20—C21—C220.4 (9)
C3—C2—C7—C61.4 (8)C20—C21—C22—C230.3 (10)
C1—C2—C7—C6176.5 (5)C19—C18—C23—C221.6 (9)
O3—C6—C7—C2178.9 (5)C17—C18—C23—C22174.3 (5)
C5—C6—C7—C22.2 (9)C21—C22—C23—C180.3 (10)
O4—C9—C10—C11178.6 (5)O12—C25—C26—C27179.6 (5)
O5—C9—C10—C113.5 (7)O11—C25—C26—C272.0 (7)
O4—C9—C10—C157.5 (7)O12—C25—C26—C312.3 (7)
O5—C9—C10—C15170.4 (5)O11—C25—C26—C31175.4 (5)
C15—C10—C11—C121.2 (8)C31—C26—C27—C282.8 (8)
C9—C10—C11—C12175.1 (5)C25—C26—C27—C28174.6 (5)
C10—C11—C12—C132.6 (9)C26—C27—C28—C290.5 (10)
C11—C12—C13—C141.7 (10)C27—C28—C29—C302.2 (10)
C12—C13—C14—C150.6 (9)C28—C29—C30—C312.6 (9)
C12—C13—C14—O6179.8 (6)C28—C29—C30—O13176.8 (6)
O6—C14—C15—C10179.0 (5)O13—C30—C31—C26179.1 (5)
C13—C14—C15—C101.9 (8)C29—C30—C31—C260.3 (8)
C11—C10—C15—C141.0 (8)C27—C26—C31—C302.4 (8)
C9—C10—C15—C14173.0 (5)C25—C26—C31—C30175.0 (5)
O2—C1—O1—Cu10.7 (7)O9—C17—O8—Cu24.5 (7)
C2—C1—O1—Cu1177.8 (3)C18—C17—O8—Cu2173.2 (3)
O1—C1—O2—Cu1i3.4 (7)O8—C17—O9—Cu2ii3.9 (7)
C2—C1—O2—Cu1i175.1 (3)C18—C17—O9—Cu2ii173.8 (3)
C7—C6—O3—C815.7 (10)C19—C20—O10—C242.3 (8)
C5—C6—O3—C8165.3 (6)C21—C20—O10—C24177.5 (6)
O5—C9—O4—Cu1i3.4 (7)O12—C25—O11—Cu20.4 (7)
C10—C9—O4—Cu1i174.3 (3)C26—C25—O11—Cu2177.1 (3)
O4—C9—O5—Cu13.0 (7)O11—C25—O12—Cu2ii1.9 (7)
C10—C9—O5—Cu1174.7 (3)C26—C25—O12—Cu2ii175.6 (3)
C15—C14—O6—C161.4 (9)C31—C30—O13—C3219.3 (9)
C13—C14—O6—C16179.5 (6)C29—C30—O13—C32160.1 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3iii0.84 (2)2.11 (3)2.912 (6)161 (5)
O7—H7B···O1iv0.83 (2)2.42 (5)3.107 (6)141 (7)
O7—H7B···O5iv0.83 (2)2.60 (5)3.306 (6)144 (6)
O14—H14B···O13v0.84 (2)2.00 (2)2.831 (6)169 (8)
O14—H14A···O11vi0.83 (2)2.11 (3)2.905 (5)160 (6)
O14—H14A···O14vi0.83 (2)2.57 (5)3.055 (8)118 (5)
C23—H23···O6vii0.932.523.355 (7)149
C27—H27···O6viii0.932.573.114 (7)117
Symmetry codes: (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z; (v) x, y+1/2, z+1/2; (vi) x+2, y, z+1; (vii) x+1, y1/2, z+1/2; (viii) x+1, y+1/2, z+1/2.
 

Acknowledgements

BRS acknowledges the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT), Madras, for the single-crystal X-ray data collection.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoedens, R. J. (1976). Prog. Inorg. Chem. 21, 209–231.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKar, S., Garai, A., Bala, S. & Purohit, C. S. (2011). Acta Cryst. E67, m557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan Niekerk, J. N. & Schoening, F. R. L. (1953). Nature, 171, 36–37.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds