organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,6-Di­phenyl-3-(prop-2-en-1-yl)piperidin-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Periyar University, Salem 636 011, India, bDepartment of Chemistry, PGP College of Arts and Science, Namakkal 637 207, India, cDepartment of Chemistry, Anna Government Arts College, Vadachennimalai, Attur 636 121, India, and dPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: jagandharma77@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 March 2020; accepted 15 April 2020; online 21 April 2020)

In the title compound, C20H21NO, the dihedral angle between the phenyl ring is 47.5 (1)° and the piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions into dimers with the mol­ecules related by twofold symmetry.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperidine derivatives can act as enzyme stabilizers to improve therapeutic enzyme activity in Fabry patient cell lines (Li et al., 2018[Li, H. Y., Lee, J. D., Chen, C. W., Sun, Y. C. & Cheng, W. C. (2018). Eur. J. Med. Chem. 144, 626-634.]). Some of these derivatives possess anti­oxidant (Kim et al., 2016[Kim, J. H., Shyam, P. K., Kim, M. J., Lee, H. J., Lee, J. T. & Jang, H. Y. (2016). Bioorg. Med. Chem. Lett. 26, 3119-3121.]) and analgesic activities (Jahan et al., 2016[Jahan, S., Akhtar, S., Kamil, A., Mushtaq, N., Saify, Z. S. & Arif, M. (2016). Pak. J. Pharm. Sci. 29, 77-82.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The piperidine ring adopts a chair conformation and each substituent adopts an equatorial disposition. The dihedral angles between the piperidine ring (all atoms) and the C6–C11 and C15–C20 benzene rings are 70.31 (11) and 79.00 (11)°, respectively. The dihedral angle between the C6–C11 and C15–C20 benzene rings is 47.51 (12)°. In the crystal, a C2—H2⋯Cgi [Cg = is the centroid of the C6–C11 ring; symmetry code: (i) 1 − x, y, [{1\over 2}] − z) inter­action occurs with H2ACg = 2.73 Å and C2—H2ACg = 148°. This leads to dimers with the mol­ecules related by twofold rotation symmetry (Fig. 2[link]). The N1—H1N grouping points towards the opposite face of the C6–C11 ring but the H1NCg separation of 3.15 Å is probably too long to be regarded as a bond.

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b-axis direction. The C—H⋯π inter­actions are shown as dashed lines. For clarity H atoms not involved in these hydrogen bonds have been omitted.

Synthesis and crystallization

A mixture of hexene-2-one (0.05 mol), benzaldehyde (0.1 mol), ammonium acetate (0.05 mol) and ethanol (40 ml) was heated gently and poured into ether (50 ml) and treated with concentrated hydro­chloric acid (25 ml). The precipitated hydro­chloride was washed with an ethanol–ether mixture. The base was liberated by adding strong ammonia until the hydro­chloride dissolved. Dilution with water afforded the free base. The pure compound was was further recrystallized with benzene–petroleum ether to yield the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C20H21NO
Mr 291.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 16.7588 (4), 23.4597 (5), 8.7769 (2)
β (°) 98.771 (1)
V3) 3410.34 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.24 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker SMART APEX CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 28337, 5208, 2586
Rint 0.071
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.201, 1.03
No. of reflections 5208
No. of parameters 203
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

2,6-Diphenyl-3-(prop-2-en-1-yl)piperidin-4-one top
Crystal data top
C20H21NOF(000) = 1248
Mr = 291.38Dx = 1.135 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.7588 (4) ÅCell parameters from 12118 reflections
b = 23.4597 (5) Åθ = 2.6–25.8°
c = 8.7769 (2) ŵ = 0.07 mm1
β = 98.771 (1)°T = 296 K
V = 3410.34 (13) Å3Block, colourless
Z = 80.24 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
Rint = 0.071
Radiation source: fine-focus sealed tubeθmax = 30.5°, θmin = 2.5°
ω and φ scansh = 2323
28337 measured reflectionsk = 2433
5208 independent reflectionsl = 1212
2586 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.0736P)2 + 2.1792P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5208 reflectionsΔρmax = 0.22 e Å3
203 parametersΔρmin = 0.19 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were placed in idealized locations and refined as riding atoms. The N-bound H atom was located in a difference map and refined with a restraint.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1N0.1365 (10)0.3964 (7)0.4008 (13)0.034 (5)*
O10.20727 (10)0.25243 (7)0.7596 (2)0.0756 (5)
N10.14621 (9)0.38387 (7)0.4932 (2)0.0440 (4)
C10.08589 (11)0.34078 (9)0.5144 (2)0.0454 (5)
H10.0911630.3087200.4450770.054*
C20.10339 (12)0.31960 (10)0.6811 (3)0.0537 (5)
H2A0.0931530.3499810.7505860.064*
H2B0.0677870.2880360.6949660.064*
C30.18939 (13)0.30065 (10)0.7189 (2)0.0520 (5)
C40.25116 (12)0.34443 (9)0.6888 (2)0.0475 (5)
H40.2445570.3781050.7518030.057*
C50.22884 (11)0.36147 (9)0.5167 (2)0.0437 (5)
H50.2303940.3272620.4531080.052*
C60.00096 (11)0.36388 (9)0.4799 (2)0.0457 (5)
C70.01719 (13)0.41865 (10)0.5187 (3)0.0700 (7)
H70.0239930.4430220.5613720.084*
C80.09651 (15)0.43787 (11)0.4947 (4)0.0828 (9)
H80.1082260.4749840.5212650.099*
C90.15798 (13)0.40190 (12)0.4315 (3)0.0697 (7)
H90.2109730.4149560.4133810.084*
C100.14082 (13)0.34762 (12)0.3960 (3)0.0604 (6)
H100.1823160.3230070.3561990.072*
C110.06178 (12)0.32856 (10)0.4187 (2)0.0516 (5)
H110.0506880.2913150.3922770.062*
C120.33802 (13)0.32300 (11)0.7319 (3)0.0639 (6)
H12A0.3426700.2860370.6844690.077*
H12B0.3740590.3490140.6898700.077*
C130.36444 (17)0.31778 (12)0.9013 (3)0.0778 (8)
H130.3305100.2984030.9580950.093*
C140.4310 (2)0.33817 (16)0.9754 (5)0.1174 (13)
H14A0.4665030.3578080.9225760.141*
H14B0.4433950.3331781.0815200.141*
C150.28595 (11)0.40515 (9)0.4675 (2)0.0456 (5)
C160.34151 (12)0.38922 (11)0.3724 (3)0.0612 (6)
H160.3428110.3518150.3378080.073*
C170.39434 (14)0.42874 (14)0.3297 (3)0.0784 (8)
H170.4315830.4176270.2670070.094*
C180.39317 (15)0.48407 (15)0.3776 (3)0.0789 (8)
H180.4296630.5103110.3486180.095*
C190.33762 (16)0.50067 (12)0.4689 (3)0.0748 (7)
H190.3355310.5384660.5000320.090*
C200.28487 (13)0.46112 (10)0.5145 (3)0.0609 (6)
H200.2480640.4724860.5777830.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0690 (11)0.0525 (11)0.1045 (14)0.0095 (8)0.0110 (9)0.0197 (10)
N10.0348 (8)0.0518 (11)0.0463 (10)0.0014 (7)0.0090 (7)0.0037 (8)
C10.0413 (10)0.0423 (12)0.0544 (12)0.0013 (8)0.0133 (9)0.0044 (9)
C20.0476 (12)0.0546 (13)0.0624 (14)0.0022 (10)0.0193 (10)0.0084 (11)
C30.0529 (12)0.0532 (14)0.0512 (12)0.0091 (10)0.0125 (9)0.0024 (10)
C40.0439 (11)0.0518 (12)0.0478 (11)0.0071 (9)0.0098 (9)0.0018 (9)
C50.0374 (10)0.0478 (12)0.0479 (11)0.0005 (8)0.0128 (8)0.0060 (9)
C60.0385 (10)0.0456 (12)0.0544 (12)0.0045 (8)0.0119 (9)0.0031 (9)
C70.0404 (12)0.0480 (14)0.122 (2)0.0064 (10)0.0126 (12)0.0035 (14)
C80.0521 (14)0.0491 (15)0.148 (3)0.0066 (11)0.0168 (15)0.0025 (16)
C90.0395 (12)0.0760 (18)0.0925 (19)0.0035 (11)0.0060 (12)0.0143 (14)
C100.0430 (12)0.0775 (18)0.0586 (14)0.0155 (11)0.0011 (10)0.0021 (12)
C110.0498 (12)0.0539 (13)0.0513 (12)0.0096 (10)0.0079 (9)0.0038 (10)
C120.0488 (13)0.0726 (16)0.0698 (16)0.0117 (11)0.0069 (11)0.0055 (12)
C130.0720 (17)0.0709 (18)0.0851 (19)0.0158 (14)0.0048 (14)0.0004 (14)
C140.105 (3)0.120 (3)0.113 (3)0.007 (2)0.029 (2)0.028 (2)
C150.0353 (10)0.0602 (14)0.0413 (10)0.0017 (9)0.0059 (8)0.0004 (9)
C160.0417 (12)0.0793 (17)0.0663 (14)0.0030 (11)0.0197 (10)0.0045 (12)
C170.0470 (13)0.108 (2)0.0869 (19)0.0006 (14)0.0309 (13)0.0039 (17)
C180.0528 (14)0.103 (2)0.0825 (18)0.0246 (15)0.0156 (13)0.0143 (17)
C190.0742 (17)0.0693 (18)0.0820 (18)0.0205 (13)0.0160 (14)0.0002 (14)
C200.0563 (13)0.0646 (16)0.0657 (15)0.0075 (11)0.0221 (11)0.0078 (12)
Geometric parameters (Å, º) top
O1—C31.210 (3)C9—H90.9300
N1—C11.461 (2)C10—C111.383 (3)
N1—C51.466 (2)C10—H100.9300
N1—H1N0.854 (9)C11—H110.9300
C1—C61.510 (3)C12—C131.491 (4)
C1—C21.531 (3)C12—H12A0.9700
C1—H10.9800C12—H12B0.9700
C2—C31.496 (3)C13—C141.295 (4)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—H14A0.9300
C3—C41.510 (3)C14—H14B0.9300
C4—C121.532 (3)C15—C201.377 (3)
C4—C51.552 (3)C15—C161.393 (3)
C4—H40.9800C16—C171.373 (4)
C5—C151.509 (3)C16—H160.9300
C5—H50.9800C17—C181.365 (4)
C6—C71.375 (3)C17—H170.9300
C6—C111.381 (3)C18—C191.374 (4)
C7—C81.389 (3)C18—H180.9300
C7—H70.9300C19—C201.382 (3)
C8—C91.381 (4)C19—H190.9300
C8—H80.9300C20—H200.9300
C9—C101.352 (3)
C1—N1—C5113.02 (16)C10—C9—C8119.8 (2)
C1—N1—H1N108.8 (12)C10—C9—H9120.1
C5—N1—H1N107.2 (12)C8—C9—H9120.1
N1—C1—C6112.05 (16)C9—C10—C11120.2 (2)
N1—C1—C2108.11 (16)C9—C10—H10119.9
C6—C1—C2110.23 (16)C11—C10—H10119.9
N1—C1—H1108.8C6—C11—C10121.2 (2)
C6—C1—H1108.8C6—C11—H11119.4
C2—C1—H1108.8C10—C11—H11119.4
C3—C2—C1110.24 (16)C13—C12—C4113.5 (2)
C3—C2—H2A109.6C13—C12—H12A108.9
C1—C2—H2A109.6C4—C12—H12A108.9
C3—C2—H2B109.6C13—C12—H12B108.9
C1—C2—H2B109.6C4—C12—H12B108.9
H2A—C2—H2B108.1H12A—C12—H12B107.7
O1—C3—C2122.0 (2)C14—C13—C12125.0 (3)
O1—C3—C4122.82 (19)C14—C13—H13117.5
C2—C3—C4114.97 (18)C12—C13—H13117.5
C3—C4—C12112.63 (19)C13—C14—H14A120.0
C3—C4—C5105.99 (17)C13—C14—H14B120.0
C12—C4—C5113.78 (16)H14A—C14—H14B120.0
C3—C4—H4108.1C20—C15—C16118.4 (2)
C12—C4—H4108.1C20—C15—C5121.60 (18)
C5—C4—H4108.1C16—C15—C5120.0 (2)
N1—C5—C15110.06 (16)C17—C16—C15120.0 (2)
N1—C5—C4108.14 (14)C17—C16—H16120.0
C15—C5—C4112.57 (16)C15—C16—H16120.0
N1—C5—H5108.7C18—C17—C16121.2 (2)
C15—C5—H5108.7C18—C17—H17119.4
C4—C5—H5108.7C16—C17—H17119.4
C7—C6—C11118.21 (19)C17—C18—C19119.5 (2)
C7—C6—C1121.52 (18)C17—C18—H18120.3
C11—C6—C1120.08 (19)C19—C18—H18120.3
C6—C7—C8120.6 (2)C18—C19—C20119.9 (3)
C6—C7—H7119.7C18—C19—H19120.0
C8—C7—H7119.7C20—C19—H19120.0
C9—C8—C7120.0 (2)C15—C20—C19121.0 (2)
C9—C8—H8120.0C15—C20—H20119.5
C7—C8—H8120.0C19—C20—H20119.5
C5—N1—C1—C6176.38 (16)C6—C7—C8—C90.0 (5)
C5—N1—C1—C261.9 (2)C7—C8—C9—C101.3 (4)
N1—C1—C2—C353.1 (2)C8—C9—C10—C111.9 (4)
C6—C1—C2—C3175.88 (17)C7—C6—C11—C100.4 (3)
C1—C2—C3—O1120.6 (2)C1—C6—C11—C10175.5 (2)
C1—C2—C3—C454.2 (2)C9—C10—C11—C61.0 (3)
O1—C3—C4—C126.1 (3)C3—C4—C12—C1370.9 (3)
C2—C3—C4—C12179.14 (18)C5—C4—C12—C13168.4 (2)
O1—C3—C4—C5118.9 (2)C4—C12—C13—C14130.5 (3)
C2—C3—C4—C555.8 (2)N1—C5—C15—C2048.1 (2)
C1—N1—C5—C15170.62 (16)C4—C5—C15—C2072.7 (2)
C1—N1—C5—C466.1 (2)N1—C5—C15—C16131.9 (2)
C3—C4—C5—N158.6 (2)C4—C5—C15—C16107.4 (2)
C12—C4—C5—N1177.06 (18)C20—C15—C16—C171.1 (3)
C3—C4—C5—C15179.56 (16)C5—C15—C16—C17179.0 (2)
C12—C4—C5—C1555.3 (2)C15—C16—C17—C180.7 (4)
N1—C1—C6—C737.4 (3)C16—C17—C18—C190.6 (4)
C2—C1—C6—C783.0 (3)C17—C18—C19—C201.5 (4)
N1—C1—C6—C11147.64 (19)C16—C15—C20—C190.2 (3)
C2—C1—C6—C1191.9 (2)C5—C15—C20—C19179.8 (2)
C11—C6—C7—C80.9 (4)C18—C19—C20—C151.1 (4)
C1—C6—C7—C8175.9 (2)
 

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJahan, S., Akhtar, S., Kamil, A., Mushtaq, N., Saify, Z. S. & Arif, M. (2016). Pak. J. Pharm. Sci. 29, 77–82.  CAS PubMed Google Scholar
First citationKim, J. H., Shyam, P. K., Kim, M. J., Lee, H. J., Lee, J. T. & Jang, H. Y. (2016). Bioorg. Med. Chem. Lett. 26, 3119–3121.  CrossRef CAS PubMed Google Scholar
First citationLi, H. Y., Lee, J. D., Chen, C. W., Sun, Y. C. & Cheng, W. C. (2018). Eur. J. Med. Chem. 144, 626–634.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds