organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

2,2,3,3,4,4,5,5-Octa­fluorohexa­ne-1,6-diol

CROSSMARK_Color_square_no_text.svg

aDepartment of Natural Sciences, Northeastern State University, 611 N. Grand Ave., Tahlequah, OK 74464, USA, and bDepartment of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
*Correspondence e-mail: burba@nsuok.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 25 February 2020; accepted 31 March 2020; online 7 April 2020)

In the crystal of the title compound, C6H6F8O4, O—H⋯O hydrogen bonds involving the hy­droxy groups connect the mol­ecules, forming a two-dimensional network parallel to (100). These hydrogen-bonding inter­actions appear to drive the O—C—C—O torsion angles into a gauchetranstrans series of conformations along the backbone of the mol­ecule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ionic liquids have attracted considerable inter­est as solvents for a variety of applications. `Solvate' ionic liquids (SILs) are a new class of ionic liquids that consist of equimolar mixtures of inorganic salts and mol­ecular solvents capable of chelating the cations of the salt (Ueno et al., 2012[Ueno, K., Yoshida, K., Tsuchiya, M., Tachikawa, N., Dokko, K. & Watanabe, M. (2012). J. Phys. Chem. B, 116, 11323-11331.], 2015[Ueno, K., Tatara, R., Tsuzuki, S., Saito, S., Doi, H., Yoshida, K., Mandai, T., Matsugami, M., Umebayashi, Y., Dokko, K. & Watanabe, M. (2015). Phys. Chem. Chem. Phys. 17, 8248-8257.]; Mandai et al., 2014[Mandai, T., Yoshida, K., Ueno, K., Dokko, K. & Watanabe, M. (2014). Phys. Chem. Chem. Phys. 16, 8761-8772.], 2015[Mandai, T., Yoshida, K., Tsuzuki, S., Nozawa, R., Masu, H., Ueno, K., Dokko, K. & Watanabe, M. (2015). J. Phys. Chem. B, 119, 1523-1534.]). Most research on SILs focus on methyl-capped ethyl­ene oxide mol­ecular solvents, which are collectively known as `glymes'. Structural variation of the chelating compound will undoubtedly influence cation–solvent inter­actions and provide alternative means for tuning SIL properties (Saito et al., 2016[Saito, S., Watanabe, H., Ueno, K., Mandai, T., Seki, S., Tsuzuki, S., Kameda, Y., Dokko, K., Watanabe, M. & Umebayashi, Y. (2016). J. Phys. Chem. B, 120, 3378-3387.]). Our lab has pursued this line of research by examining partially fluorinated mol­ecular solvents for SIL applications. During our experiments, we isolated and determined the structure of the title compound, a partially fluorinated derivative of tri­ethyl­ene glycol. The mol­ecular structure of the title compound is shown in Fig. 1[link]. In the crystal, O—H⋯O hydrogen bonds involving the terminal hydroxyl groups (see Table 1[link]) connect the mol­ecules, forming a two-dimensional network parallel to (100) (Fig. 2[link]). In addition, a weak inter­molecular C—H⋯F hydrogen bond is observed within this network. These hydrogen-bonding inter­actions appear to drive the O—C—C—O torsion angles into a gauchetranstrans series of conformations along the backbone of the mol­ecule: O1—C1—C2—O2 = 66.3 (2), O2—C3—C4—O2 = −168.91 (15), and O3—C5—C6—O4 = −177.92 (15)°. By way of comparison, the O—C—C—O torsion angles are gauche in monoglyme (Yoshihiro et al., 1996[Yoshihiro, Y., Hidehiro, U. & Yuji, O. (1996). Chem. Lett. 25, 443-444.]) and longer chain glymes (Johansson et al., 2010[Johansson, P., Grondin, J. & Lassègues, J. C. (2010). J. Phys. Chem. A, 114, 10700-10705.]; Hyun et al., 2001[Hyun, J.-K., Dong, H., Rhodes, C. P., Frech, R. & Wheeler, R. A. (2001). J. Phys. Chem. B, 105, 3329-3337.]; Tadokoro, 1964[Tadokoro, H., Chatani, Y., Yoshihara, T., Tahara, S. & Murahashi, S. (1964). Makromol. Chem. 73, 109-127.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4i 0.84 (4) 1.87 (4) 2.705 (2) 172 (3)
O4—H4O⋯O1ii 0.85 (4) 1.82 (4) 2.661 (2) 173 (3)
C6—H6B⋯F4iii 0.99 2.52 3.416 (2) 151
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are shown at 50% probability level.
[Figure 2]
Figure 2
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Synthesis and crystallization

2,2,3,3,4,4,5,5-Octa­fluoro-1,6-hexa­nediol (1.94 mmol) was added to a 1:1 molar ratio mixture of lithium bis­(tri­fluoro­methane­sulfon­yl)imide (2.3 mmol) and 2,2′-[ethane-1,2-diylbis(­oxy)]di(ethan-1-ol) (commonly known as tri­ethyl­ene glycol; 2.3 mmol). The resulting mixture was stirred at 353 K for 6 h to produce a homogenous, viscous solution. Colorless, plate-shaped single crystals formed from the solution upon standing over a period of days.

Refinement

Crystal data, data collection methods, and structural refinement details are provided in Table 2[link]. The absolute structure of the title compound could not be established in the refinement reported here.

Table 2
Experimental details

Crystal data
Chemical formula C6H6F8O4
Mr 294.11
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 5.3009 (8), 8.6250 (12), 10.6976 (14)
β (°) 91.146 (5)
V3) 489.00 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.49 × 0.49 × 0.05
 
Data collection
Diffractometer Bruker Photon II CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.543, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14748, 2985, 2896
Rint 0.049
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.00
No. of reflections 2985
No. of parameters 170
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.40
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker Nano Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diol top
Crystal data top
C6H6F8O4F(000) = 292
Mr = 294.11Dx = 1.997 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.3009 (8) ÅCell parameters from 9936 reflections
b = 8.6250 (12) Åθ = 3.0–30.5°
c = 10.6976 (14) ŵ = 0.25 mm1
β = 91.146 (5)°T = 100 K
V = 489.00 (12) Å3Plate, colourless
Z = 20.49 × 0.49 × 0.05 mm
Data collection top
Bruker Photon II CMOS
diffractometer
2896 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.049
ω and φ scansθmax = 30.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.543, Tmax = 0.746k = 1212
14748 measured reflectionsl = 1515
2985 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.075P)2 + 0.078P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2985 reflectionsΔρmax = 0.65 e Å3
170 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0.5 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.7033 (3)0.36867 (16)0.87486 (11)0.0193 (3)
F21.1035 (3)0.40107 (18)0.84955 (14)0.0238 (3)
F30.4638 (2)0.4558 (2)0.65888 (13)0.0241 (3)
F40.7907 (3)0.31004 (16)0.63351 (13)0.0232 (3)
F50.7219 (3)0.68928 (15)0.52189 (12)0.0214 (3)
F61.0050 (2)0.51638 (17)0.48334 (12)0.0192 (3)
F70.7953 (2)0.36716 (19)0.26323 (13)0.0225 (3)
F80.7493 (3)0.61560 (17)0.26968 (12)0.0204 (3)
O10.6422 (3)0.67095 (18)0.95429 (14)0.0166 (3)
H1O0.556 (6)0.614 (5)1.001 (3)0.020*
O20.8372 (3)0.54080 (17)0.73056 (13)0.0155 (3)
O30.5994 (3)0.46959 (19)0.42741 (13)0.0167 (3)
O40.4017 (3)0.46960 (18)0.10482 (13)0.0155 (3)
H4O0.395 (6)0.376 (5)0.081 (3)0.019*
C10.8841 (4)0.6040 (2)0.94631 (18)0.0155 (3)
H1A0.9359160.5608591.0286440.019*
H1B1.0079750.6844710.9232350.019*
C20.8810 (3)0.4762 (2)0.84895 (17)0.0144 (3)
C30.7124 (3)0.4577 (2)0.63955 (17)0.0137 (3)
C40.7627 (3)0.5366 (2)0.51257 (17)0.0130 (3)
C50.6362 (3)0.4807 (2)0.29963 (17)0.0133 (3)
C60.3799 (3)0.4651 (2)0.23611 (17)0.0138 (3)
H6A0.3015640.3658060.2609330.017*
H6B0.2690870.5505090.2634250.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0299 (6)0.0142 (5)0.0140 (6)0.0041 (5)0.0021 (5)0.0020 (4)
F20.0236 (6)0.0300 (7)0.0180 (6)0.0135 (5)0.0003 (5)0.0004 (5)
F30.0166 (5)0.0397 (8)0.0161 (5)0.0061 (6)0.0016 (4)0.0022 (6)
F40.0426 (8)0.0115 (5)0.0154 (6)0.0009 (5)0.0001 (5)0.0005 (4)
F50.0357 (7)0.0126 (6)0.0158 (6)0.0026 (5)0.0025 (5)0.0015 (5)
F60.0138 (5)0.0295 (7)0.0145 (5)0.0016 (4)0.0008 (4)0.0025 (5)
F70.0183 (5)0.0271 (7)0.0221 (6)0.0067 (5)0.0018 (5)0.0056 (6)
F80.0256 (6)0.0218 (6)0.0139 (5)0.0114 (5)0.0010 (4)0.0020 (5)
O10.0205 (6)0.0135 (6)0.0157 (6)0.0030 (5)0.0022 (5)0.0021 (5)
O20.0229 (6)0.0139 (6)0.0095 (6)0.0027 (5)0.0031 (5)0.0014 (5)
O30.0181 (6)0.0235 (7)0.0085 (5)0.0073 (6)0.0021 (4)0.0004 (6)
O40.0224 (6)0.0143 (6)0.0097 (6)0.0018 (5)0.0029 (5)0.0011 (5)
C10.0178 (8)0.0169 (8)0.0116 (7)0.0003 (6)0.0025 (6)0.0014 (6)
C20.0180 (7)0.0147 (8)0.0105 (7)0.0019 (7)0.0017 (6)0.0021 (6)
C30.0169 (7)0.0132 (8)0.0111 (7)0.0024 (6)0.0010 (6)0.0011 (6)
C40.0149 (7)0.0134 (8)0.0108 (7)0.0009 (6)0.0008 (6)0.0005 (6)
C50.0149 (7)0.0151 (8)0.0101 (7)0.0025 (6)0.0004 (6)0.0007 (6)
C60.0136 (6)0.0163 (8)0.0116 (7)0.0007 (7)0.0015 (5)0.0010 (6)
Geometric parameters (Å, º) top
F1—C21.354 (2)O3—C41.372 (2)
F2—C21.345 (2)O3—C51.388 (2)
F3—C31.338 (2)O4—C61.412 (2)
F4—C31.342 (2)O4—H4O0.85 (4)
F5—C41.338 (2)C1—C21.517 (3)
F6—C41.339 (2)C1—H1A0.9900
F7—C51.354 (2)C1—H1B0.9900
F8—C51.351 (2)C3—C41.547 (3)
O1—C11.410 (2)C5—C61.513 (2)
O1—H1O0.84 (4)C6—H6A0.9900
O2—C31.368 (2)C6—H6B0.9900
O2—C21.399 (2)
C1—O1—H1O108 (2)F4—C3—C4108.44 (15)
C3—O2—C2120.31 (16)O2—C3—C4107.76 (16)
C4—O3—C5121.70 (15)F5—C4—F6107.64 (16)
C6—O4—H4O106 (2)F5—C4—O3111.28 (16)
O1—C1—C2109.99 (15)F6—C4—O3112.68 (16)
O1—C1—H1A109.7F5—C4—C3109.64 (16)
C2—C1—H1A109.7F6—C4—C3109.31 (15)
O1—C1—H1B109.7O3—C4—C3106.26 (15)
C2—C1—H1B109.7F8—C5—F7105.85 (15)
H1A—C1—H1B108.2F8—C5—O3111.40 (15)
F2—C2—F1106.43 (17)F7—C5—O3109.52 (16)
F2—C2—O2109.02 (16)F8—C5—C6111.64 (16)
F1—C2—O2110.76 (15)F7—C5—C6111.42 (16)
F2—C2—C1110.45 (15)O3—C5—C6107.05 (14)
F1—C2—C1110.80 (16)O4—C6—C5110.69 (14)
O2—C2—C1109.34 (16)O4—C6—H6A109.5
F3—C3—F4107.59 (17)C5—C6—H6A109.5
F3—C3—O2111.10 (16)O4—C6—H6B109.5
F4—C3—O2112.68 (16)C5—C6—H6B109.5
F3—C3—C4109.20 (15)H6A—C6—H6B108.1
C3—O2—C2—F289.9 (2)O2—C3—C4—F548.5 (2)
C3—O2—C2—F126.9 (2)F3—C3—C4—F6169.97 (16)
C3—O2—C2—C1149.29 (17)F4—C3—C4—F653.01 (19)
O1—C1—C2—F2173.74 (16)O2—C3—C4—F669.23 (19)
O1—C1—C2—F156.1 (2)F3—C3—C4—O348.1 (2)
O1—C1—C2—O266.3 (2)F4—C3—C4—O368.84 (19)
C2—O2—C3—F377.1 (2)O2—C3—C4—O3168.91 (15)
C2—O2—C3—F443.8 (2)C4—O3—C5—F831.6 (2)
C2—O2—C3—C4163.34 (16)C4—O3—C5—F785.1 (2)
C5—O3—C4—F578.4 (2)C4—O3—C5—C6153.95 (17)
C5—O3—C4—F642.6 (2)F8—C5—C6—O459.9 (2)
C5—O3—C4—C3162.26 (17)F7—C5—C6—O458.2 (2)
F3—C3—C4—F572.2 (2)O3—C5—C6—O4177.92 (15)
F4—C3—C4—F5170.79 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.84 (4)1.87 (4)2.705 (2)172 (3)
O4—H4O···O1ii0.85 (4)1.82 (4)2.661 (2)173 (3)
C6—H6B···F4iii0.992.523.416 (2)151
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors wish to thank the Department of Natural Science, Northeastern State University for financial support of this project.

Funding information

Funding for this research was provided by: American Chemical Society Petroleum Research Fund (grant No. 57803-UR10); National Science Foundation (grant No. CHE-1726630).

References

First citationBruker (2016). SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHyun, J.-K., Dong, H., Rhodes, C. P., Frech, R. & Wheeler, R. A. (2001). J. Phys. Chem. B, 105, 3329–3337.  CrossRef CAS Google Scholar
First citationJohansson, P., Grondin, J. & Lassègues, J. C. (2010). J. Phys. Chem. A, 114, 10700–10705.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandai, T., Yoshida, K., Tsuzuki, S., Nozawa, R., Masu, H., Ueno, K., Dokko, K. & Watanabe, M. (2015). J. Phys. Chem. B, 119, 1523–1534.  CSD CrossRef CAS PubMed Google Scholar
First citationMandai, T., Yoshida, K., Ueno, K., Dokko, K. & Watanabe, M. (2014). Phys. Chem. Chem. Phys. 16, 8761–8772.  CrossRef CAS PubMed Google Scholar
First citationSaito, S., Watanabe, H., Ueno, K., Mandai, T., Seki, S., Tsuzuki, S., Kameda, Y., Dokko, K., Watanabe, M. & Umebayashi, Y. (2016). J. Phys. Chem. B, 120, 3378–3387.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTadokoro, H., Chatani, Y., Yoshihara, T., Tahara, S. & Murahashi, S. (1964). Makromol. Chem. 73, 109–127.  CrossRef CAS Google Scholar
First citationUeno, K., Tatara, R., Tsuzuki, S., Saito, S., Doi, H., Yoshida, K., Mandai, T., Matsugami, M., Umebayashi, Y., Dokko, K. & Watanabe, M. (2015). Phys. Chem. Chem. Phys. 17, 8248–8257.  CrossRef CAS PubMed Google Scholar
First citationUeno, K., Yoshida, K., Tsuchiya, M., Tachikawa, N., Dokko, K. & Watanabe, M. (2012). J. Phys. Chem. B, 116, 11323–11331.  CrossRef CAS PubMed Google Scholar
First citationYoshihiro, Y., Hidehiro, U. & Yuji, O. (1996). Chem. Lett. 25, 443–444.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds