organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Methyl-4-{[4-(tri­methyl­sil­yl)-1H-1,2,3-triazol-1-yl]meth­yl}-2H-chromen-2-one

aDepartment of Studies in Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore-560 056, Karnataka, India, and bDepartment of Studies in Chemistry, Bengaluru Central University, Central College Campus, Bengaluru-560 001, Karnataka, India
*Correspondence e-mail: noorsb05@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 March 2020; accepted 28 March 2020; online 3 April 2020)

In the title compound, C16H19N3O2Si, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.031 Å) and the triazole ring is 73.81 (8)°. In the crystal, mol­ecules are linked into [010] chains by weak C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarins are a family of benzopyrones and are widely distributed in nature (Venugopala et al., 2013[Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Int., 1-14.]). They have been extensively studied as a result of their broad array of biological activities, low toxicity and low drug resistance properties (Lipeeva et al., 2019[Lipeeva, A. V., Zakharov, D. O., Burova, L. G., Frolova, T. S., Baev, D. S., Shirokikh, I. V., Evstropov, A. N., Sinitsyna, O. I., Tolsikova, T. G. & Shults, E. E. (2019). Molecules, 24, 21-26.]). As part of our work in this area, we now describe the synthesis and crystal structure of the title compound in which the coumarin ring system bears a tri­methyl­silyl triazole substituent.

The title compound crystallizes in the monoclinic crystal system in space group C2/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). The dihedral angle between the C1–C9/O1 chromen-2-one fused ring system (r.m.s. deviation = 0.031 Å) and the N1–N3/C11/C12 1,2,3-triazole ring is 73.81 (8)°. In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into [010] chains, with atom O2 accepting two such bonds from the adjacent mol­ecule (Fig. 2[link]) related by simple translation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.99 2.61 3.427 (1) 140
C11—H11⋯O2i 0.95 2.45 3.242 (1) 141
Symmetry code: (i) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. labels on the small side and displaced a long way from their respective atoms
[Figure 2]
Figure 2
Part of a [010] chain in the crystal of the title compound showing C—H⋯O inter­actions as dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

Synthesis and crystallization

Tri­methyl­silyl acetyl­ene (2.00 mmol) was added dropwise over a period of 30 min to an ice-cold suspension of bromo­methyl­coumarin (2.00 mmol), sodium azide (1.50 mmol) and copper iodide (1 µmol) in 10 ml (1:1 v/v) water/acetone. The resulting mixture was allowed to warm to room temperature and stirred for 8 h: progress of the reaction was monitored by TLC and GC through micro-workup of aliquots. After the completion of the reaction as indicated by the chromatograms, the excess acetone was removed under rotary evaporation and the crude product was purified by column chromatography, using silica gel (100–200 mesh) and 2:5 ethyl acetate–petroleum benzine (60–74°C fraction) eluent to obtain the title compound as a buff-coloured solid (91%); melting point: 110–112°C; (KBr disk, cm−1): 3126, 2920, 2850, 1705, 1573, 1492, 1382, 1247, 1193, 1116, 1056, 950, 825, 756, 630, 557, 509; 1H NMR (400 MHz, CDCl3): δ 0.34 (s, 9 H), 2.42 (s, 3 H), 5.74 (s, 2 H), 5.92 (s, 1H), 7.26–7.57 (m, 4 H, 3 H of coumarinyl aromatic protons and 1 H of triazoyl aromatic proton); 13C NMR (100 MHz, CDCl3): δ −1.0, 21.2, 49.5, 114.9, 116.9, 117.4, 123.4, 129.6, 133.8, 134.8, 148.2, 148.5, 151.9, 160.3; MS: calculated 313.12, found m/z (relative abundance) 313.22 (9.75%), 314.26 (M + 1 = 3.45%), 73.13 (100%); CHNS: Calculated C: 61.31%, H: 6.11%, N:13.41% Found C: 60.92%, H: 6.04%, N: 13.33%. Colourless blocks of the title compound were recrystallized from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H19N3O2Si
Mr 313.43
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 20.869 (2), 6.5971 (6), 24.561 (2)
β (°) 103.419 (4)
V3) 3289.1 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.14 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 21620, 3589, 2644
Rint 0.071
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.125, 0.99
No. of reflections 3589
No. of parameters 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.31
Computer programs: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

6-Methyl-4-{[4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl]methyl}-2H-chromen-2-one top
Crystal data top
C16H19N3O2SiF(000) = 1328
Mr = 313.43Dx = 1.266 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.869 (2) ÅCell parameters from 3589 reflections
b = 6.5971 (6) Åθ = 2.9–27.0°
c = 24.561 (2) ŵ = 0.15 mm1
β = 103.419 (4)°T = 100 K
V = 3289.1 (5) Å3Block, colorless
Z = 80.14 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3589 independent reflections
Radiation source: fine-focus sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2626
Tmin = 0.979, Tmax = 0.982k = 88
21620 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0517P)2 + 6.1123P]
where P = (Fo2 + 2Fc2)/3
3589 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.95 Å, 1.00 Å and 0.96 Å for aromatic, methyne and methyl H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.03716 (3)0.5449 (10)0.15123 (2)0.02394 (18)
O10.23596 (8)0.0948 (2)0.43023 (6)0.0249 (4)
O20.15849 (8)0.2426 (2)0.36664 (6)0.0326 (4)
N10.20048 (8)0.3969 (3)0.26552 (7)0.0191 (4)
N20.20697 (9)0.2741 (3)0.22317 (7)0.0254 (4)
N30.15636 (9)0.3094 (3)0.18156 (7)0.0250 (4)
C10.35583 (11)0.2153 (4)0.52305 (8)0.0252 (5)
H10.38070.21120.56070.030*
C20.31413 (11)0.0572 (3)0.50291 (9)0.0247 (5)
H20.31010.05470.52620.030*
C30.27813 (10)0.0645 (3)0.44800 (8)0.0202 (5)
C40.28295 (10)0.2265 (3)0.41304 (8)0.0187 (4)
C50.32612 (10)0.3849 (3)0.43475 (8)0.0210 (5)
H50.33040.49630.41140.025*
C60.36260 (10)0.3823 (3)0.48958 (9)0.0234 (5)
C70.19476 (11)0.0985 (3)0.37792 (9)0.0247 (5)
C80.19909 (11)0.0696 (3)0.34119 (8)0.0223 (5)
H80.17080.07140.30480.027*
C90.24152 (10)0.2231 (3)0.35664 (8)0.0195 (4)
C100.24919 (10)0.3949 (3)0.31845 (8)0.0207 (5)
H10A0.24640.52450.33810.025*
H10B0.29360.38700.31070.025*
C110.14617 (10)0.5105 (3)0.25053 (8)0.0190 (4)
H110.13090.60890.27280.023*
C120.11697 (10)0.4563 (3)0.19648 (8)0.0191 (4)
C130.03782 (12)0.5050 (5)0.07685 (9)0.0384 (7)
H13A0.07400.58280.06780.058*
H13B0.00420.55050.05310.058*
H13C0.04400.36060.07030.058*
C140.03101 (12)0.3935 (4)0.16733 (9)0.0368 (6)
H14A0.07330.45110.14760.055*
H14B0.02800.39630.20770.055*
H14C0.02780.25310.15520.055*
C150.02778 (15)0.8163 (4)0.16805 (14)0.0603 (10)
H15A0.06100.89680.15540.091*
H15B0.03370.83200.20860.091*
H15C0.01630.83200.14900.091*
C160.40799 (11)0.5535 (4)0.51336 (9)0.0297 (5)
H16A0.40630.65770.48460.045*
H16B0.45310.50210.52550.045*
H16C0.39420.61240.54540.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0243 (3)0.0291 (4)0.0149 (3)0.0056 (3)0.0026 (2)0.0034 (3)
O10.0367 (9)0.0208 (8)0.0168 (7)0.0033 (7)0.0049 (7)0.0003 (6)
O20.0487 (11)0.0256 (9)0.0241 (8)0.0140 (8)0.0100 (7)0.0068 (7)
N10.0222 (9)0.0219 (9)0.0119 (8)0.0000 (8)0.0012 (7)0.0007 (7)
N20.0279 (10)0.0316 (11)0.0148 (9)0.0071 (9)0.0012 (7)0.0039 (8)
N30.0261 (10)0.0320 (11)0.0147 (9)0.0060 (8)0.0001 (7)0.0019 (8)
C10.0281 (12)0.0331 (13)0.0122 (10)0.0068 (10)0.0006 (9)0.0015 (9)
C20.0313 (12)0.0252 (12)0.0178 (10)0.0067 (10)0.0059 (9)0.0058 (9)
C30.0250 (11)0.0187 (11)0.0169 (10)0.0023 (9)0.0051 (8)0.0010 (8)
C40.0217 (11)0.0215 (11)0.0125 (9)0.0030 (9)0.0030 (8)0.0011 (8)
C50.0225 (11)0.0233 (11)0.0169 (10)0.0010 (9)0.0041 (8)0.0024 (8)
C60.0215 (11)0.0299 (12)0.0184 (11)0.0022 (10)0.0038 (9)0.0022 (9)
C70.0346 (13)0.0217 (12)0.0191 (11)0.0010 (10)0.0087 (9)0.0034 (9)
C80.0264 (11)0.0246 (12)0.0142 (10)0.0007 (10)0.0013 (8)0.0017 (9)
C90.0225 (11)0.0211 (11)0.0146 (10)0.0035 (9)0.0035 (8)0.0004 (8)
C100.0224 (11)0.0235 (11)0.0129 (10)0.0006 (9)0.0024 (8)0.0011 (8)
C110.0218 (11)0.0206 (11)0.0148 (10)0.0009 (9)0.0047 (8)0.0004 (8)
C120.0206 (10)0.0228 (11)0.0134 (9)0.0013 (9)0.0029 (8)0.0003 (8)
C130.0306 (13)0.0660 (19)0.0164 (11)0.0041 (13)0.0008 (10)0.0070 (11)
C140.0266 (12)0.0652 (19)0.0174 (11)0.0048 (13)0.0028 (9)0.0006 (11)
C150.0529 (19)0.0388 (17)0.070 (2)0.0193 (15)0.0244 (16)0.0181 (15)
C160.0290 (12)0.0383 (14)0.0198 (11)0.0060 (11)0.0014 (9)0.0023 (10)
Geometric parameters (Å, º) top
Si1—C131.849 (2)C6—C161.502 (3)
Si1—C141.854 (3)C7—C81.446 (3)
Si1—C151.858 (3)C8—C91.341 (3)
Si1—C121.869 (2)C8—H80.9500
O1—C71.370 (3)C9—C101.503 (3)
O1—C31.375 (3)C10—H10A0.9900
O2—C71.207 (3)C10—H10B0.9900
N1—C111.337 (3)C11—C121.373 (3)
N1—N21.350 (2)C11—H110.9500
N1—C101.453 (2)C13—H13A0.9800
N2—N31.309 (2)C13—H13B0.9800
N3—C121.375 (3)C13—H13C0.9800
C1—C21.375 (3)C14—H14A0.9800
C1—C61.401 (3)C14—H14B0.9800
C1—H10.9500C14—H14C0.9800
C2—C31.384 (3)C15—H15A0.9800
C2—H20.9500C15—H15B0.9800
C3—C41.389 (3)C15—H15C0.9800
C4—C51.402 (3)C16—H16A0.9800
C4—C91.453 (3)C16—H16B0.9800
C5—C61.385 (3)C16—H16C0.9800
C5—H50.9500
C13—Si1—C14108.43 (11)C4—C9—C10117.21 (18)
C13—Si1—C15112.47 (15)N1—C10—C9114.30 (17)
C14—Si1—C15110.24 (15)N1—C10—H10A108.7
C13—Si1—C12109.47 (10)C9—C10—H10A108.7
C14—Si1—C12109.08 (10)N1—C10—H10B108.7
C15—Si1—C12107.11 (11)C9—C10—H10B108.7
C7—O1—C3121.84 (16)H10A—C10—H10B107.6
C11—N1—N2110.77 (16)N1—C11—C12106.13 (18)
C11—N1—C10128.60 (17)N1—C11—H11126.9
N2—N1—C10120.63 (17)C12—C11—H11126.9
N3—N2—N1106.71 (16)C11—C12—N3106.42 (17)
N2—N3—C12109.96 (16)C11—C12—Si1128.90 (16)
C2—C1—C6121.8 (2)N3—C12—Si1124.57 (14)
C2—C1—H1119.1Si1—C13—H13A109.5
C6—C1—H1119.1Si1—C13—H13B109.5
C1—C2—C3118.6 (2)H13A—C13—H13B109.5
C1—C2—H2120.7Si1—C13—H13C109.5
C3—C2—H2120.7H13A—C13—H13C109.5
O1—C3—C2116.45 (19)H13B—C13—H13C109.5
O1—C3—C4121.63 (18)Si1—C14—H14A109.5
C2—C3—C4121.9 (2)Si1—C14—H14B109.5
C3—C4—C5118.08 (18)H14A—C14—H14B109.5
C3—C4—C9117.72 (19)Si1—C14—H14C109.5
C5—C4—C9124.18 (19)H14A—C14—H14C109.5
C6—C5—C4121.4 (2)H14B—C14—H14C109.5
C6—C5—H5119.3Si1—C15—H15A109.5
C4—C5—H5119.3Si1—C15—H15B109.5
C5—C6—C1118.2 (2)H15A—C15—H15B109.5
C5—C6—C16121.6 (2)Si1—C15—H15C109.5
C1—C6—C16120.21 (19)H15A—C15—H15C109.5
O2—C7—O1116.9 (2)H15B—C15—H15C109.5
O2—C7—C8126.0 (2)C6—C16—H16A109.5
O1—C7—C8117.04 (19)C6—C16—H16B109.5
C9—C8—C7122.4 (2)H16A—C16—H16B109.5
C9—C8—H8118.8C6—C16—H16C109.5
C7—C8—H8118.8H16A—C16—H16C109.5
C8—C9—C4119.28 (19)H16B—C16—H16C109.5
C8—C9—C10123.50 (19)
C11—N1—N2—N30.5 (2)C7—C8—C9—C42.7 (3)
C10—N1—N2—N3179.99 (18)C7—C8—C9—C10177.1 (2)
N1—N2—N3—C120.4 (2)C3—C4—C9—C82.3 (3)
C6—C1—C2—C30.1 (3)C5—C4—C9—C8176.1 (2)
C7—O1—C3—C2175.88 (19)C3—C4—C9—C10177.55 (18)
C7—O1—C3—C42.5 (3)C5—C4—C9—C104.1 (3)
C1—C2—C3—O1178.51 (19)C11—N1—C10—C9100.6 (2)
C1—C2—C3—C40.1 (3)N2—N1—C10—C979.9 (2)
O1—C3—C4—C5178.70 (18)C8—C9—C10—N18.1 (3)
C2—C3—C4—C50.4 (3)C4—C9—C10—N1172.13 (18)
O1—C3—C4—C90.3 (3)N2—N1—C11—C120.3 (2)
C2—C3—C4—C9178.0 (2)C10—N1—C11—C12179.78 (19)
C3—C4—C5—C60.7 (3)N1—C11—C12—N30.0 (2)
C9—C4—C5—C6177.7 (2)N1—C11—C12—Si1176.29 (16)
C4—C5—C6—C10.6 (3)N2—N3—C12—C110.3 (2)
C4—C5—C6—C16178.9 (2)N2—N3—C12—Si1176.77 (16)
C2—C1—C6—C50.3 (3)C13—Si1—C12—C11157.8 (2)
C2—C1—C6—C16179.2 (2)C14—Si1—C12—C1183.7 (2)
C3—O1—C7—O2178.32 (19)C15—Si1—C12—C1135.6 (3)
C3—O1—C7—C82.1 (3)C13—Si1—C12—N326.5 (2)
O2—C7—C8—C9179.0 (2)C14—Si1—C12—N392.0 (2)
O1—C7—C8—C90.5 (3)C15—Si1—C12—N3148.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.992.613.427 (1)140
C11—H11···O2i0.952.453.242 (1)141
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLipeeva, A. V., Zakharov, D. O., Burova, L. G., Frolova, T. S., Baev, D. S., Shirokikh, I. V., Evstropov, A. N., Sinitsyna, O. I., Tolsikova, T. G. & Shults, E. E. (2019). Molecules, 24, 21–26.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Int., 1–14.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds