organic compounds
A correction has been published for this article. To view the correction, click here.
2,2,3,3,4,4,5,5-Octafluorohexane-1,6-diol
aDepartment of Natural Sciences, Northeastern State University, 611 N. Grand Ave., Tahlequah, OK 74464, USA, and bDepartment of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
*Correspondence e-mail: burba@nsuok.edu
In the crystal of the title compound, C6H6F8O4, O—H⋯O hydrogen bonds involving the hydroxy groups connect the molecules, forming a two-dimensional network parallel to (100). These hydrogen-bonding interactions appear to drive the O—C—C—O torsion angles into a gauche–trans–trans series of conformations along the backbone of the molecule.
Keywords: crystal structure; fluorinated glycol; hydrogen bonding.
CCDC reference: 1993931
Structure description
Ionic liquids have attracted considerable interest as solvents for a variety of applications. `Solvate' ionic liquids (SILs) are a new class of ionic liquids that consist of equimolar mixtures of inorganic salts and molecular solvents capable of chelating the cations of the salt (Ueno et al., 2012, 2015; Mandai et al., 2014, 2015). Most research on SILs focus on methyl-capped ethylene oxide molecular solvents, which are collectively known as `glymes'. Structural variation of the chelating compound will undoubtedly influence cation–solvent interactions and provide alternative means for tuning SIL properties (Saito et al., 2016). Our lab has pursued this line of research by examining partially fluorinated molecular solvents for SIL applications. During our experiments, we isolated and determined the structure of the title compound, a partially fluorinated derivative of triethylene glycol. The molecular structure of the title compound is shown in Fig. 1. In the crystal, O—H⋯O hydrogen bonds involving the terminal hydroxyl groups (see Table 1) connect the molecules, forming a two-dimensional network parallel to (100) (Fig. 2). In addition, a weak intermolecular C—H⋯F hydrogen bond is observed within this network. These hydrogen-bonding interactions appear to drive the O—C—C—O torsion angles into a gauche–trans–trans series of conformations along the backbone of the molecule: O1—C1—C2—O2 = 66.3 (2), O2—C3—C4—O2 = −168.91 (15), and O3—C5—C6—O4 = −177.92 (15)°. By way of comparison, the O—C—C—O torsion angles are gauche in monoglyme (Yoshihiro et al., 1996) and longer chain glymes (Johansson et al., 2010; Hyun et al., 2001; Tadokoro, 1964).
Synthesis and crystallization
2,2,3,3,4,4,5,5-Octafluoro-1,6-hexanediol (1.94 mmol) was added to a 1:1 molar ratio mixture of lithium bis(trifluoromethanesulfonyl)imide (2.3 mmol) and 2,2′-[ethane-1,2-diylbis(oxy)]di(ethan-1-ol) (commonly known as triethylene glycol; 2.3 mmol). The resulting mixture was stirred at 353 K for 6 h to produce a homogenous, viscous solution. Colorless, plate-shaped single crystals formed from the solution upon standing over a period of days.
Refinement
Crystal data, data collection methods, and structural . The of the title compound could not be established in the reported here.
details are provided in Table 2Structural data
CCDC reference: 1993931
https://doi.org/10.1107/S2414314620004459/lh4054sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620004459/lh4054Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620004459/lh4054Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).C6H6F8O4 | F(000) = 292 |
Mr = 294.11 | Dx = 1.997 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.3009 (8) Å | Cell parameters from 9936 reflections |
b = 8.6250 (12) Å | θ = 3.0–30.5° |
c = 10.6976 (14) Å | µ = 0.25 mm−1 |
β = 91.146 (5)° | T = 100 K |
V = 489.00 (12) Å3 | Plate, colourless |
Z = 2 | 0.49 × 0.49 × 0.05 mm |
Bruker Photon II CMOS diffractometer | 2896 reflections with I > 2σ(I) |
Radiation source: microfocus sealed tube | Rint = 0.049 |
ω and φ scans | θmax = 30.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −7→7 |
Tmin = 0.543, Tmax = 0.746 | k = −12→12 |
14748 measured reflections | l = −15→15 |
2985 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.075P)2 + 0.078P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2985 reflections | Δρmax = 0.65 e Å−3 |
170 parameters | Δρmin = −0.40 e Å−3 |
1 restraint | Absolute structure: Refined as an inversion twin |
Primary atom site location: dual | Absolute structure parameter: 0.5 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.7033 (3) | 0.36867 (16) | 0.87486 (11) | 0.0193 (3) | |
F2 | 1.1035 (3) | 0.40107 (18) | 0.84955 (14) | 0.0238 (3) | |
F3 | 0.4638 (2) | 0.4558 (2) | 0.65888 (13) | 0.0241 (3) | |
F4 | 0.7907 (3) | 0.31004 (16) | 0.63351 (13) | 0.0232 (3) | |
F5 | 0.7219 (3) | 0.68928 (15) | 0.52189 (12) | 0.0214 (3) | |
F6 | 1.0050 (2) | 0.51638 (17) | 0.48334 (12) | 0.0192 (3) | |
F7 | 0.7953 (2) | 0.36716 (19) | 0.26323 (13) | 0.0225 (3) | |
F8 | 0.7493 (3) | 0.61560 (17) | 0.26968 (12) | 0.0204 (3) | |
O1 | 0.6422 (3) | 0.67095 (18) | 0.95429 (14) | 0.0166 (3) | |
H1O | 0.556 (6) | 0.614 (5) | 1.001 (3) | 0.020* | |
O2 | 0.8372 (3) | 0.54080 (17) | 0.73056 (13) | 0.0155 (3) | |
O3 | 0.5994 (3) | 0.46959 (19) | 0.42741 (13) | 0.0167 (3) | |
O4 | 0.4017 (3) | 0.46960 (18) | 0.10482 (13) | 0.0155 (3) | |
H4O | 0.395 (6) | 0.376 (5) | 0.081 (3) | 0.019* | |
C1 | 0.8841 (4) | 0.6040 (2) | 0.94631 (18) | 0.0155 (3) | |
H1A | 0.935916 | 0.560859 | 1.028644 | 0.019* | |
H1B | 1.007975 | 0.684471 | 0.923235 | 0.019* | |
C2 | 0.8810 (3) | 0.4762 (2) | 0.84895 (17) | 0.0144 (3) | |
C3 | 0.7124 (3) | 0.4577 (2) | 0.63955 (17) | 0.0137 (3) | |
C4 | 0.7627 (3) | 0.5366 (2) | 0.51257 (17) | 0.0130 (3) | |
C5 | 0.6362 (3) | 0.4807 (2) | 0.29963 (17) | 0.0133 (3) | |
C6 | 0.3799 (3) | 0.4651 (2) | 0.23611 (17) | 0.0138 (3) | |
H6A | 0.301564 | 0.365806 | 0.260933 | 0.017* | |
H6B | 0.269087 | 0.550509 | 0.263425 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0299 (6) | 0.0142 (5) | 0.0140 (6) | −0.0041 (5) | 0.0021 (5) | 0.0020 (4) |
F2 | 0.0236 (6) | 0.0300 (7) | 0.0180 (6) | 0.0135 (5) | −0.0003 (5) | 0.0004 (5) |
F3 | 0.0166 (5) | 0.0397 (8) | 0.0161 (5) | −0.0061 (6) | 0.0016 (4) | 0.0022 (6) |
F4 | 0.0426 (8) | 0.0115 (5) | 0.0154 (6) | 0.0009 (5) | −0.0001 (5) | 0.0005 (4) |
F5 | 0.0357 (7) | 0.0126 (6) | 0.0158 (6) | 0.0026 (5) | −0.0025 (5) | 0.0015 (5) |
F6 | 0.0138 (5) | 0.0295 (7) | 0.0145 (5) | −0.0016 (4) | 0.0008 (4) | 0.0025 (5) |
F7 | 0.0183 (5) | 0.0271 (7) | 0.0221 (6) | 0.0067 (5) | −0.0018 (5) | −0.0056 (6) |
F8 | 0.0256 (6) | 0.0218 (6) | 0.0139 (5) | −0.0114 (5) | −0.0010 (4) | 0.0020 (5) |
O1 | 0.0205 (6) | 0.0135 (6) | 0.0157 (6) | 0.0030 (5) | 0.0022 (5) | 0.0021 (5) |
O2 | 0.0229 (6) | 0.0139 (6) | 0.0095 (6) | −0.0027 (5) | −0.0031 (5) | 0.0014 (5) |
O3 | 0.0181 (6) | 0.0235 (7) | 0.0085 (5) | −0.0073 (6) | −0.0021 (4) | 0.0004 (6) |
O4 | 0.0224 (6) | 0.0143 (6) | 0.0097 (6) | −0.0018 (5) | −0.0029 (5) | −0.0011 (5) |
C1 | 0.0178 (8) | 0.0169 (8) | 0.0116 (7) | 0.0003 (6) | −0.0025 (6) | −0.0014 (6) |
C2 | 0.0180 (7) | 0.0147 (8) | 0.0105 (7) | 0.0019 (7) | −0.0017 (6) | 0.0021 (6) |
C3 | 0.0169 (7) | 0.0132 (8) | 0.0111 (7) | −0.0024 (6) | −0.0010 (6) | 0.0011 (6) |
C4 | 0.0149 (7) | 0.0134 (8) | 0.0108 (7) | −0.0009 (6) | −0.0008 (6) | 0.0005 (6) |
C5 | 0.0149 (7) | 0.0151 (8) | 0.0101 (7) | −0.0025 (6) | 0.0004 (6) | −0.0007 (6) |
C6 | 0.0136 (6) | 0.0163 (8) | 0.0116 (7) | −0.0007 (7) | −0.0015 (5) | −0.0010 (6) |
F1—C2 | 1.354 (2) | O3—C4 | 1.372 (2) |
F2—C2 | 1.345 (2) | O3—C5 | 1.388 (2) |
F3—C3 | 1.338 (2) | O4—C6 | 1.412 (2) |
F4—C3 | 1.342 (2) | O4—H4O | 0.85 (4) |
F5—C4 | 1.338 (2) | C1—C2 | 1.517 (3) |
F6—C4 | 1.339 (2) | C1—H1A | 0.9900 |
F7—C5 | 1.354 (2) | C1—H1B | 0.9900 |
F8—C5 | 1.351 (2) | C3—C4 | 1.547 (3) |
O1—C1 | 1.410 (2) | C5—C6 | 1.513 (2) |
O1—H1O | 0.84 (4) | C6—H6A | 0.9900 |
O2—C3 | 1.368 (2) | C6—H6B | 0.9900 |
O2—C2 | 1.399 (2) | ||
C1—O1—H1O | 108 (2) | F4—C3—C4 | 108.44 (15) |
C3—O2—C2 | 120.31 (16) | O2—C3—C4 | 107.76 (16) |
C4—O3—C5 | 121.70 (15) | F5—C4—F6 | 107.64 (16) |
C6—O4—H4O | 106 (2) | F5—C4—O3 | 111.28 (16) |
O1—C1—C2 | 109.99 (15) | F6—C4—O3 | 112.68 (16) |
O1—C1—H1A | 109.7 | F5—C4—C3 | 109.64 (16) |
C2—C1—H1A | 109.7 | F6—C4—C3 | 109.31 (15) |
O1—C1—H1B | 109.7 | O3—C4—C3 | 106.26 (15) |
C2—C1—H1B | 109.7 | F8—C5—F7 | 105.85 (15) |
H1A—C1—H1B | 108.2 | F8—C5—O3 | 111.40 (15) |
F2—C2—F1 | 106.43 (17) | F7—C5—O3 | 109.52 (16) |
F2—C2—O2 | 109.02 (16) | F8—C5—C6 | 111.64 (16) |
F1—C2—O2 | 110.76 (15) | F7—C5—C6 | 111.42 (16) |
F2—C2—C1 | 110.45 (15) | O3—C5—C6 | 107.05 (14) |
F1—C2—C1 | 110.80 (16) | O4—C6—C5 | 110.69 (14) |
O2—C2—C1 | 109.34 (16) | O4—C6—H6A | 109.5 |
F3—C3—F4 | 107.59 (17) | C5—C6—H6A | 109.5 |
F3—C3—O2 | 111.10 (16) | O4—C6—H6B | 109.5 |
F4—C3—O2 | 112.68 (16) | C5—C6—H6B | 109.5 |
F3—C3—C4 | 109.20 (15) | H6A—C6—H6B | 108.1 |
C3—O2—C2—F2 | 89.9 (2) | O2—C3—C4—F5 | −48.5 (2) |
C3—O2—C2—F1 | −26.9 (2) | F3—C3—C4—F6 | −169.97 (16) |
C3—O2—C2—C1 | −149.29 (17) | F4—C3—C4—F6 | −53.01 (19) |
O1—C1—C2—F2 | −173.74 (16) | O2—C3—C4—F6 | 69.23 (19) |
O1—C1—C2—F1 | −56.1 (2) | F3—C3—C4—O3 | −48.1 (2) |
O1—C1—C2—O2 | 66.3 (2) | F4—C3—C4—O3 | 68.84 (19) |
C2—O2—C3—F3 | 77.1 (2) | O2—C3—C4—O3 | −168.91 (15) |
C2—O2—C3—F4 | −43.8 (2) | C4—O3—C5—F8 | −31.6 (2) |
C2—O2—C3—C4 | −163.34 (16) | C4—O3—C5—F7 | 85.1 (2) |
C5—O3—C4—F5 | 78.4 (2) | C4—O3—C5—C6 | −153.95 (17) |
C5—O3—C4—F6 | −42.6 (2) | F8—C5—C6—O4 | 59.9 (2) |
C5—O3—C4—C3 | −162.26 (17) | F7—C5—C6—O4 | −58.2 (2) |
F3—C3—C4—F5 | 72.2 (2) | O3—C5—C6—O4 | −177.92 (15) |
F4—C3—C4—F5 | −170.79 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O4i | 0.84 (4) | 1.87 (4) | 2.705 (2) | 172 (3) |
O4—H4O···O1ii | 0.85 (4) | 1.82 (4) | 2.661 (2) | 173 (3) |
C6—H6B···F4iii | 0.99 | 2.52 | 3.416 (2) | 151 |
Symmetry codes: (i) x, y, z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x+1, y+1/2, −z+1. |
Acknowledgements
The authors wish to thank the Department of Natural Science, Northeastern State University for financial support of this project.
Funding information
Funding for this research was provided by: American Chemical Society Petroleum Research Fund (grant No. 57803-UR10); National Science Foundation (grant No. CHE-1726630).
References
Bruker (2016). SAINT. Bruker Nano Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker Nano Inc., Madison, Wisconsin, USA. Google Scholar
Hyun, J.-K., Dong, H., Rhodes, C. P., Frech, R. & Wheeler, R. A. (2001). J. Phys. Chem. B, 105, 3329–3337. CrossRef CAS Google Scholar
Johansson, P., Grondin, J. & Lassègues, J. C. (2010). J. Phys. Chem. A, 114, 10700–10705. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mandai, T., Yoshida, K., Tsuzuki, S., Nozawa, R., Masu, H., Ueno, K., Dokko, K. & Watanabe, M. (2015). J. Phys. Chem. B, 119, 1523–1534. CSD CrossRef CAS PubMed Google Scholar
Mandai, T., Yoshida, K., Ueno, K., Dokko, K. & Watanabe, M. (2014). Phys. Chem. Chem. Phys. 16, 8761–8772. CrossRef CAS PubMed Google Scholar
Saito, S., Watanabe, H., Ueno, K., Mandai, T., Seki, S., Tsuzuki, S., Kameda, Y., Dokko, K., Watanabe, M. & Umebayashi, Y. (2016). J. Phys. Chem. B, 120, 3378–3387. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tadokoro, H., Chatani, Y., Yoshihara, T., Tahara, S. & Murahashi, S. (1964). Makromol. Chem. 73, 109–127. CrossRef CAS Google Scholar
Ueno, K., Tatara, R., Tsuzuki, S., Saito, S., Doi, H., Yoshida, K., Mandai, T., Matsugami, M., Umebayashi, Y., Dokko, K. & Watanabe, M. (2015). Phys. Chem. Chem. Phys. 17, 8248–8257. CrossRef CAS PubMed Google Scholar
Ueno, K., Yoshida, K., Tsuchiya, M., Tachikawa, N., Dokko, K. & Watanabe, M. (2012). J. Phys. Chem. B, 116, 11323–11331. CrossRef CAS PubMed Google Scholar
Yoshihiro, Y., Hidehiro, U. & Yuji, O. (1996). Chem. Lett. 25, 443–444. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.