organic compounds
6-Methyl-4-{[4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl]methyl}-2H-chromen-2-one
aDepartment of Studies in Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore-560 056, Karnataka, India, and bDepartment of Studies in Chemistry, Bengaluru Central University, Central College Campus, Bengaluru-560 001, Karnataka, India
*Correspondence e-mail: noorsb05@gmail.com
In the title compound, C16H19N3O2Si, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.031 Å) and the triazole ring is 73.81 (8)°. In the crystal, molecules are linked into [010] chains by weak C—H⋯O interactions.
Keywords: crystal structure; coumarin; weak C—H⋯O interactions.
CCDC reference: 1993489
Structure description
et al., 2013). They have been extensively studied as a result of their broad array of biological activities, low toxicity and low drug resistance properties (Lipeeva et al., 2019). As part of our work in this area, we now describe the synthesis and of the title compound in which the coumarin ring system bears a trimethylsilyl triazole substituent.
are a family of benzopyrones and are widely distributed in nature (VenugopalaThe title compound crystallizes in the monoclinic C2/c with one molecule in the (Fig. 1). The dihedral angle between the C1–C9/O1 chromen-2-one fused ring system (r.m.s. deviation = 0.031 Å) and the N1–N3/C11/C12 1,2,3-triazole ring is 73.81 (8)°. In the crystal, weak C—H⋯O hydrogen bonds (Table 1) link the molecules into [010] chains, with atom O2 accepting two such bonds from the adjacent molecule (Fig. 2) related by simple translation.
inSynthesis and crystallization
Trimethylsilyl acetylene (2.00 mmol) was added dropwise over a period of 30 min to an ice-cold suspension of bromomethylcoumarin (2.00 mmol), sodium azide (1.50 mmol) and copper iodide (1 µmol) in 10 ml (1:1 v/v) water/acetone. The resulting mixture was allowed to warm to room temperature and stirred for 8 h: progress of the reaction was monitored by TLC and GC through micro-workup of aliquots. After the completion of the reaction as indicated by the chromatograms, the excess acetone was removed under rotary evaporation and the crude product was purified by using silica gel (100–200 mesh) and 2:5 ethyl acetate–petroleum benzine (60–74°C fraction) to obtain the title compound as a buff-coloured solid (91%); melting point: 110–112°C; (KBr disk, cm−1): 3126, 2920, 2850, 1705, 1573, 1492, 1382, 1247, 1193, 1116, 1056, 950, 825, 756, 630, 557, 509; 1H NMR (400 MHz, CDCl3): δ 0.34 (s, 9 H), 2.42 (s, 3 H), 5.74 (s, 2 H), 5.92 (s, 1H), 7.26–7.57 (m, 4 H, 3 H of coumarinyl aromatic protons and 1 H of triazoyl aromatic proton); 13C NMR (100 MHz, CDCl3): δ −1.0, 21.2, 49.5, 114.9, 116.9, 117.4, 123.4, 129.6, 133.8, 134.8, 148.2, 148.5, 151.9, 160.3; MS: calculated 313.12, found m/z (relative abundance) 313.22 (9.75%), 314.26 (M + 1 = 3.45%), 73.13 (100%); CHNS: Calculated C: 61.31%, H: 6.11%, N:13.41% Found C: 60.92%, H: 6.04%, N: 13.33%. Colourless blocks of the title compound were recrystallized from ethanol solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1993489
https://doi.org/10.1107/S2414314620004277/hb4344sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620004277/hb4344Isup2.hkl
Infrared spectrum. DOI: https://doi.org/10.1107/S2414314620004277/hb4344sup3.tif
1H NMR Spectrum. DOI: https://doi.org/10.1107/S2414314620004277/hb4344sup4.tif
13C NMR spectrum. DOI: https://doi.org/10.1107/S2414314620004277/hb4344sup5.tif
MS. DOI: https://doi.org/10.1107/S2414314620004277/hb4344sup6.tif
Supporting information file. DOI: https://doi.org/10.1107/S2414314620004277/hb4344Isup7.cml
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H19N3O2Si | F(000) = 1328 |
Mr = 313.43 | Dx = 1.266 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.869 (2) Å | Cell parameters from 3589 reflections |
b = 6.5971 (6) Å | θ = 2.9–27.0° |
c = 24.561 (2) Å | µ = 0.15 mm−1 |
β = 103.419 (4)° | T = 100 K |
V = 3289.1 (5) Å3 | Block, colorless |
Z = 8 | 0.14 × 0.14 × 0.12 mm |
Bruker SMART APEX CCD diffractometer | 3589 independent reflections |
Radiation source: fine-focus sealed tube | 2644 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
ω scans | θmax = 27.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −26→26 |
Tmin = 0.979, Tmax = 0.982 | k = −8→8 |
21620 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0517P)2 + 6.1123P] where P = (Fo2 + 2Fc2)/3 |
3589 reflections | (Δ/σ)max < 0.001 |
203 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.95 Å, 1.00 Å and 0.96 Å for aromatic, methyne and methyl H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.03716 (3) | 0.5449 (10) | 0.15123 (2) | 0.02394 (18) | |
O1 | 0.23596 (8) | −0.0948 (2) | 0.43023 (6) | 0.0249 (4) | |
O2 | 0.15849 (8) | −0.2426 (2) | 0.36664 (6) | 0.0326 (4) | |
N1 | 0.20048 (8) | 0.3969 (3) | 0.26552 (7) | 0.0191 (4) | |
N2 | 0.20697 (9) | 0.2741 (3) | 0.22317 (7) | 0.0254 (4) | |
N3 | 0.15636 (9) | 0.3094 (3) | 0.18156 (7) | 0.0250 (4) | |
C1 | 0.35583 (11) | 0.2153 (4) | 0.52305 (8) | 0.0252 (5) | |
H1 | 0.3807 | 0.2112 | 0.5607 | 0.030* | |
C2 | 0.31413 (11) | 0.0572 (3) | 0.50291 (9) | 0.0247 (5) | |
H2 | 0.3101 | −0.0547 | 0.5262 | 0.030* | |
C3 | 0.27813 (10) | 0.0645 (3) | 0.44800 (8) | 0.0202 (5) | |
C4 | 0.28295 (10) | 0.2265 (3) | 0.41304 (8) | 0.0187 (4) | |
C5 | 0.32612 (10) | 0.3849 (3) | 0.43475 (8) | 0.0210 (5) | |
H5 | 0.3304 | 0.4963 | 0.4114 | 0.025* | |
C6 | 0.36260 (10) | 0.3823 (3) | 0.48958 (9) | 0.0234 (5) | |
C7 | 0.19476 (11) | −0.0985 (3) | 0.37792 (9) | 0.0247 (5) | |
C8 | 0.19909 (11) | 0.0696 (3) | 0.34119 (8) | 0.0223 (5) | |
H8 | 0.1708 | 0.0714 | 0.3048 | 0.027* | |
C9 | 0.24152 (10) | 0.2231 (3) | 0.35664 (8) | 0.0195 (4) | |
C10 | 0.24919 (10) | 0.3949 (3) | 0.31845 (8) | 0.0207 (5) | |
H10A | 0.2464 | 0.5245 | 0.3381 | 0.025* | |
H10B | 0.2936 | 0.3870 | 0.3107 | 0.025* | |
C11 | 0.14617 (10) | 0.5105 (3) | 0.25053 (8) | 0.0190 (4) | |
H11 | 0.1309 | 0.6089 | 0.2728 | 0.023* | |
C12 | 0.11697 (10) | 0.4563 (3) | 0.19648 (8) | 0.0191 (4) | |
C13 | 0.03782 (12) | 0.5050 (5) | 0.07685 (9) | 0.0384 (7) | |
H13A | 0.0740 | 0.5828 | 0.0678 | 0.058* | |
H13B | −0.0042 | 0.5505 | 0.0531 | 0.058* | |
H13C | 0.0440 | 0.3606 | 0.0703 | 0.058* | |
C14 | −0.03101 (12) | 0.3935 (4) | 0.16733 (9) | 0.0368 (6) | |
H14A | −0.0733 | 0.4511 | 0.1476 | 0.055* | |
H14B | −0.0280 | 0.3963 | 0.2077 | 0.055* | |
H14C | −0.0278 | 0.2531 | 0.1552 | 0.055* | |
C15 | 0.02778 (15) | 0.8163 (4) | 0.16805 (14) | 0.0603 (10) | |
H15A | 0.0610 | 0.8968 | 0.1554 | 0.091* | |
H15B | 0.0337 | 0.8320 | 0.2086 | 0.091* | |
H15C | −0.0163 | 0.8320 | 0.1490 | 0.091* | |
C16 | 0.40799 (11) | 0.5535 (4) | 0.51336 (9) | 0.0297 (5) | |
H16A | 0.4063 | 0.6577 | 0.4846 | 0.045* | |
H16B | 0.4531 | 0.5021 | 0.5255 | 0.045* | |
H16C | 0.3942 | 0.6124 | 0.5454 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0243 (3) | 0.0291 (4) | 0.0149 (3) | 0.0056 (3) | −0.0026 (2) | −0.0034 (3) |
O1 | 0.0367 (9) | 0.0208 (8) | 0.0168 (7) | −0.0033 (7) | 0.0049 (7) | 0.0003 (6) |
O2 | 0.0487 (11) | 0.0256 (9) | 0.0241 (8) | −0.0140 (8) | 0.0100 (7) | −0.0068 (7) |
N1 | 0.0222 (9) | 0.0219 (9) | 0.0119 (8) | 0.0000 (8) | 0.0012 (7) | −0.0007 (7) |
N2 | 0.0279 (10) | 0.0316 (11) | 0.0148 (9) | 0.0071 (9) | 0.0012 (7) | −0.0039 (8) |
N3 | 0.0261 (10) | 0.0320 (11) | 0.0147 (9) | 0.0060 (8) | −0.0001 (7) | −0.0019 (8) |
C1 | 0.0281 (12) | 0.0331 (13) | 0.0122 (10) | 0.0068 (10) | 0.0006 (9) | 0.0015 (9) |
C2 | 0.0313 (12) | 0.0252 (12) | 0.0178 (10) | 0.0067 (10) | 0.0059 (9) | 0.0058 (9) |
C3 | 0.0250 (11) | 0.0187 (11) | 0.0169 (10) | 0.0023 (9) | 0.0051 (8) | −0.0010 (8) |
C4 | 0.0217 (11) | 0.0215 (11) | 0.0125 (9) | 0.0030 (9) | 0.0030 (8) | −0.0011 (8) |
C5 | 0.0225 (11) | 0.0233 (11) | 0.0169 (10) | 0.0010 (9) | 0.0041 (8) | 0.0024 (8) |
C6 | 0.0215 (11) | 0.0299 (12) | 0.0184 (11) | 0.0022 (10) | 0.0038 (9) | −0.0022 (9) |
C7 | 0.0346 (13) | 0.0217 (12) | 0.0191 (11) | −0.0010 (10) | 0.0087 (9) | −0.0034 (9) |
C8 | 0.0264 (11) | 0.0246 (12) | 0.0142 (10) | −0.0007 (10) | 0.0013 (8) | −0.0017 (9) |
C9 | 0.0225 (11) | 0.0211 (11) | 0.0146 (10) | 0.0035 (9) | 0.0035 (8) | −0.0004 (8) |
C10 | 0.0224 (11) | 0.0235 (11) | 0.0129 (10) | −0.0006 (9) | −0.0024 (8) | 0.0011 (8) |
C11 | 0.0218 (11) | 0.0206 (11) | 0.0148 (10) | 0.0009 (9) | 0.0047 (8) | −0.0004 (8) |
C12 | 0.0206 (10) | 0.0228 (11) | 0.0134 (9) | 0.0013 (9) | 0.0029 (8) | −0.0003 (8) |
C13 | 0.0306 (13) | 0.0660 (19) | 0.0164 (11) | −0.0041 (13) | 0.0008 (10) | 0.0070 (11) |
C14 | 0.0266 (12) | 0.0652 (19) | 0.0174 (11) | 0.0048 (13) | 0.0028 (9) | −0.0006 (11) |
C15 | 0.0529 (19) | 0.0388 (17) | 0.070 (2) | 0.0193 (15) | −0.0244 (16) | −0.0181 (15) |
C16 | 0.0290 (12) | 0.0383 (14) | 0.0198 (11) | −0.0060 (11) | 0.0014 (9) | −0.0023 (10) |
Si1—C13 | 1.849 (2) | C6—C16 | 1.502 (3) |
Si1—C14 | 1.854 (3) | C7—C8 | 1.446 (3) |
Si1—C15 | 1.858 (3) | C8—C9 | 1.341 (3) |
Si1—C12 | 1.869 (2) | C8—H8 | 0.9500 |
O1—C7 | 1.370 (3) | C9—C10 | 1.503 (3) |
O1—C3 | 1.375 (3) | C10—H10A | 0.9900 |
O2—C7 | 1.207 (3) | C10—H10B | 0.9900 |
N1—C11 | 1.337 (3) | C11—C12 | 1.373 (3) |
N1—N2 | 1.350 (2) | C11—H11 | 0.9500 |
N1—C10 | 1.453 (2) | C13—H13A | 0.9800 |
N2—N3 | 1.309 (2) | C13—H13B | 0.9800 |
N3—C12 | 1.375 (3) | C13—H13C | 0.9800 |
C1—C2 | 1.375 (3) | C14—H14A | 0.9800 |
C1—C6 | 1.401 (3) | C14—H14B | 0.9800 |
C1—H1 | 0.9500 | C14—H14C | 0.9800 |
C2—C3 | 1.384 (3) | C15—H15A | 0.9800 |
C2—H2 | 0.9500 | C15—H15B | 0.9800 |
C3—C4 | 1.389 (3) | C15—H15C | 0.9800 |
C4—C5 | 1.402 (3) | C16—H16A | 0.9800 |
C4—C9 | 1.453 (3) | C16—H16B | 0.9800 |
C5—C6 | 1.385 (3) | C16—H16C | 0.9800 |
C5—H5 | 0.9500 | ||
C13—Si1—C14 | 108.43 (11) | C4—C9—C10 | 117.21 (18) |
C13—Si1—C15 | 112.47 (15) | N1—C10—C9 | 114.30 (17) |
C14—Si1—C15 | 110.24 (15) | N1—C10—H10A | 108.7 |
C13—Si1—C12 | 109.47 (10) | C9—C10—H10A | 108.7 |
C14—Si1—C12 | 109.08 (10) | N1—C10—H10B | 108.7 |
C15—Si1—C12 | 107.11 (11) | C9—C10—H10B | 108.7 |
C7—O1—C3 | 121.84 (16) | H10A—C10—H10B | 107.6 |
C11—N1—N2 | 110.77 (16) | N1—C11—C12 | 106.13 (18) |
C11—N1—C10 | 128.60 (17) | N1—C11—H11 | 126.9 |
N2—N1—C10 | 120.63 (17) | C12—C11—H11 | 126.9 |
N3—N2—N1 | 106.71 (16) | C11—C12—N3 | 106.42 (17) |
N2—N3—C12 | 109.96 (16) | C11—C12—Si1 | 128.90 (16) |
C2—C1—C6 | 121.8 (2) | N3—C12—Si1 | 124.57 (14) |
C2—C1—H1 | 119.1 | Si1—C13—H13A | 109.5 |
C6—C1—H1 | 119.1 | Si1—C13—H13B | 109.5 |
C1—C2—C3 | 118.6 (2) | H13A—C13—H13B | 109.5 |
C1—C2—H2 | 120.7 | Si1—C13—H13C | 109.5 |
C3—C2—H2 | 120.7 | H13A—C13—H13C | 109.5 |
O1—C3—C2 | 116.45 (19) | H13B—C13—H13C | 109.5 |
O1—C3—C4 | 121.63 (18) | Si1—C14—H14A | 109.5 |
C2—C3—C4 | 121.9 (2) | Si1—C14—H14B | 109.5 |
C3—C4—C5 | 118.08 (18) | H14A—C14—H14B | 109.5 |
C3—C4—C9 | 117.72 (19) | Si1—C14—H14C | 109.5 |
C5—C4—C9 | 124.18 (19) | H14A—C14—H14C | 109.5 |
C6—C5—C4 | 121.4 (2) | H14B—C14—H14C | 109.5 |
C6—C5—H5 | 119.3 | Si1—C15—H15A | 109.5 |
C4—C5—H5 | 119.3 | Si1—C15—H15B | 109.5 |
C5—C6—C1 | 118.2 (2) | H15A—C15—H15B | 109.5 |
C5—C6—C16 | 121.6 (2) | Si1—C15—H15C | 109.5 |
C1—C6—C16 | 120.21 (19) | H15A—C15—H15C | 109.5 |
O2—C7—O1 | 116.9 (2) | H15B—C15—H15C | 109.5 |
O2—C7—C8 | 126.0 (2) | C6—C16—H16A | 109.5 |
O1—C7—C8 | 117.04 (19) | C6—C16—H16B | 109.5 |
C9—C8—C7 | 122.4 (2) | H16A—C16—H16B | 109.5 |
C9—C8—H8 | 118.8 | C6—C16—H16C | 109.5 |
C7—C8—H8 | 118.8 | H16A—C16—H16C | 109.5 |
C8—C9—C4 | 119.28 (19) | H16B—C16—H16C | 109.5 |
C8—C9—C10 | 123.50 (19) | ||
C11—N1—N2—N3 | −0.5 (2) | C7—C8—C9—C4 | −2.7 (3) |
C10—N1—N2—N3 | −179.99 (18) | C7—C8—C9—C10 | 177.1 (2) |
N1—N2—N3—C12 | 0.4 (2) | C3—C4—C9—C8 | 2.3 (3) |
C6—C1—C2—C3 | 0.1 (3) | C5—C4—C9—C8 | −176.1 (2) |
C7—O1—C3—C2 | 175.88 (19) | C3—C4—C9—C10 | −177.55 (18) |
C7—O1—C3—C4 | −2.5 (3) | C5—C4—C9—C10 | 4.1 (3) |
C1—C2—C3—O1 | −178.51 (19) | C11—N1—C10—C9 | 100.6 (2) |
C1—C2—C3—C4 | −0.1 (3) | N2—N1—C10—C9 | −79.9 (2) |
O1—C3—C4—C5 | 178.70 (18) | C8—C9—C10—N1 | 8.1 (3) |
C2—C3—C4—C5 | 0.4 (3) | C4—C9—C10—N1 | −172.13 (18) |
O1—C3—C4—C9 | 0.3 (3) | N2—N1—C11—C12 | 0.3 (2) |
C2—C3—C4—C9 | −178.0 (2) | C10—N1—C11—C12 | 179.78 (19) |
C3—C4—C5—C6 | −0.7 (3) | N1—C11—C12—N3 | 0.0 (2) |
C9—C4—C5—C6 | 177.7 (2) | N1—C11—C12—Si1 | 176.29 (16) |
C4—C5—C6—C1 | 0.6 (3) | N2—N3—C12—C11 | −0.3 (2) |
C4—C5—C6—C16 | −178.9 (2) | N2—N3—C12—Si1 | −176.77 (16) |
C2—C1—C6—C5 | −0.3 (3) | C13—Si1—C12—C11 | 157.8 (2) |
C2—C1—C6—C16 | 179.2 (2) | C14—Si1—C12—C11 | −83.7 (2) |
C3—O1—C7—O2 | −178.32 (19) | C15—Si1—C12—C11 | 35.6 (3) |
C3—O1—C7—C8 | 2.1 (3) | C13—Si1—C12—N3 | −26.5 (2) |
O2—C7—C8—C9 | −179.0 (2) | C14—Si1—C12—N3 | 92.0 (2) |
O1—C7—C8—C9 | 0.5 (3) | C15—Si1—C12—N3 | −148.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O2i | 0.99 | 2.61 | 3.427 (1) | 140 |
C11—H11···O2i | 0.95 | 2.45 | 3.242 (1) | 141 |
Symmetry code: (i) x, y+1, z. |
References
Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Lipeeva, A. V., Zakharov, D. O., Burova, L. G., Frolova, T. S., Baev, D. S., Shirokikh, I. V., Evstropov, A. N., Sinitsyna, O. I., Tolsikova, T. G. & Shults, E. E. (2019). Molecules, 24, 21–26. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Int., 1–14. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.