metal-organic compounds
Diaquatetrakis(μ-3-methoxybenzoato-κ2O1:O1′)dicopper(II)
aSchool of Chemical Sciences, Goa University, Goa 403206, India, and bSophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology Madras, Chennai 600036, India
*Correspondence e-mail: srini@unigoa.ac.in
The 2(C8H7O3)4(H2O)2], comprises two halves of diaquatetrakis(μ-3-methoxybenzoato-κ2O1:O1′)dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-methoxybenzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water molecule. Intermolecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds interlinking adjacent layers.
of the binuclear title compound, [CuCCDC reference: 1993956
Structure description
A very early structure investigation of cupric acetate monohydrate revealed that it is dimeric in nature, represented by the formula [Cu2(CH3COO)4(H2O)2] (Van Niekerk & Schoening, 1953). In the dimer, each of the two cupric ions is bonded to four oxygen atoms of four bridging acetate ligands in addition to a terminal aqua ligand. This kind of coordination, wherein a pair of metal cations is bonded to four symmetrically bridging carboxylate anions, is referred to as a paddle-wheel structure and is well documented for several dimeric copper carboxylates (Doedens, 1976). The Cambridge Structural Database (CSD, version 5.40, update September 2019; Groom et al., 2016) lists the structures of several dicopper(II) compounds where the cupric cations are symmetrically bridged by four carboxylate ligands. The fifth ligand can be a terminal water molecule or any O– or N-donor ligand. A dinuclear copper compound with a paddle-wheel structure, viz. tetrakis(μ-3-methoxybenzoato- κ2O1:O1′)bis[acetonitrilecopper(II)] (2), was reported previously for the methoxybenzoate anion (Kar et al., 2011). In the present study, we describe the structure of a related dinuclear copper complex where the acetonitrile ligands are replaced by aqua ligands.
The 2(C8H7O3)4(H2O)2], (1), consists of two crystallographically unique cupric cations, four crystallographically independent 3-methoxybenzoate anions and two terminal water molecules that build up two independent halves of a dimeric [Cu2(C8H7O3)4(H2O)2] complex, the other halves being generated by inversion symmetry. The inversion centre is situated at the midpoint of the line connecting two CuII atoms in each of the dimers (Fig. 1). In each centrosymmetric dimer, a pair of CuII atoms is connected through four syn–syn bis-monodentate 3-methoxybenzoate bridges to generate a binuclear paddle-wheel unit. The fifth ligand, O7 on Cu1 and O14 on Cu2, is a terminal water molecule, defining an overall square-pyramidal coordination sphere around the central metal cation. Bond lengths and angles of the 3-methoxybenzoate anions are in normal ranges and are in agreement with reported data (Kar et al., 2011). The Cu—Owater bonds [2.171 (4) and 2.126 (4) Å for Cu1 and Cu2, respectively] are elongated as compared to the Cu—Ocarboxylate distances ranging from 1.949 (4) to 1.959 (3) Å for Cu1 and from 1.936 (3) to 1.973 (3) Å for Cu2. The Cu⋯Cu separations in the dimers amount to 2.6060 (12) Å for Cu1 and 2.5961 (11) Å for Cu2, which are shorter than the Cu⋯Cu distance of 2.6433 (3) Å reported for (2) (Kar et al., 2011).
of the title compound, [CuThe water molecules, and the phenyl groups C23—H23 and C27—H27, respectively, function as hydrogen-bond donors, while the methoxy oxygen atoms O3, O6 and O13 and the carboxylate oxygen atoms O1, O5, O11 and O14 function as hydrogen-bond acceptors; parts of the O—H⋯O hydrogen bonds are bifurcated (Table 1). Each Cu1 dimer is linked to six other symmetry-related Cu1 dimers with the aid of three O—H⋯O hydrogen bonds, and each Cu2 dimer is hydrogen-bonded to six other symmetry-related Cu2 dimers (Fig. 2). As a result, O—H⋯O hydrogen-bonded layers parallel to (100) are formed. The two C—H⋯O hydrogen bonds interlink adjacent layers into a three-dimensional network (Fig. 3).
Synthesis and crystallization
Cupric oxide (100 mg) was added in small portions to a hot aqueous solution of 3-methoxybenzoic acid (0.304 g, 2 mmol) in water (100 ml). The hot reaction mixture was continuously stirred to dissolve the oxide. When most of the oxide had dissolved, the blue reaction mixture was filtered to remove the insoluble matter. The blue filtrate thus obtained was left aside for crystallization. After a few days blue–greenish crystals of (1) slowly separated. The crystals were filtered and dried in air. Yield 35%.
Refinement
Crystal data, data collection and structure . The crystal under investigation was a two-component twin with a refined batch scale factor (BASF) of 0.47. The matrix that was used for overlapping the twin domains is (101 00 00). H atoms of water molecules were discernible from a difference-Fourier map. To get a reasonable shape, water molecules were refined with a target value of 0.85 (2) Å for O—H bond lengths and of 1.35 (2) Å for H⋯H distances.
details are summarized in Table 2
|
Structural data
CCDC reference: 1993956
https://doi.org/10.1107/S2414314620004484/wm4126sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620004484/wm4126Isup3.hkl
Data collection: APEX2 (Bruker, 2012); cell
APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu2(C8H7O3)4(H2O)2] | F(000) = 1576 |
Mr = 767.65 | Dx = 1.587 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.515 (3) Å | Cell parameters from 9989 reflections |
b = 7.5349 (6) Å | θ = 2.2–26.2° |
c = 21.536 (2) Å | µ = 1.40 mm−1 |
β = 118.429 (4)° | T = 296 K |
V = 3213.0 (6) Å3 | Block, bluish green |
Z = 4 | 0.20 × 0.20 × 0.15 mm |
Bruker AXS Kappa APEXII CCD diffractometer | 6704 independent reflections |
Radiation source: fine-focus sealed tube | 5194 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
ω and φ scan | θmax = 26.6°, θmin = 1.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −28→28 |
Tmin = 0.410, Tmax = 0.745 | k = −9→9 |
36309 measured reflections | l = −26→26 |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0351P)2 + 3.0856P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
6704 reflections | Δρmax = 0.90 e Å−3 |
454 parameters | Δρmin = −0.83 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50684 (3) | 0.65510 (8) | −0.02260 (3) | 0.03022 (19) | |
C1 | 0.5402 (2) | 0.6223 (7) | 0.1219 (3) | 0.0341 (12) | |
C2 | 0.5610 (2) | 0.7024 (8) | 0.1931 (3) | 0.0352 (12) | |
C3 | 0.5619 (3) | 0.8829 (7) | 0.2013 (3) | 0.0473 (14) | |
H3 | 0.553854 | 0.957326 | 0.163685 | 0.057* | |
C4 | 0.5745 (3) | 0.9535 (8) | 0.2649 (3) | 0.0565 (16) | |
H4 | 0.572505 | 1.075719 | 0.269696 | 0.068* | |
C5 | 0.5900 (3) | 0.8450 (8) | 0.3216 (3) | 0.0483 (15) | |
H5 | 0.598563 | 0.893345 | 0.364783 | 0.058* | |
C6 | 0.5929 (3) | 0.6635 (7) | 0.3145 (3) | 0.0451 (14) | |
C7 | 0.5772 (3) | 0.5917 (8) | 0.2496 (3) | 0.0409 (13) | |
H7 | 0.577578 | 0.469341 | 0.244079 | 0.049* | |
C8 | 0.6299 (5) | 0.3893 (9) | 0.3737 (4) | 0.095 (3) | |
H8A | 0.594361 | 0.328194 | 0.334527 | 0.142* | |
H8B | 0.637957 | 0.332541 | 0.416971 | 0.142* | |
H8C | 0.670353 | 0.385973 | 0.369359 | 0.142* | |
C9 | 0.3827 (2) | 0.5945 (7) | −0.0264 (3) | 0.0370 (11) | |
C10 | 0.3150 (3) | 0.6464 (7) | −0.0354 (3) | 0.0381 (12) | |
C11 | 0.2869 (3) | 0.8092 (8) | −0.0627 (3) | 0.0465 (14) | |
H11 | 0.308308 | 0.886444 | −0.079308 | 0.056* | |
C12 | 0.2266 (3) | 0.8568 (8) | −0.0650 (3) | 0.0604 (17) | |
H12 | 0.206701 | 0.964655 | −0.085164 | 0.073* | |
C13 | 0.1958 (3) | 0.7476 (9) | −0.0382 (4) | 0.0584 (19) | |
H13 | 0.155816 | 0.782540 | −0.038909 | 0.070* | |
C14 | 0.2244 (3) | 0.5856 (9) | −0.0100 (3) | 0.0526 (15) | |
C15 | 0.2829 (3) | 0.5331 (8) | −0.0094 (3) | 0.0457 (13) | |
H15 | 0.301205 | 0.422211 | 0.008402 | 0.055* | |
C16 | 0.2158 (4) | 0.3189 (9) | 0.0455 (5) | 0.083 (2) | |
H16A | 0.211575 | 0.238074 | 0.009184 | 0.124* | |
H16B | 0.191200 | 0.273485 | 0.068286 | 0.124* | |
H16C | 0.262557 | 0.331491 | 0.079654 | 0.124* | |
O1 | 0.53588 (19) | 0.7269 (5) | 0.0746 (2) | 0.0403 (10) | |
O2 | 0.52749 (18) | 0.4584 (4) | 0.11476 (17) | 0.0380 (8) | |
O3 | 0.6108 (2) | 0.5671 (5) | 0.3743 (2) | 0.0639 (12) | |
O4 | 0.40388 (17) | 0.4427 (5) | −0.00258 (19) | 0.0419 (9) | |
O5 | 0.41505 (18) | 0.7099 (5) | −0.04147 (19) | 0.0412 (8) | |
O6 | 0.1892 (2) | 0.4862 (6) | 0.0153 (2) | 0.0651 (12) | |
O7 | 0.5378 (3) | 0.9096 (5) | −0.0449 (3) | 0.0582 (11) | |
H7A | 0.566 (2) | 0.927 (7) | −0.059 (3) | 0.050 (18)* | |
H7B | 0.530 (3) | 1.005 (5) | −0.031 (4) | 0.10 (3)* | |
Cu2 | 1.00357 (3) | 0.34185 (7) | 0.52545 (3) | 0.02704 (17) | |
C17 | 0.8821 (2) | 0.4364 (7) | 0.4052 (3) | 0.0344 (11) | |
C18 | 0.8143 (2) | 0.3902 (6) | 0.3454 (3) | 0.0335 (11) | |
C19 | 0.7823 (2) | 0.5098 (7) | 0.2908 (3) | 0.0378 (11) | |
H19 | 0.800444 | 0.622163 | 0.293246 | 0.045* | |
C20 | 0.7232 (3) | 0.4598 (7) | 0.2326 (3) | 0.0416 (12) | |
C21 | 0.6958 (3) | 0.2923 (9) | 0.2304 (3) | 0.0511 (15) | |
H21 | 0.655720 | 0.258591 | 0.191294 | 0.061* | |
C22 | 0.7275 (3) | 0.1787 (7) | 0.2854 (3) | 0.0509 (14) | |
H22 | 0.708932 | 0.067457 | 0.283747 | 0.061* | |
C23 | 0.7873 (3) | 0.2266 (8) | 0.3437 (3) | 0.0450 (15) | |
H23 | 0.808799 | 0.148658 | 0.381440 | 0.054* | |
C24 | 0.7133 (3) | 0.7314 (10) | 0.1710 (4) | 0.073 (2) | |
H24A | 0.721094 | 0.799866 | 0.211808 | 0.110* | |
H24B | 0.680916 | 0.791342 | 0.129157 | 0.110* | |
H24C | 0.754901 | 0.717887 | 0.169388 | 0.110* | |
C25 | 1.0434 (2) | 0.3824 (7) | 0.4183 (2) | 0.0327 (11) | |
C26 | 1.0650 (2) | 0.3142 (7) | 0.3676 (3) | 0.0334 (11) | |
C27 | 1.0786 (3) | 0.1352 (7) | 0.3666 (3) | 0.0438 (13) | |
H27 | 1.077861 | 0.058767 | 0.400195 | 0.053* | |
C28 | 1.0931 (3) | 0.0720 (8) | 0.3153 (3) | 0.0532 (16) | |
H28 | 1.101825 | −0.048261 | 0.314230 | 0.064* | |
C29 | 1.0948 (3) | 0.1821 (8) | 0.2661 (3) | 0.0499 (15) | |
H29 | 1.103129 | 0.136388 | 0.230861 | 0.060* | |
C30 | 1.0841 (3) | 0.3626 (7) | 0.2686 (3) | 0.0400 (13) | |
C31 | 1.0693 (2) | 0.4274 (7) | 0.3186 (3) | 0.0342 (12) | |
H31 | 1.061863 | 0.548415 | 0.320089 | 0.041* | |
C32 | 1.1014 (4) | 0.6486 (8) | 0.2328 (4) | 0.0647 (18) | |
H32A | 1.063753 | 0.700448 | 0.235440 | 0.097* | |
H32B | 1.106403 | 0.703643 | 0.195349 | 0.097* | |
H32C | 1.141820 | 0.666487 | 0.276769 | 0.097* | |
O8 | 0.91180 (17) | 0.3186 (4) | 0.44982 (19) | 0.0428 (9) | |
O9 | 0.90509 (18) | 0.5881 (4) | 0.40517 (17) | 0.0416 (9) | |
O10 | 0.68798 (18) | 0.5618 (5) | 0.1750 (2) | 0.0544 (10) | |
O11 | 1.0361 (2) | 0.2734 (4) | 0.4584 (2) | 0.0385 (9) | |
O12 | 1.0316 (2) | 0.5454 (4) | 0.41646 (19) | 0.0408 (9) | |
O13 | 1.0901 (2) | 0.4638 (5) | 0.2193 (2) | 0.0610 (12) | |
O14 | 1.0181 (3) | 0.0849 (5) | 0.5712 (2) | 0.0567 (12) | |
H14B | 1.034 (4) | 0.074 (8) | 0.6150 (11) | 0.10 (3)* | |
H14A | 0.998 (3) | −0.009 (6) | 0.552 (3) | 0.09 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0338 (4) | 0.0263 (3) | 0.0275 (4) | 0.0029 (2) | 0.0122 (3) | 0.0011 (2) |
C1 | 0.019 (2) | 0.050 (3) | 0.029 (3) | 0.004 (2) | 0.008 (2) | −0.002 (2) |
C2 | 0.025 (3) | 0.050 (3) | 0.027 (3) | −0.004 (2) | 0.010 (2) | −0.001 (2) |
C3 | 0.051 (3) | 0.044 (3) | 0.043 (3) | −0.001 (3) | 0.019 (3) | 0.000 (3) |
C4 | 0.066 (4) | 0.043 (3) | 0.059 (4) | −0.001 (3) | 0.029 (3) | −0.017 (3) |
C5 | 0.045 (3) | 0.061 (4) | 0.034 (3) | 0.001 (3) | 0.014 (3) | −0.016 (3) |
C6 | 0.041 (3) | 0.058 (3) | 0.035 (3) | 0.001 (3) | 0.017 (3) | 0.000 (3) |
C7 | 0.045 (3) | 0.047 (3) | 0.033 (3) | 0.000 (2) | 0.020 (3) | −0.007 (2) |
C8 | 0.157 (8) | 0.080 (5) | 0.048 (4) | 0.050 (5) | 0.050 (5) | 0.021 (4) |
C9 | 0.032 (3) | 0.049 (3) | 0.025 (2) | 0.007 (2) | 0.009 (2) | −0.004 (2) |
C10 | 0.032 (3) | 0.045 (3) | 0.029 (3) | 0.006 (2) | 0.008 (2) | −0.005 (2) |
C11 | 0.038 (3) | 0.056 (4) | 0.038 (3) | 0.011 (3) | 0.012 (2) | 0.004 (3) |
C12 | 0.040 (3) | 0.068 (4) | 0.060 (4) | 0.025 (3) | 0.013 (3) | −0.003 (3) |
C13 | 0.033 (4) | 0.086 (5) | 0.056 (4) | 0.008 (3) | 0.020 (3) | −0.016 (3) |
C14 | 0.034 (3) | 0.075 (4) | 0.048 (3) | 0.000 (3) | 0.018 (3) | −0.014 (3) |
C15 | 0.039 (3) | 0.055 (3) | 0.036 (3) | 0.001 (3) | 0.012 (2) | −0.010 (3) |
C16 | 0.080 (5) | 0.078 (5) | 0.103 (7) | −0.007 (4) | 0.053 (5) | 0.010 (5) |
O1 | 0.047 (3) | 0.0385 (19) | 0.030 (2) | −0.0018 (16) | 0.0142 (19) | −0.0012 (16) |
O2 | 0.044 (2) | 0.0358 (19) | 0.0291 (19) | −0.0007 (16) | 0.0129 (16) | −0.0034 (15) |
O3 | 0.095 (3) | 0.066 (3) | 0.035 (2) | 0.022 (2) | 0.034 (2) | 0.004 (2) |
O4 | 0.0324 (18) | 0.044 (2) | 0.046 (2) | 0.0060 (16) | 0.0161 (16) | 0.0035 (17) |
O5 | 0.040 (2) | 0.042 (2) | 0.045 (2) | 0.0090 (17) | 0.0218 (18) | 0.0052 (17) |
O6 | 0.047 (2) | 0.082 (3) | 0.072 (3) | −0.008 (2) | 0.033 (2) | −0.015 (3) |
O7 | 0.092 (4) | 0.031 (2) | 0.070 (3) | 0.001 (2) | 0.053 (3) | 0.009 (2) |
Cu2 | 0.0363 (4) | 0.0242 (3) | 0.0232 (3) | −0.0029 (2) | 0.0163 (3) | −0.0015 (2) |
C17 | 0.033 (3) | 0.044 (3) | 0.030 (3) | 0.000 (2) | 0.018 (2) | −0.005 (2) |
C18 | 0.031 (2) | 0.040 (3) | 0.033 (3) | −0.005 (2) | 0.018 (2) | −0.005 (2) |
C19 | 0.033 (3) | 0.044 (3) | 0.034 (3) | −0.005 (2) | 0.014 (2) | −0.007 (2) |
C20 | 0.033 (3) | 0.058 (3) | 0.030 (3) | 0.004 (2) | 0.012 (2) | −0.001 (2) |
C21 | 0.042 (4) | 0.062 (4) | 0.041 (4) | −0.008 (3) | 0.014 (3) | −0.010 (3) |
C22 | 0.045 (3) | 0.053 (3) | 0.046 (3) | −0.019 (3) | 0.015 (3) | −0.005 (3) |
C23 | 0.045 (4) | 0.051 (3) | 0.034 (3) | −0.009 (3) | 0.016 (3) | −0.005 (3) |
C24 | 0.065 (4) | 0.065 (4) | 0.070 (5) | −0.001 (4) | 0.016 (4) | 0.018 (4) |
C25 | 0.036 (3) | 0.041 (3) | 0.021 (2) | −0.005 (2) | 0.014 (2) | −0.004 (2) |
C26 | 0.032 (3) | 0.041 (3) | 0.033 (3) | −0.007 (2) | 0.019 (2) | −0.009 (2) |
C27 | 0.054 (3) | 0.043 (3) | 0.038 (3) | 0.005 (3) | 0.025 (3) | −0.001 (2) |
C28 | 0.074 (4) | 0.042 (3) | 0.054 (4) | 0.011 (3) | 0.039 (3) | −0.004 (3) |
C29 | 0.063 (4) | 0.059 (4) | 0.042 (3) | 0.004 (3) | 0.037 (3) | −0.011 (3) |
C30 | 0.045 (3) | 0.049 (3) | 0.032 (3) | −0.010 (3) | 0.023 (3) | −0.010 (2) |
C31 | 0.039 (3) | 0.035 (3) | 0.029 (3) | −0.004 (2) | 0.016 (2) | −0.002 (2) |
C32 | 0.084 (5) | 0.062 (4) | 0.060 (4) | −0.022 (3) | 0.044 (4) | −0.005 (3) |
O8 | 0.038 (2) | 0.044 (2) | 0.038 (2) | −0.0101 (17) | 0.0114 (17) | −0.0004 (17) |
O9 | 0.041 (2) | 0.0380 (18) | 0.0358 (19) | −0.0083 (16) | 0.0105 (17) | −0.0045 (16) |
O10 | 0.044 (2) | 0.059 (2) | 0.042 (2) | 0.0012 (18) | 0.0057 (18) | 0.0023 (19) |
O11 | 0.060 (3) | 0.0358 (18) | 0.033 (2) | −0.0010 (17) | 0.033 (2) | −0.0042 (15) |
O12 | 0.065 (3) | 0.0319 (19) | 0.040 (2) | −0.0024 (17) | 0.036 (2) | −0.0039 (15) |
O13 | 0.099 (3) | 0.058 (2) | 0.047 (2) | −0.019 (2) | 0.051 (2) | −0.013 (2) |
O14 | 0.106 (4) | 0.0252 (19) | 0.036 (2) | −0.012 (2) | 0.032 (2) | −0.0034 (17) |
Cu1—O1 | 1.949 (4) | Cu2—O8 | 1.936 (3) |
Cu1—O2i | 1.951 (3) | Cu2—O9ii | 1.953 (3) |
Cu1—O5 | 1.951 (3) | Cu2—O12ii | 1.964 (3) |
Cu1—O4i | 1.959 (3) | Cu2—O11 | 1.973 (3) |
Cu1—O7 | 2.171 (4) | Cu2—O14 | 2.126 (4) |
Cu1—Cu1i | 2.6060 (12) | Cu2—Cu2ii | 2.5961 (11) |
C1—O1 | 1.254 (6) | C17—O8 | 1.244 (6) |
C1—O2 | 1.261 (6) | C17—O9 | 1.255 (6) |
C1—C2 | 1.500 (7) | C17—C18 | 1.496 (7) |
C2—C3 | 1.370 (7) | C18—C23 | 1.367 (7) |
C2—C7 | 1.374 (8) | C18—C19 | 1.381 (7) |
C3—C4 | 1.367 (9) | C19—C20 | 1.377 (7) |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C4—C5 | 1.369 (8) | C20—O10 | 1.351 (6) |
C4—H4 | 0.9300 | C20—C21 | 1.396 (8) |
C5—C6 | 1.381 (7) | C21—C22 | 1.355 (8) |
C5—H5 | 0.9300 | C21—H21 | 0.9300 |
C6—O3 | 1.362 (7) | C22—C23 | 1.382 (8) |
C6—C7 | 1.378 (8) | C22—H22 | 0.9300 |
C7—H7 | 0.9300 | C23—H23 | 0.9300 |
C8—O3 | 1.409 (7) | C24—O10 | 1.418 (8) |
C8—H8A | 0.9600 | C24—H24A | 0.9600 |
C8—H8B | 0.9600 | C24—H24B | 0.9600 |
C8—H8C | 0.9600 | C24—H24C | 0.9600 |
C9—O4 | 1.252 (6) | C25—O12 | 1.253 (6) |
C9—O5 | 1.272 (6) | C25—O11 | 1.258 (6) |
C9—C10 | 1.495 (7) | C25—C26 | 1.484 (7) |
C10—C11 | 1.377 (7) | C26—C27 | 1.385 (7) |
C10—C15 | 1.397 (7) | C26—C31 | 1.395 (7) |
C11—C12 | 1.380 (8) | C27—C28 | 1.379 (8) |
C11—H11 | 0.9300 | C27—H27 | 0.9300 |
C12—C13 | 1.370 (9) | C28—C29 | 1.361 (8) |
C12—H12 | 0.9300 | C28—H28 | 0.9300 |
C13—C14 | 1.379 (9) | C29—C30 | 1.387 (8) |
C13—H13 | 0.9300 | C29—H29 | 0.9300 |
C14—C15 | 1.369 (8) | C30—C31 | 1.361 (7) |
C14—O6 | 1.376 (7) | C30—O13 | 1.365 (7) |
C15—H15 | 0.9300 | C31—H31 | 0.9300 |
C16—O6 | 1.414 (8) | C32—O13 | 1.420 (6) |
C16—H16A | 0.9600 | C32—H32A | 0.9600 |
C16—H16B | 0.9600 | C32—H32B | 0.9600 |
C16—H16C | 0.9600 | C32—H32C | 0.9600 |
O7—H7A | 0.835 (19) | O14—H14B | 0.84 (2) |
O7—H7B | 0.830 (19) | O14—H14A | 0.832 (19) |
O1—Cu1—O2i | 169.12 (15) | O8—Cu2—O9ii | 168.91 (14) |
O1—Cu1—O5 | 86.87 (16) | O8—Cu2—O12ii | 89.02 (16) |
O2i—Cu1—O5 | 90.77 (15) | O9ii—Cu2—O12ii | 89.57 (16) |
O1—Cu1—O4i | 91.82 (16) | O8—Cu2—O11 | 88.84 (16) |
O2i—Cu1—O4i | 88.52 (15) | O9ii—Cu2—O11 | 90.47 (16) |
O5—Cu1—O4i | 169.26 (15) | O12ii—Cu2—O11 | 169.05 (14) |
O1—Cu1—O7 | 90.79 (17) | O8—Cu2—O14 | 100.04 (17) |
O2i—Cu1—O7 | 100.09 (17) | O9ii—Cu2—O14 | 91.05 (17) |
O5—Cu1—O7 | 100.79 (17) | O12ii—Cu2—O14 | 96.79 (16) |
O4i—Cu1—O7 | 89.89 (17) | O11—Cu2—O14 | 94.16 (15) |
O1—Cu1—Cu1i | 83.50 (11) | O8—Cu2—Cu2ii | 84.33 (10) |
O2i—Cu1—Cu1i | 85.81 (10) | O9ii—Cu2—Cu2ii | 84.59 (10) |
O5—Cu1—Cu1i | 88.03 (11) | O12ii—Cu2—Cu2ii | 84.78 (10) |
O4i—Cu1—Cu1i | 81.23 (11) | O11—Cu2—Cu2ii | 84.32 (11) |
O7—Cu1—Cu1i | 169.25 (15) | O14—Cu2—Cu2ii | 175.37 (14) |
O1—C1—O2 | 126.3 (5) | O8—C17—O9 | 125.4 (5) |
O1—C1—C2 | 116.3 (5) | O8—C17—C18 | 116.9 (4) |
O2—C1—C2 | 117.4 (5) | O9—C17—C18 | 117.6 (5) |
C3—C2—C7 | 120.4 (5) | C23—C18—C19 | 121.4 (5) |
C3—C2—C1 | 120.7 (5) | C23—C18—C17 | 119.4 (5) |
C7—C2—C1 | 118.9 (5) | C19—C18—C17 | 119.1 (4) |
C4—C3—C2 | 120.0 (6) | C20—C19—C18 | 118.8 (5) |
C4—C3—H3 | 120.0 | C20—C19—H19 | 120.6 |
C2—C3—H3 | 120.0 | C18—C19—H19 | 120.6 |
C3—C4—C5 | 120.2 (5) | O10—C20—C19 | 124.8 (5) |
C3—C4—H4 | 119.9 | O10—C20—C21 | 115.3 (5) |
C5—C4—H4 | 119.9 | C19—C20—C21 | 119.9 (5) |
C4—C5—C6 | 119.9 (5) | C22—C21—C20 | 120.0 (5) |
C4—C5—H5 | 120.1 | C22—C21—H21 | 120.0 |
C6—C5—H5 | 120.1 | C20—C21—H21 | 120.0 |
O3—C6—C7 | 124.6 (5) | C21—C22—C23 | 120.6 (5) |
O3—C6—C5 | 115.5 (5) | C21—C22—H22 | 119.7 |
C7—C6—C5 | 119.9 (5) | C23—C22—H22 | 119.7 |
C2—C7—C6 | 119.4 (5) | C18—C23—C22 | 119.2 (6) |
C2—C7—H7 | 120.3 | C18—C23—H23 | 120.4 |
C6—C7—H7 | 120.3 | C22—C23—H23 | 120.4 |
O3—C8—H8A | 109.5 | O10—C24—H24A | 109.5 |
O3—C8—H8B | 109.5 | O10—C24—H24B | 109.5 |
H8A—C8—H8B | 109.5 | H24A—C24—H24B | 109.5 |
O3—C8—H8C | 109.5 | O10—C24—H24C | 109.5 |
H8A—C8—H8C | 109.5 | H24A—C24—H24C | 109.5 |
H8B—C8—H8C | 109.5 | H24B—C24—H24C | 109.5 |
O4—C9—O5 | 125.2 (5) | O12—C25—O11 | 124.5 (5) |
O4—C9—C10 | 117.3 (5) | O12—C25—C26 | 117.1 (4) |
O5—C9—C10 | 117.4 (5) | O11—C25—C26 | 118.4 (4) |
C11—C10—C15 | 119.7 (5) | C27—C26—C31 | 119.3 (5) |
C11—C10—C9 | 121.5 (5) | C27—C26—C25 | 119.9 (5) |
C15—C10—C9 | 118.6 (5) | C31—C26—C25 | 120.7 (4) |
C10—C11—C12 | 119.4 (6) | C28—C27—C26 | 119.1 (5) |
C10—C11—H11 | 120.3 | C28—C27—H27 | 120.5 |
C12—C11—H11 | 120.3 | C26—C27—H27 | 120.5 |
C13—C12—C11 | 121.0 (6) | C29—C28—C27 | 121.3 (5) |
C13—C12—H12 | 119.5 | C29—C28—H28 | 119.3 |
C11—C12—H12 | 119.5 | C27—C28—H28 | 119.3 |
C12—C13—C14 | 119.5 (6) | C28—C29—C30 | 119.8 (5) |
C12—C13—H13 | 120.2 | C28—C29—H29 | 120.1 |
C14—C13—H13 | 120.2 | C30—C29—H29 | 120.1 |
C15—C14—O6 | 124.8 (6) | C31—C30—O13 | 124.5 (5) |
C15—C14—C13 | 120.4 (6) | C31—C30—C29 | 119.7 (5) |
O6—C14—C13 | 114.8 (5) | O13—C30—C29 | 115.8 (5) |
C14—C15—C10 | 119.9 (5) | C30—C31—C26 | 120.6 (5) |
C14—C15—H15 | 120.0 | C30—C31—H31 | 119.7 |
C10—C15—H15 | 120.0 | C26—C31—H31 | 119.7 |
O6—C16—H16A | 109.5 | O13—C32—H32A | 109.5 |
O6—C16—H16B | 109.5 | O13—C32—H32B | 109.5 |
H16A—C16—H16B | 109.5 | H32A—C32—H32B | 109.5 |
O6—C16—H16C | 109.5 | O13—C32—H32C | 109.5 |
H16A—C16—H16C | 109.5 | H32A—C32—H32C | 109.5 |
H16B—C16—H16C | 109.5 | H32B—C32—H32C | 109.5 |
C1—O1—Cu1 | 123.6 (3) | C17—O8—Cu2 | 123.5 (3) |
C1—O2—Cu1i | 120.6 (3) | C17—O9—Cu2ii | 122.0 (3) |
C6—O3—C8 | 117.0 (5) | C20—O10—C24 | 119.4 (5) |
C9—O4—Cu1i | 126.7 (3) | C25—O11—Cu2 | 123.2 (3) |
C9—O5—Cu1 | 118.7 (3) | C25—O12—Cu2ii | 123.2 (3) |
C14—O6—C16 | 118.1 (5) | C30—O13—C32 | 117.6 (4) |
Cu1—O7—H7A | 127 (4) | Cu2—O14—H14B | 120 (4) |
Cu1—O7—H7B | 123 (4) | Cu2—O14—H14A | 128 (4) |
H7A—O7—H7B | 109 (3) | H14B—O14—H14A | 108 (3) |
O1—C1—C2—C3 | 12.5 (7) | O8—C17—C18—C23 | 2.6 (7) |
O2—C1—C2—C3 | −166.2 (5) | O9—C17—C18—C23 | −179.6 (5) |
O1—C1—C2—C7 | −169.6 (5) | O8—C17—C18—C19 | −173.4 (5) |
O2—C1—C2—C7 | 11.8 (7) | O9—C17—C18—C19 | 4.4 (7) |
C7—C2—C3—C4 | −4.4 (9) | C23—C18—C19—C20 | −2.3 (8) |
C1—C2—C3—C4 | 173.6 (5) | C17—C18—C19—C20 | 173.7 (5) |
C2—C3—C4—C5 | 3.6 (10) | C18—C19—C20—O10 | −178.2 (5) |
C3—C4—C5—C6 | 0.0 (10) | C18—C19—C20—C21 | 1.6 (8) |
C4—C5—C6—O3 | 178.1 (6) | O10—C20—C21—C22 | 179.4 (5) |
C4—C5—C6—C7 | −2.9 (10) | C19—C20—C21—C22 | −0.4 (9) |
C3—C2—C7—C6 | 1.4 (8) | C20—C21—C22—C23 | −0.3 (10) |
C1—C2—C7—C6 | −176.5 (5) | C19—C18—C23—C22 | 1.6 (9) |
O3—C6—C7—C2 | −178.9 (5) | C17—C18—C23—C22 | −174.3 (5) |
C5—C6—C7—C2 | 2.2 (9) | C21—C22—C23—C18 | −0.3 (10) |
O4—C9—C10—C11 | −178.6 (5) | O12—C25—C26—C27 | −179.6 (5) |
O5—C9—C10—C11 | 3.5 (7) | O11—C25—C26—C27 | −2.0 (7) |
O4—C9—C10—C15 | 7.5 (7) | O12—C25—C26—C31 | −2.3 (7) |
O5—C9—C10—C15 | −170.4 (5) | O11—C25—C26—C31 | 175.4 (5) |
C15—C10—C11—C12 | −1.2 (8) | C31—C26—C27—C28 | −2.8 (8) |
C9—C10—C11—C12 | −175.1 (5) | C25—C26—C27—C28 | 174.6 (5) |
C10—C11—C12—C13 | 2.6 (9) | C26—C27—C28—C29 | 0.5 (10) |
C11—C12—C13—C14 | −1.7 (10) | C27—C28—C29—C30 | 2.2 (10) |
C12—C13—C14—C15 | −0.6 (9) | C28—C29—C30—C31 | −2.6 (9) |
C12—C13—C14—O6 | −179.8 (6) | C28—C29—C30—O13 | 176.8 (6) |
O6—C14—C15—C10 | −179.0 (5) | O13—C30—C31—C26 | −179.1 (5) |
C13—C14—C15—C10 | 1.9 (8) | C29—C30—C31—C26 | 0.3 (8) |
C11—C10—C15—C14 | −1.0 (8) | C27—C26—C31—C30 | 2.4 (8) |
C9—C10—C15—C14 | 173.0 (5) | C25—C26—C31—C30 | −175.0 (5) |
O2—C1—O1—Cu1 | 0.7 (7) | O9—C17—O8—Cu2 | −4.5 (7) |
C2—C1—O1—Cu1 | −177.8 (3) | C18—C17—O8—Cu2 | 173.2 (3) |
O1—C1—O2—Cu1i | −3.4 (7) | O8—C17—O9—Cu2ii | 3.9 (7) |
C2—C1—O2—Cu1i | 175.1 (3) | C18—C17—O9—Cu2ii | −173.8 (3) |
C7—C6—O3—C8 | 15.7 (10) | C19—C20—O10—C24 | 2.3 (8) |
C5—C6—O3—C8 | −165.3 (6) | C21—C20—O10—C24 | −177.5 (6) |
O5—C9—O4—Cu1i | 3.4 (7) | O12—C25—O11—Cu2 | 0.4 (7) |
C10—C9—O4—Cu1i | −174.3 (3) | C26—C25—O11—Cu2 | −177.1 (3) |
O4—C9—O5—Cu1 | −3.0 (7) | O11—C25—O12—Cu2ii | −1.9 (7) |
C10—C9—O5—Cu1 | 174.7 (3) | C26—C25—O12—Cu2ii | 175.6 (3) |
C15—C14—O6—C16 | 1.4 (9) | C31—C30—O13—C32 | 19.3 (9) |
C13—C14—O6—C16 | −179.5 (6) | C29—C30—O13—C32 | −160.1 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O3iii | 0.84 (2) | 2.11 (3) | 2.912 (6) | 161 (5) |
O7—H7B···O1iv | 0.83 (2) | 2.42 (5) | 3.107 (6) | 141 (7) |
O7—H7B···O5iv | 0.83 (2) | 2.60 (5) | 3.306 (6) | 144 (6) |
O14—H14B···O13v | 0.84 (2) | 2.00 (2) | 2.831 (6) | 169 (8) |
O14—H14A···O11vi | 0.83 (2) | 2.11 (3) | 2.905 (5) | 160 (6) |
O14—H14A···O14vi | 0.83 (2) | 2.57 (5) | 3.055 (8) | 118 (5) |
C23—H23···O6vii | 0.93 | 2.52 | 3.355 (7) | 149 |
C27—H27···O6viii | 0.93 | 2.57 | 3.114 (7) | 117 |
Symmetry codes: (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+2, −z; (v) x, −y+1/2, z+1/2; (vi) −x+2, −y, −z+1; (vii) −x+1, y−1/2, −z+1/2; (viii) x+1, −y+1/2, z+1/2. |
Acknowledgements
BRS acknowledges the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT), Madras, for the single-crystal X-ray data collection.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209–231. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kar, S., Garai, A., Bala, S. & Purohit, C. S. (2011). Acta Cryst. E67, m557. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature, 171, 36–37. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.