organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,4,6-Tri­phenyl-N-{(3E)-3-[(2,4,6-tri­phenyl­phen­yl)imino]­butan-2-yl­­idene}aniline

aSchool of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China, and bInstitutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, People's Republic of China
*Correspondence e-mail: liweimin@cczu.edu.cn, wangfuzhou@ahu.edu.cn

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 13 April 2020; accepted 16 April 2020; online 30 April 2020)

The title compound, C52H40N2, is disposed about a centre of inversion and the conformation about the imine bond [1.268 (3) Å] is E. The terminal benzene ring is approximately perpendicular to the central 1,4-di­aza­butadiene mean plane, forming a dihedral angle of 81.2 (3)°. Weak C—H⋯π and ππ [inter-centroid distance = 4.021 (5) Å] inter­actions help to consolidate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The seminal studies by Brookhart and co-workers leading to the discovery of cationic α-di­imine-based Ni and Pd catalysts marked the start of a new era in olefin polymerization studies (Killian et al., 1996[Killian, C. M., Tempel, D. J., Johnson, L. K. & Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664-11665.]). Branched polyolefins are generally produced using these catalysed ethyl­ene polymerizations through a characteristic chain-walking process (Wang & Chen, 2019[Wang, F. Z. & Chen, C. L. (2019). Polym. Chem. 10, 2354-2369.]). More importantly, these α-di­imine Ni and Pd catalysts are able to co-polymerize olefins with polar co-monomers to afford co-polymers containing functional groups without the pre-protection of the polar groups (Chen et al., 2018[Chen, C. L. (2018). ACS Catal. 8, 5506-5514.]). For the synthesis of the α-di­imine mol­ecules and background to the applications of the olefin polymerization catalysts ligated by α-di­imine, see: Wang et al. (2016[Wang, F. Z., Tanaka, R., Cai, Z. G., Nakayama, Y. & Shiono, T. (2016). Macromol. Rapid Commun. 37, 1375-1381.], 2018[Wang, F. Z., Tanaka, R., Li, Q. S., Nakayama, Y. & Shiono, T. (2018). Organometallics, 37, 1358-1367.], 2019[Wang, F. Z., Xu, G., Li, Q., Tanaka, R., Nakayama, Y. & Shiono, T. (2019). Polymer, 181, 121801.]).

In this study, we designed and synthesized the title compound (Fig. 1[link]) as a potential bidentate ligand, and its mol­ecular structure was characterized by X-ray diffraction. In the solid state, the molecule exhibits Ci symmetry, being disposed about a centre of inversion. The single bond of the 1,4-di­aza­butadiene fragment [1.491 (4) Å] has an anti-disposition and the imine bonds [1.268 (3) Å] are E-configured. The dihedral angle between the pendent benzene ring and the 1,4-di­aza­butadiene least-squares plane is 81.2 (3)°, consistent with an almost perpendicular relationship. In the crystal, C—H⋯π, Table 1[link], and ππ inter­actions are noted. For the latter, the closest approach of 4.021 (5) Å occurs between centrosymmetrically related (C13–C18)-phenyl rings with the off-set distance being 1.86 Å; symmetry operationx, 1 − y, 1 − z.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (C19–C24) phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.93 2.89 3.737 (5) 152
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level. Unlabelled atoms are related by the symmetry operation − x, 2 − y, 1 − z.

Synthesis and crystallization

After the protection of the amino group by acetic acid, the aniline was brominated. The Suzuki coupling reaction of the aniline and phenyl­boronic acid catalysed by a Pd catalyst in PEG-400 /H2O led to the corresponding triphenyl-substituted aniline (Fig. 2[link]). The title compound was prepared by the condensation of two equivalents of the appropriate aniline with one equivalent of 2,3-butane­dione, in the presence of formic acid or p-toluene­sulfonic acid, as a catalyst at 81% yield.

[Figure 2]
Figure 2
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C52H40N2
Mr 692.86
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.383 (8), 12.498 (15), 12.814 (16)
α, β, γ (°) 68.718 (11), 86.988 (12), 81.397 (12)
V3) 942 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.23 × 0.21 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.984, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 6847, 3456, 2023
Rint 0.049
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.158, 1.02
No. of reflections 3456
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL97 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,4,6-Triphenyl-N-{(3E)-3-[(2,4,6-triphenylphenyl)imino]butan-2-ylidene}aniline top
Crystal data top
C52H40N2Z = 1
Mr = 692.86F(000) = 366
Triclinic, P1Dx = 1.222 Mg m3
a = 6.383 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.498 (15) ÅCell parameters from 936 reflections
c = 12.814 (16) Åθ = 2.9–21.8°
α = 68.718 (11)°µ = 0.07 mm1
β = 86.988 (12)°T = 296 K
γ = 81.397 (12)°Block, yellow
V = 942 (2) Å30.23 × 0.21 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3456 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.984, Tmax = 0.986k = 1515
6847 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0398P)2]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All hydrogen atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å for aryl and methyl type H-atoms. They were included in the refinement in a riding model approximation, respectively. The H-atoms were assigned Uiso = 1.2 times Ueq of the aryl C atoms and 1.5 times Ueq of the methyl C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1450 (4)0.9506 (2)0.8008 (2)0.0489 (7)
H10.01430.93570.78480.059*
C20.1537 (5)1.0422 (2)0.8349 (2)0.0596 (8)
H20.02911.08830.84170.071*
C30.3434 (5)1.0660 (2)0.8588 (2)0.0632 (8)
H30.34831.12800.88210.076*
C40.5269 (5)0.9980 (2)0.8481 (2)0.0616 (8)
H40.65691.01370.86410.074*
C50.5181 (4)0.9065 (2)0.8138 (2)0.0500 (7)
H50.64350.86120.80650.060*
C60.3275 (4)0.87991 (19)0.78990 (18)0.0401 (6)
C70.3258 (4)0.77723 (18)0.75853 (18)0.0384 (6)
C80.1961 (4)0.77693 (19)0.67287 (18)0.0382 (6)
C90.2085 (4)0.67797 (19)0.64472 (19)0.0408 (6)
C100.3516 (4)0.5816 (2)0.7011 (2)0.0448 (7)
H100.36010.51620.68170.054*
C110.4824 (4)0.57853 (19)0.78513 (19)0.0422 (6)
C120.4641 (4)0.6772 (2)0.81216 (19)0.0442 (6)
H120.54910.67630.86930.053*
C130.0786 (4)0.67611 (19)0.5518 (2)0.0415 (6)
C140.1360 (4)0.7119 (2)0.5430 (2)0.0552 (8)
H140.20560.73810.59660.066*
C150.2493 (5)0.7095 (2)0.4553 (3)0.0704 (10)
H150.39420.73520.44980.085*
C160.1511 (6)0.6698 (2)0.3769 (3)0.0705 (10)
H160.22850.66880.31790.085*
C170.0605 (6)0.6317 (2)0.3851 (2)0.0648 (9)
H170.12760.60350.33210.078*
C180.1756 (5)0.6345 (2)0.4715 (2)0.0539 (7)
H180.32030.60830.47640.065*
C190.6392 (4)0.4760 (2)0.84286 (19)0.0424 (6)
C200.5946 (4)0.3643 (2)0.8704 (2)0.0502 (7)
H200.46250.35270.85260.060*
C210.7426 (5)0.2696 (2)0.9238 (2)0.0565 (8)
H210.70980.19490.94160.068*
C220.9375 (5)0.2857 (2)0.9504 (2)0.0613 (8)
H221.03690.22190.98690.074*
C230.9862 (5)0.3965 (3)0.9231 (2)0.0620 (8)
H231.11860.40760.94100.074*
C240.8376 (4)0.4909 (2)0.8691 (2)0.0543 (7)
H240.87160.56540.85020.065*
C250.0839 (4)0.94943 (18)0.52404 (19)0.0386 (6)
C260.2771 (5)0.9412 (2)0.4569 (2)0.0703 (9)
H26A0.38710.88730.50420.105*
H26B0.32281.01610.42440.105*
H26C0.24670.91480.39840.105*
N10.0470 (3)0.87680 (15)0.61974 (15)0.0412 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0513 (18)0.0484 (15)0.0515 (16)0.0026 (14)0.0047 (13)0.0245 (13)
C20.062 (2)0.0522 (17)0.072 (2)0.0061 (15)0.0097 (16)0.0359 (15)
C30.076 (2)0.0555 (18)0.071 (2)0.0078 (17)0.0073 (18)0.0380 (15)
C40.059 (2)0.0664 (19)0.073 (2)0.0183 (16)0.0041 (16)0.0367 (16)
C50.0514 (18)0.0520 (16)0.0505 (16)0.0042 (13)0.0021 (13)0.0238 (13)
C60.0505 (17)0.0379 (13)0.0292 (13)0.0020 (12)0.0051 (12)0.0096 (10)
C70.0475 (16)0.0332 (13)0.0324 (13)0.0002 (11)0.0063 (12)0.0104 (10)
C80.0453 (15)0.0364 (13)0.0309 (13)0.0007 (11)0.0049 (11)0.0112 (10)
C90.0497 (16)0.0380 (13)0.0349 (13)0.0042 (12)0.0040 (12)0.0136 (11)
C100.0569 (17)0.0335 (13)0.0420 (15)0.0005 (12)0.0070 (13)0.0132 (11)
C110.0501 (16)0.0370 (14)0.0356 (14)0.0035 (12)0.0063 (12)0.0114 (11)
C120.0525 (16)0.0440 (14)0.0346 (14)0.0010 (12)0.0111 (12)0.0141 (11)
C130.0530 (17)0.0331 (13)0.0382 (14)0.0057 (12)0.0090 (13)0.0114 (11)
C140.0527 (18)0.0529 (17)0.0656 (19)0.0036 (14)0.0094 (15)0.0284 (14)
C150.061 (2)0.0627 (19)0.094 (3)0.0026 (16)0.0332 (19)0.0357 (18)
C160.095 (3)0.0565 (18)0.064 (2)0.0099 (19)0.036 (2)0.0221 (16)
C170.091 (3)0.066 (2)0.0473 (18)0.0151 (18)0.0050 (17)0.0297 (15)
C180.0596 (19)0.0569 (17)0.0500 (17)0.0068 (14)0.0041 (15)0.0249 (13)
C190.0501 (17)0.0432 (15)0.0331 (13)0.0049 (13)0.0060 (12)0.0164 (11)
C200.0566 (18)0.0431 (15)0.0452 (15)0.0042 (13)0.0052 (13)0.0127 (12)
C210.071 (2)0.0423 (15)0.0488 (17)0.0076 (14)0.0019 (15)0.0132 (13)
C220.066 (2)0.0560 (18)0.0494 (17)0.0208 (16)0.0120 (15)0.0141 (14)
C230.0544 (19)0.071 (2)0.0600 (18)0.0113 (16)0.0145 (15)0.0282 (15)
C240.0589 (19)0.0503 (16)0.0515 (17)0.0052 (14)0.0088 (14)0.0194 (13)
C250.0428 (16)0.0349 (13)0.0367 (14)0.0002 (11)0.0064 (12)0.0125 (11)
C260.060 (2)0.0629 (18)0.0619 (19)0.0136 (16)0.0013 (16)0.0005 (15)
N10.0475 (13)0.0365 (11)0.0378 (12)0.0040 (10)0.0101 (10)0.0136 (9)
Geometric parameters (Å, º) top
C1—C21.374 (4)C14—H140.9300
C1—C61.386 (3)C15—C161.361 (4)
C1—H10.9300C15—H150.9300
C2—C31.365 (4)C16—C171.360 (4)
C2—H20.9300C16—H160.9300
C3—C41.373 (4)C17—C181.375 (4)
C3—H30.9300C17—H170.9300
C4—C51.375 (4)C18—H180.9300
C4—H40.9300C19—C201.380 (4)
C5—C61.385 (4)C19—C241.383 (4)
C5—H50.9300C20—C211.381 (3)
C6—C71.479 (4)C20—H200.9300
C7—C121.388 (3)C21—C221.369 (4)
C7—C81.411 (3)C21—H210.9300
C8—C91.399 (4)C22—C231.379 (4)
C8—N11.422 (3)C22—H220.9300
C9—C101.384 (3)C23—C241.383 (3)
C9—C131.495 (4)C23—H230.9300
C10—C111.384 (3)C24—H240.9300
C10—H100.9300C25—N11.268 (3)
C11—C121.384 (3)C25—C261.479 (4)
C11—C191.482 (3)C25—C25i1.491 (4)
C12—H120.9300C26—H26A0.9600
C13—C141.373 (4)C26—H26B0.9600
C13—C181.391 (4)C26—H26C0.9600
C14—C151.379 (4)
C2—C1—C6121.2 (3)C15—C14—H14119.7
C2—C1—H1119.4C16—C15—C14120.6 (3)
C6—C1—H1119.4C16—C15—H15119.7
C3—C2—C1120.6 (3)C14—C15—H15119.7
C3—C2—H2119.7C15—C16—C17119.8 (3)
C1—C2—H2119.7C15—C16—H16120.1
C2—C3—C4119.5 (3)C17—C16—H16120.1
C2—C3—H3120.3C16—C17—C18120.2 (3)
C4—C3—H3120.3C16—C17—H17119.9
C3—C4—C5119.8 (3)C18—C17—H17119.9
C3—C4—H4120.1C17—C18—C13120.9 (3)
C5—C4—H4120.1C17—C18—H18119.5
C4—C5—C6121.8 (3)C13—C18—H18119.5
C4—C5—H5119.1C20—C19—C24118.2 (2)
C6—C5—H5119.1C20—C19—C11121.8 (3)
C1—C6—C5117.0 (2)C24—C19—C11119.9 (2)
C1—C6—C7123.3 (2)C19—C20—C21121.2 (3)
C5—C6—C7119.7 (2)C19—C20—H20119.4
C12—C7—C8117.7 (2)C21—C20—H20119.4
C12—C7—C6119.0 (2)C22—C21—C20119.9 (3)
C8—C7—C6123.2 (2)C22—C21—H21120.0
C9—C8—C7120.2 (2)C20—C21—H21120.0
C9—C8—N1121.0 (2)C21—C22—C23119.9 (3)
C7—C8—N1118.7 (2)C21—C22—H22120.0
C10—C9—C8118.9 (2)C23—C22—H22120.0
C10—C9—C13119.4 (2)C22—C23—C24119.8 (3)
C8—C9—C13121.5 (2)C22—C23—H23120.1
C9—C10—C11122.7 (2)C24—C23—H23120.1
C9—C10—H10118.7C23—C24—C19120.9 (3)
C11—C10—H10118.7C23—C24—H24119.5
C12—C11—C10117.0 (2)C19—C24—H24119.5
C12—C11—C19120.8 (2)N1—C25—C26125.5 (2)
C10—C11—C19122.2 (2)N1—C25—C25i116.6 (3)
C11—C12—C7123.5 (2)C26—C25—C25i118.0 (3)
C11—C12—H12118.2C25—C26—H26A109.5
C7—C12—H12118.2C25—C26—H26B109.5
C14—C13—C18117.8 (2)H26A—C26—H26B109.5
C14—C13—C9122.6 (3)C25—C26—H26C109.5
C18—C13—C9119.6 (3)H26A—C26—H26C109.5
C13—C14—C15120.7 (3)H26B—C26—H26C109.5
C13—C14—H14119.7C25—N1—C8121.1 (2)
C6—C1—C2—C30.1 (4)C10—C9—C13—C14133.0 (3)
C1—C2—C3—C40.3 (4)C8—C9—C13—C1450.0 (3)
C2—C3—C4—C50.1 (4)C10—C9—C13—C1845.6 (3)
C3—C4—C5—C60.4 (4)C8—C9—C13—C18131.3 (3)
C2—C1—C6—C50.6 (4)C18—C13—C14—C151.8 (4)
C2—C1—C6—C7177.1 (2)C9—C13—C14—C15179.6 (2)
C4—C5—C6—C10.7 (4)C13—C14—C15—C161.0 (4)
C4—C5—C6—C7177.1 (2)C14—C15—C16—C170.3 (5)
C1—C6—C7—C12139.5 (3)C15—C16—C17—C180.8 (4)
C5—C6—C7—C1238.1 (3)C16—C17—C18—C130.1 (4)
C1—C6—C7—C843.3 (4)C14—C13—C18—C171.2 (4)
C5—C6—C7—C8139.1 (3)C9—C13—C18—C17180.0 (2)
C12—C7—C8—C90.3 (4)C12—C11—C19—C20142.3 (3)
C6—C7—C8—C9177.6 (2)C10—C11—C19—C2039.0 (4)
C12—C7—C8—N1177.5 (2)C12—C11—C19—C2438.7 (3)
C6—C7—C8—N15.2 (4)C10—C11—C19—C24140.0 (3)
C7—C8—C9—C100.9 (4)C24—C19—C20—C210.7 (4)
N1—C8—C9—C10178.0 (2)C11—C19—C20—C21179.8 (2)
C7—C8—C9—C13177.9 (2)C19—C20—C21—C220.1 (4)
N1—C8—C9—C135.0 (4)C20—C21—C22—C230.5 (4)
C8—C9—C10—C110.5 (4)C21—C22—C23—C240.1 (4)
C13—C9—C10—C11177.6 (2)C22—C23—C24—C190.7 (4)
C9—C10—C11—C120.5 (4)C20—C19—C24—C231.1 (4)
C9—C10—C11—C19178.3 (2)C11—C19—C24—C23179.9 (2)
C10—C11—C12—C71.1 (4)C26—C25—N1—C80.2 (4)
C19—C11—C12—C7177.7 (2)C25i—C25—N1—C8179.7 (2)
C8—C7—C12—C110.7 (4)C9—C8—N1—C2581.2 (3)
C6—C7—C12—C11176.7 (2)C7—C8—N1—C25101.6 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C19–C24) phenyl ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1ii0.932.893.737 (5)152
Symmetry code: (ii) x+1, y+1, z+1.
 

Funding information

This work was supported by the National Natural Science Foundation of China (grant No. 21801002), the Natural Science Foundation of Anhui Province (grant No. 1808085MB47) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant No. SJCX18–0953).

References

First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. L. (2018). ACS Catal. 8, 5506–5514.  CrossRef CAS Google Scholar
First citationKillian, C. M., Tempel, D. J., Johnson, L. K. & Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664–11665.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, F. Z. & Chen, C. L. (2019). Polym. Chem. 10, 2354–2369.  CrossRef CAS Google Scholar
First citationWang, F. Z., Tanaka, R., Cai, Z. G., Nakayama, Y. & Shiono, T. (2016). Macromol. Rapid Commun. 37, 1375–1381.  CrossRef CAS PubMed Google Scholar
First citationWang, F. Z., Tanaka, R., Li, Q. S., Nakayama, Y. & Shiono, T. (2018). Organometallics, 37, 1358–1367.  CrossRef CAS Google Scholar
First citationWang, F. Z., Xu, G., Li, Q., Tanaka, R., Nakayama, Y. & Shiono, T. (2019). Polymer, 181, 121801.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds