metal-organic compounds
Bis(3-methyl-1-propyl-1H-imidazol-3-ium) bis(4,6-disulfanidyl-4,6-disulfanylidene-1,2,3,5,4,6-tetrathiadiphosphinane-κ3S2,S4,S6)nickel
aDepartment of Chemistry, Lake Forest College, 555 N. Sheridan Rd., Lake Forest, IL 60045, USA
*Correspondence e-mail: cody@lakeforest.edu
The title salt, (PMIM)2[Ni(P2S8)2] (PMIM = 3-methyl-1-propyl-1H-imidazol-3-ium, C7H13N2+), consists of a nickel–thiophosphate anion charge-balanced by a pair of crystallographically independent PMIM cations. It crystallizes in the monoclinic P21/n. The structure exhibits the known [Ni(P2S8)2]2− anion with two unique imidazolium cations in the Whereas one PMIM cation is well ordered, the other is disordered over two orientations with refined occupancies of 0.798 (2) and 0.202 (2). The salt was prepared directly from the elements in the ionic liquid [PMIM]CF3SO3. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.
CCDC reference: 1988552
Structure description
Ionothermal synthesis of inorganic compounds has received increased interest over the past two decades because of the high thermal stability, low vapor pressure, and reusability of ionic liquids (IL) (Wasserscheid & Welton, 2002; Freudenmann et al., 2011; Zhang et al., 2016). Ionothermal methods have been used to prepare a wide range of materials, including metal–organic frameworks (Cook et al., 2013) and chalcogenides (Santner et al., 2016).
Because of the interesting properties observed in metal thiophosphates, especially luminescence (Huang et al., 1992; Wu & Bensch, 2008), we have explored the preparation of these materials in ionic liquids. Ionothermal synthesis with nickel yielded four new nickel thiophosphate anions: [Ni(P2S8)2]2−, [Ni(P3S9)(P2S8)]3−, [Ni(P3S9)2]4−, and [(NiP3S8)4(PS4)]7−, all crystallized with 1-ethyl-3-methylimidazolium [EMIM] cations from the IL (Cody et al., 2012). The compound presented herein was synthesized by substitution of [EMIM] with 3-methyl-1-propylimidazolium [PMIM] cation, resulting in the most readily isolated anion of the group, [Ni(P2S8)2]2−, as a PMIM salt.
The structure consists of a single [Ni(P2S8)2]2− anion (Cody et al., 2012) and two PMIM cations. The anion exhibits the same shape as those previously isolated. The centrosymmetric P21/n contains both of the anion whereas Fig. 1 only shows the Δ isomer. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.
Synthesis and crystallization
The ionic liquid 3-methyl-1-propyl-1H-imidazol-3-ium trifluoromethanesulfonate ([PMIM]CF3SO3) was prepared by a modified literature method (Bonhôte et al., 1996): under a nitrogen atmosphere, a stoichiometric amount of methyl trifluoromethanesulfonate was added dropwise to 1-propyl-1H-imidazole in dichloromethane.
Crystals of the title compound were prepared from a 125 mg mixture of the elements (ratio 1 Ni: 4 P: 16 S) that were weighed as a 1250 mg preparation, ground together, and portioned into Pyrex reaction tubes in a 3SO3 were added to the reaction tubes. The tubes were evacuated, sealed with a torch, heated at 150°C for 96 h, and then cooled to room temperature at a rate of 0.5°C /h. Similar crystals were obtained from a similar reaction in an ionic liquid with the same cation but different anion, [PMIM]BF4.
Then, in a glove bag, 1.25 ml portions of the ionic liquid [PMIM]CFRefinement
Crystal data, data collection and structure .
details are summarized in Table 1The disorder of the PMIM cation was discovered by noticing slightly enlarged isotropic displacement parameters for the cation relative to the other cation in the structure. Also, residual electron density peaks near the cation formed a noticeable pentagon, indicating the presence of the imidazolium core of the cation. The occupancies of the two disorder components refined to 0.798 (2) and 0.202 (2).
Structural data
CCDC reference: 1988552
https://doi.org/10.1107/S2414314620003120/gg4003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620003120/gg4003Isup2.hkl
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C7H13N2)2[Ni(P2S8)2] | F(000) = 1928 |
Mr = 945.94 | Dx = 1.753 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 23.042 (4) Å | Cell parameters from 9334 reflections |
b = 7.1825 (12) Å | θ = 2.5–31.7° |
c = 24.418 (4) Å | µ = 1.67 mm−1 |
β = 117.505 (3)° | T = 100 K |
V = 3584.3 (11) Å3 | Needle, dark orange |
Z = 4 | 0.28 × 0.16 × 0.05 mm |
Bruker APEXII CCD diffractometer | 9766 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
φ and ω scans | θmax = 33.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −35→35 |
Tmin = 0.655, Tmax = 0.747 | k = −10→11 |
84130 measured reflections | l = −38→37 |
14239 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0312P)2 + 1.1383P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
14239 reflections | Δρmax = 0.96 e Å−3 |
388 parameters | Δρmin = −0.52 e Å−3 |
60 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were positions with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å for aromatic, 0.97 Å for methylene and 0.96 Å for methyl H-atoms. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.52291 (2) | 0.16445 (4) | 0.27543 (2) | 0.01107 (6) | |
S1 | 0.58517 (3) | −0.10825 (7) | 0.28600 (2) | 0.01437 (10) | |
S2 | 0.74680 (3) | −0.17840 (9) | 0.33188 (3) | 0.02335 (13) | |
S3 | 0.70711 (3) | 0.06248 (8) | 0.42211 (2) | 0.01638 (11) | |
S4 | 0.67644 (3) | 0.33269 (9) | 0.51111 (2) | 0.02210 (12) | |
S5 | 0.54721 (3) | 0.16876 (8) | 0.38156 (2) | 0.01444 (10) | |
S6 | 0.68504 (3) | 0.23021 (8) | 0.28616 (2) | 0.01543 (10) | |
S7 | 0.61254 (3) | 0.38979 (7) | 0.28950 (2) | 0.01320 (10) | |
S8 | 0.65016 (3) | 0.49267 (7) | 0.37821 (2) | 0.01545 (10) | |
S11 | 0.49662 (3) | 0.16109 (8) | 0.16862 (2) | 0.01392 (10) | |
S12 | 0.38843 (3) | 0.40281 (8) | 0.04311 (2) | 0.01923 (11) | |
S13 | 0.33544 (2) | 0.22267 (8) | 0.13143 (2) | 0.01423 (10) | |
S14 | 0.27374 (3) | 0.07818 (9) | 0.21939 (3) | 0.02258 (12) | |
S15 | 0.43218 (3) | −0.02240 (7) | 0.26043 (2) | 0.01456 (10) | |
S16 | 0.43958 (3) | 0.58100 (7) | 0.18019 (2) | 0.01442 (10) | |
S17 | 0.46596 (3) | 0.47461 (7) | 0.26699 (2) | 0.01354 (10) | |
S18 | 0.38028 (3) | 0.41072 (8) | 0.26949 (2) | 0.01621 (10) | |
P1 | 0.67724 (3) | −0.01963 (8) | 0.32921 (3) | 0.01460 (11) | |
P2 | 0.63910 (3) | 0.25869 (8) | 0.42497 (2) | 0.01368 (11) | |
P11 | 0.42011 (3) | 0.33097 (8) | 0.12893 (2) | 0.01227 (10) | |
P12 | 0.35650 (3) | 0.15073 (8) | 0.22274 (3) | 0.01355 (10) | |
N1 | 0.85499 (9) | 0.5648 (3) | 0.47085 (8) | 0.0168 (4) | |
N2 | 0.87391 (9) | 0.4589 (3) | 0.39798 (9) | 0.0180 (4) | |
C1 | 0.83490 (11) | 0.4454 (3) | 0.42436 (10) | 0.0191 (4) | |
H1 | 0.7986 | 0.3636 | 0.4119 | 0.023* | |
C2 | 0.92065 (13) | 0.5906 (3) | 0.42907 (12) | 0.0265 (5) | |
H2 | 0.9550 | 0.6280 | 0.4203 | 0.032* | |
C3 | 0.90864 (12) | 0.6573 (3) | 0.47467 (12) | 0.0237 (5) | |
H3 | 0.9329 | 0.7508 | 0.5038 | 0.028* | |
C4 | 0.82347 (12) | 0.5986 (4) | 0.50984 (11) | 0.0237 (5) | |
H4A | 0.8004 | 0.7182 | 0.4986 | 0.036* | |
H4B | 0.8567 | 0.6019 | 0.5532 | 0.036* | |
H4C | 0.7922 | 0.4986 | 0.5038 | 0.036* | |
C5 | 0.86870 (13) | 0.3488 (4) | 0.34505 (11) | 0.0262 (5) | |
H5A | 0.8669 | 0.4339 | 0.3124 | 0.031* | |
H5B | 0.8276 | 0.2760 | 0.3278 | 0.031* | |
C6 | 0.92698 (13) | 0.2153 (4) | 0.36383 (12) | 0.0277 (5) | |
H6A | 0.9222 | 0.1468 | 0.3268 | 0.033* | |
H6B | 0.9678 | 0.2892 | 0.3795 | 0.033* | |
C7 | 0.93295 (14) | 0.0783 (4) | 0.41199 (14) | 0.0344 (6) | |
H7A | 0.8916 | 0.0105 | 0.3980 | 0.052* | |
H7B | 0.9429 | 0.1442 | 0.4505 | 0.052* | |
H7C | 0.9682 | −0.0098 | 0.4191 | 0.052* | |
N11 | 0.70511 (12) | 0.8449 (3) | 0.60795 (12) | 0.0189 (5) | 0.798 (2) |
N12 | 0.63038 (12) | 1.0204 (3) | 0.60984 (11) | 0.0169 (5) | 0.798 (2) |
C11 | 0.69112 (14) | 1.0146 (4) | 0.61822 (13) | 0.0182 (6) | 0.798 (2) |
H11 | 0.7203 | 1.1174 | 0.6299 | 0.022* | 0.798 (2) |
C12 | 0.60435 (15) | 0.8442 (4) | 0.59479 (15) | 0.0245 (6) | 0.798 (2) |
H12 | 0.5613 | 0.8066 | 0.5856 | 0.029* | 0.798 (2) |
C13 | 0.65107 (13) | 0.7397 (4) | 0.59582 (13) | 0.0317 (6) | 0.798 (2) |
H13 | 0.6480 | 0.6089 | 0.5891 | 0.038* | 0.798 (2) |
C14 | 0.76729 (16) | 0.7843 (5) | 0.61090 (19) | 0.0282 (8) | 0.798 (2) |
H14A | 0.7804 | 0.8720 | 0.5878 | 0.042* | 0.798 (2) |
H14B | 0.7620 | 0.6599 | 0.5927 | 0.042* | 0.798 (2) |
H14C | 0.8011 | 0.7806 | 0.6541 | 0.042* | 0.798 (2) |
C15 | 0.5966 (2) | 1.1859 (6) | 0.6159 (2) | 0.0209 (8) | 0.798 (2) |
H15A | 0.6255 | 1.2956 | 0.6244 | 0.025* | 0.798 (2) |
H15B | 0.5872 | 1.1693 | 0.6513 | 0.025* | 0.798 (2) |
C16 | 0.5327 (2) | 1.2216 (10) | 0.5576 (2) | 0.0222 (7) | 0.798 (2) |
H16A | 0.5423 | 1.2574 | 0.5235 | 0.027* | 0.798 (2) |
H16B | 0.5062 | 1.1063 | 0.5455 | 0.027* | 0.798 (2) |
C17 | 0.4944 (2) | 1.3755 (6) | 0.56866 (18) | 0.0422 (10) | 0.798 (2) |
H17A | 0.4555 | 1.4046 | 0.5299 | 0.063* | 0.798 (2) |
H17B | 0.5219 | 1.4868 | 0.5837 | 0.063* | 0.798 (2) |
H17C | 0.4812 | 1.3347 | 0.5995 | 0.063* | 0.798 (2) |
N21 | 0.6813 (4) | 0.8140 (13) | 0.5709 (4) | 0.0189 (5) | 0.202 (2) |
N22 | 0.5807 (4) | 0.7520 (14) | 0.5062 (4) | 0.0245 (6) | 0.202 (2) |
C21 | 0.6387 (5) | 0.7999 (18) | 0.5113 (5) | 0.0317 (6) | 0.202 (2) |
H21 | 0.6482 | 0.8208 | 0.4778 | 0.038* | 0.202 (2) |
C22 | 0.5866 (4) | 0.7297 (15) | 0.5644 (4) | 0.0169 (5) | 0.202 (2) |
H22 | 0.5544 | 0.7124 | 0.5778 | 0.020* | 0.202 (2) |
C23 | 0.65107 (13) | 0.7397 (4) | 0.59582 (13) | 0.0317 (6) | 0.202 (2) |
H23 | 0.6736 | 0.6910 | 0.6365 | 0.038* | 0.202 (2) |
C24 | 0.7522 (5) | 0.8455 (19) | 0.5975 (6) | 0.0209 (8) | 0.202 (2) |
H24A | 0.7620 | 0.9073 | 0.5669 | 0.031* | 0.202 (2) |
H24B | 0.7667 | 0.9244 | 0.6342 | 0.031* | 0.202 (2) |
H24C | 0.7751 | 0.7257 | 0.6090 | 0.031* | 0.202 (2) |
C25 | 0.5235 (5) | 0.7101 (18) | 0.4475 (5) | 0.0222 (7) | 0.202 (2) |
H25A | 0.5190 | 0.5736 | 0.4415 | 0.027* | 0.202 (2) |
H25B | 0.5295 | 0.7644 | 0.4132 | 0.027* | 0.202 (2) |
C26 | 0.4624 (9) | 0.788 (6) | 0.4465 (13) | 0.0422 (10) | 0.202 (2) |
H26A | 0.4675 | 0.9248 | 0.4530 | 0.051* | 0.202 (2) |
H26B | 0.4571 | 0.7343 | 0.4812 | 0.051* | 0.202 (2) |
C27 | 0.4014 (10) | 0.750 (2) | 0.3869 (10) | 0.032 (5) | 0.202 (2) |
H27A | 0.4036 | 0.8177 | 0.3531 | 0.048* | 0.202 (2) |
H27B | 0.3629 | 0.7912 | 0.3908 | 0.048* | 0.202 (2) |
H27C | 0.3980 | 0.6161 | 0.3782 | 0.048* | 0.202 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.00997 (12) | 0.01233 (12) | 0.01185 (12) | 0.00070 (10) | 0.00585 (10) | 0.00124 (9) |
S1 | 0.0126 (2) | 0.0121 (2) | 0.0182 (2) | 0.00127 (18) | 0.0069 (2) | 0.00146 (19) |
S2 | 0.0171 (3) | 0.0269 (3) | 0.0281 (3) | 0.0101 (2) | 0.0121 (2) | 0.0059 (2) |
S3 | 0.0119 (2) | 0.0202 (3) | 0.0146 (2) | 0.0027 (2) | 0.0040 (2) | 0.00467 (19) |
S4 | 0.0189 (3) | 0.0338 (3) | 0.0114 (2) | −0.0049 (2) | 0.0052 (2) | −0.0013 (2) |
S5 | 0.0114 (2) | 0.0203 (3) | 0.0125 (2) | −0.00157 (19) | 0.00631 (19) | 0.00121 (19) |
S6 | 0.0133 (2) | 0.0187 (3) | 0.0167 (2) | 0.0002 (2) | 0.0089 (2) | 0.00277 (19) |
S7 | 0.0132 (2) | 0.0142 (2) | 0.0127 (2) | 0.00025 (18) | 0.00633 (19) | 0.00244 (18) |
S8 | 0.0171 (3) | 0.0149 (2) | 0.0141 (2) | −0.0028 (2) | 0.0069 (2) | 0.00007 (19) |
S11 | 0.0133 (2) | 0.0174 (2) | 0.0131 (2) | 0.00321 (19) | 0.00789 (19) | 0.00051 (19) |
S12 | 0.0207 (3) | 0.0240 (3) | 0.0121 (2) | −0.0008 (2) | 0.0068 (2) | 0.0036 (2) |
S13 | 0.0102 (2) | 0.0184 (3) | 0.0131 (2) | −0.00093 (19) | 0.00459 (19) | −0.00028 (18) |
S14 | 0.0127 (3) | 0.0314 (3) | 0.0267 (3) | −0.0028 (2) | 0.0117 (2) | 0.0037 (2) |
S15 | 0.0129 (2) | 0.0133 (2) | 0.0179 (2) | −0.00071 (19) | 0.0075 (2) | 0.00236 (19) |
S16 | 0.0156 (2) | 0.0126 (2) | 0.0151 (2) | 0.00023 (19) | 0.0071 (2) | 0.00093 (18) |
S17 | 0.0135 (2) | 0.0141 (2) | 0.0131 (2) | 0.00046 (19) | 0.00628 (19) | −0.00095 (18) |
S18 | 0.0154 (3) | 0.0196 (3) | 0.0175 (2) | 0.0016 (2) | 0.0109 (2) | −0.0018 (2) |
P1 | 0.0113 (2) | 0.0162 (3) | 0.0168 (3) | 0.0028 (2) | 0.0069 (2) | 0.0037 (2) |
P2 | 0.0122 (3) | 0.0170 (3) | 0.0116 (2) | −0.0007 (2) | 0.0053 (2) | 0.00183 (19) |
P11 | 0.0118 (2) | 0.0146 (3) | 0.0109 (2) | 0.0006 (2) | 0.0057 (2) | 0.00054 (19) |
P12 | 0.0106 (2) | 0.0167 (3) | 0.0147 (2) | −0.0007 (2) | 0.0070 (2) | 0.0006 (2) |
N1 | 0.0181 (9) | 0.0189 (9) | 0.0184 (9) | 0.0016 (7) | 0.0126 (8) | 0.0030 (7) |
N2 | 0.0208 (10) | 0.0189 (9) | 0.0188 (9) | 0.0028 (7) | 0.0129 (8) | 0.0015 (7) |
C1 | 0.0169 (11) | 0.0234 (12) | 0.0182 (10) | 0.0008 (9) | 0.0091 (9) | 0.0025 (9) |
C2 | 0.0344 (14) | 0.0203 (12) | 0.0395 (14) | −0.0050 (10) | 0.0295 (13) | −0.0042 (10) |
C3 | 0.0268 (13) | 0.0194 (11) | 0.0346 (13) | −0.0051 (10) | 0.0226 (11) | −0.0062 (10) |
C4 | 0.0295 (13) | 0.0267 (13) | 0.0260 (12) | 0.0015 (10) | 0.0222 (11) | 0.0008 (10) |
C5 | 0.0309 (14) | 0.0334 (14) | 0.0173 (11) | 0.0042 (11) | 0.0135 (10) | −0.0007 (10) |
C6 | 0.0317 (14) | 0.0282 (13) | 0.0307 (13) | 0.0006 (11) | 0.0208 (12) | −0.0044 (10) |
C7 | 0.0338 (15) | 0.0298 (15) | 0.0444 (17) | 0.0094 (12) | 0.0222 (14) | 0.0048 (12) |
N11 | 0.0159 (12) | 0.0191 (11) | 0.0248 (12) | 0.0003 (9) | 0.0120 (10) | 0.0012 (10) |
N12 | 0.0197 (12) | 0.0170 (11) | 0.0175 (11) | 0.0006 (9) | 0.0116 (9) | 0.0016 (8) |
C11 | 0.0168 (13) | 0.0191 (14) | 0.0199 (13) | −0.0024 (11) | 0.0095 (11) | −0.0001 (10) |
C12 | 0.0207 (14) | 0.0201 (14) | 0.0375 (17) | −0.0034 (11) | 0.0176 (13) | −0.0002 (12) |
C13 | 0.0223 (13) | 0.0242 (13) | 0.0455 (16) | −0.0045 (10) | 0.0128 (12) | 0.0054 (11) |
C14 | 0.0221 (17) | 0.0242 (17) | 0.045 (2) | 0.0051 (13) | 0.0210 (16) | 0.0031 (15) |
C15 | 0.0254 (18) | 0.021 (2) | 0.0199 (16) | 0.0015 (16) | 0.0134 (13) | 0.0003 (17) |
C16 | 0.0253 (16) | 0.0199 (17) | 0.0224 (16) | −0.0002 (13) | 0.0120 (12) | −0.0034 (12) |
C17 | 0.040 (2) | 0.040 (2) | 0.034 (2) | 0.0199 (17) | 0.0063 (17) | −0.0089 (16) |
N21 | 0.0159 (12) | 0.0191 (11) | 0.0248 (12) | 0.0003 (9) | 0.0120 (10) | 0.0012 (10) |
N22 | 0.0207 (14) | 0.0201 (14) | 0.0375 (17) | −0.0034 (11) | 0.0176 (13) | −0.0002 (12) |
C21 | 0.0223 (13) | 0.0242 (13) | 0.0455 (16) | −0.0045 (10) | 0.0128 (12) | 0.0054 (11) |
C22 | 0.0197 (12) | 0.0170 (11) | 0.0175 (11) | 0.0006 (9) | 0.0116 (9) | 0.0016 (8) |
C23 | 0.0223 (13) | 0.0242 (13) | 0.0455 (16) | −0.0045 (10) | 0.0128 (12) | 0.0054 (11) |
C24 | 0.0254 (18) | 0.021 (2) | 0.0199 (16) | 0.0015 (16) | 0.0134 (13) | 0.0003 (17) |
C25 | 0.0253 (16) | 0.0199 (17) | 0.0224 (16) | −0.0002 (13) | 0.0120 (12) | −0.0034 (12) |
C26 | 0.040 (2) | 0.040 (2) | 0.034 (2) | 0.0199 (17) | 0.0063 (17) | −0.0089 (16) |
C27 | 0.052 (11) | 0.020 (9) | 0.040 (9) | −0.002 (9) | 0.036 (8) | 0.003 (8) |
Ni1—S1 | 2.3705 (7) | C2—C3 | 1.353 (3) |
Ni1—S5 | 2.3852 (7) | C5—C6 | 1.538 (4) |
Ni1—S7 | 2.5195 (7) | C6—C7 | 1.490 (4) |
Ni1—S11 | 2.3897 (7) | N11—C11 | 1.314 (4) |
Ni1—S15 | 2.3662 (7) | N11—C13 | 1.367 (3) |
Ni1—S17 | 2.5450 (7) | N11—C14 | 1.467 (4) |
S1—P1 | 1.9879 (8) | N11—N21 | 0.843 (9) |
S2—P1 | 1.9436 (8) | N11—C23 | 1.367 (3) |
S3—P1 | 2.1272 (9) | N11—C24 | 1.224 (12) |
S3—P2 | 2.1325 (8) | N12—C11 | 1.318 (3) |
S4—P2 | 1.9431 (8) | N12—C12 | 1.375 (4) |
S5—P2 | 1.9877 (8) | N12—C15 | 1.465 (5) |
S6—S7 | 2.0583 (8) | C11—N21 | 1.795 (10) |
S6—P1 | 2.1290 (8) | C12—C13 | 1.303 (4) |
S7—S8 | 2.0629 (8) | C12—C22 | 1.056 (11) |
S8—P2 | 2.1123 (8) | C12—C23 | 1.303 (4) |
S11—P11 | 1.9893 (8) | C13—N21 | 1.238 (8) |
S12—P11 | 1.9435 (8) | C13—C22 | 1.321 (9) |
S13—P11 | 2.1273 (8) | C14—N21 | 1.771 (9) |
S13—P12 | 2.1152 (8) | C14—C24 | 0.562 (12) |
S14—P12 | 1.9419 (8) | C15—C16 | 1.523 (6) |
S15—P12 | 1.9879 (8) | C16—C17 | 1.514 (6) |
S16—S17 | 2.0629 (8) | N21—C21 | 1.332 (12) |
S16—P11 | 2.1153 (8) | N21—C23 | 1.238 (8) |
S17—S18 | 2.0552 (8) | N21—C24 | 1.469 (11) |
S18—P12 | 2.1243 (8) | N22—C21 | 1.329 (11) |
N1—C1 | 1.324 (3) | N22—C22 | 1.371 (11) |
N1—C3 | 1.368 (3) | N22—C25 | 1.462 (11) |
N1—C4 | 1.460 (3) | C22—C23 | 1.321 (9) |
N2—C1 | 1.329 (3) | C25—C26 | 1.508 (16) |
N2—C2 | 1.369 (3) | C26—C27 | 1.510 (16) |
N2—C5 | 1.472 (3) | ||
S1—Ni1—S5 | 93.78 (2) | C11—N11—C14 | 125.9 (3) |
S1—Ni1—S7 | 95.69 (2) | C11—N11—C23 | 106.0 (2) |
S1—Ni1—S11 | 86.91 (2) | C13—N11—C14 | 128.1 (3) |
S1—Ni1—S17 | 174.59 (2) | N21—N11—C11 | 110.8 (7) |
S5—Ni1—S7 | 94.43 (2) | N21—N11—C13 | 63.0 (6) |
S5—Ni1—S11 | 179.01 (2) | N21—N11—C14 | 96.3 (7) |
S5—Ni1—S17 | 86.00 (2) | N21—N11—C23 | 63.0 (6) |
S7—Ni1—S17 | 78.95 (2) | N21—N11—C24 | 88.6 (8) |
S11—Ni1—S7 | 86.21 (2) | C23—N11—C14 | 128.1 (3) |
S11—Ni1—S17 | 93.387 (19) | C24—N11—C11 | 110.9 (7) |
S15—Ni1—S1 | 89.73 (2) | C24—N11—C13 | 139.7 (7) |
S15—Ni1—S5 | 85.57 (2) | C24—N11—C23 | 139.7 (7) |
S15—Ni1—S7 | 174.57 (2) | C11—N12—C12 | 108.2 (2) |
S15—Ni1—S11 | 93.72 (2) | C11—N12—C15 | 125.8 (3) |
S15—Ni1—S17 | 95.64 (2) | C12—N12—C15 | 125.9 (3) |
P1—S1—Ni1 | 103.71 (3) | N11—C11—N12 | 109.6 (2) |
P1—S3—P2 | 109.72 (3) | N12—C11—N21 | 96.7 (3) |
P2—S5—Ni1 | 103.97 (3) | C13—C12—N12 | 105.7 (3) |
S7—S6—P1 | 101.22 (3) | C22—C12—N12 | 152.1 (6) |
S6—S7—Ni1 | 105.43 (3) | C22—C12—C13 | 67.2 (5) |
S6—S7—S8 | 106.62 (3) | C22—C12—C23 | 67.2 (5) |
S8—S7—Ni1 | 107.08 (3) | C23—C12—N12 | 105.7 (3) |
S7—S8—P2 | 100.69 (3) | C12—C13—N11 | 110.3 (3) |
P11—S11—Ni1 | 104.27 (3) | C12—C13—C22 | 47.5 (5) |
P12—S13—P11 | 110.65 (3) | N21—C13—C12 | 112.9 (5) |
P12—S15—Ni1 | 103.90 (3) | N21—C13—C22 | 118.3 (6) |
S17—S16—P11 | 100.07 (3) | C22—C13—N11 | 145.3 (5) |
S16—S17—Ni1 | 107.68 (3) | C24—C14—N11 | 54.0 (13) |
S18—S17—Ni1 | 105.58 (3) | C24—C14—N21 | 49.5 (13) |
S18—S17—S16 | 106.38 (3) | N12—C15—C16 | 111.9 (4) |
S17—S18—P12 | 101.14 (3) | C17—C16—C15 | 110.4 (4) |
S1—P1—S3 | 113.28 (3) | N11—N21—C13 | 79.7 (7) |
S1—P1—S6 | 108.70 (3) | N11—N21—C14 | 55.4 (5) |
S2—P1—S1 | 119.43 (4) | N11—N21—C21 | 168.3 (13) |
S2—P1—S3 | 105.74 (3) | N11—N21—C23 | 79.7 (7) |
S2—P1—S6 | 104.75 (4) | N11—N21—C24 | 56.4 (7) |
S3—P1—S6 | 103.49 (3) | C13—N21—C11 | 87.8 (5) |
S4—P2—S3 | 104.56 (3) | C13—N21—C14 | 114.7 (6) |
S4—P2—S5 | 119.76 (4) | C13—N21—C21 | 101.9 (8) |
S4—P2—S8 | 105.29 (4) | C13—N21—C24 | 127.8 (9) |
S5—P2—S3 | 112.69 (4) | C14—N21—C11 | 88.0 (4) |
S5—P2—S8 | 109.57 (3) | C21—N21—C11 | 125.1 (9) |
S8—P2—S3 | 103.54 (3) | C21—N21—C14 | 131.7 (8) |
S11—P11—S13 | 112.33 (3) | C21—N21—C24 | 127.0 (9) |
S11—P11—S16 | 109.54 (3) | C23—N21—C11 | 87.8 (5) |
S12—P11—S11 | 119.68 (4) | C23—N21—C14 | 114.7 (6) |
S12—P11—S13 | 103.60 (3) | C23—N21—C21 | 101.9 (8) |
S12—P11—S16 | 106.50 (3) | C23—N21—C24 | 127.8 (9) |
S16—P11—S13 | 103.89 (3) | C24—N21—C11 | 79.0 (7) |
S13—P12—S18 | 103.20 (3) | C21—N22—C22 | 108.6 (8) |
S14—P12—S13 | 106.16 (3) | C21—N22—C25 | 123.8 (9) |
S14—P12—S15 | 119.08 (4) | C22—N22—C25 | 127.2 (9) |
S14—P12—S18 | 105.25 (3) | N22—C21—N21 | 108.8 (10) |
S15—P12—S13 | 111.47 (3) | C12—C22—C13 | 65.4 (5) |
S15—P12—S18 | 110.35 (3) | C12—C22—N22 | 117.3 (10) |
C1—N1—C3 | 108.68 (19) | C12—C22—C23 | 65.4 (5) |
C1—N1—C4 | 125.8 (2) | C13—C22—N22 | 98.2 (7) |
C3—N1—C4 | 125.5 (2) | C23—C22—N22 | 98.2 (7) |
C1—N2—C2 | 108.46 (19) | C12—C23—N11 | 110.3 (3) |
C1—N2—C5 | 125.9 (2) | C12—C23—C22 | 47.5 (5) |
C2—N2—C5 | 125.6 (2) | N21—C23—C12 | 112.9 (5) |
N1—C1—N2 | 108.7 (2) | N21—C23—C22 | 118.3 (6) |
C3—C2—N2 | 107.1 (2) | C22—C23—N11 | 145.3 (5) |
C2—C3—N1 | 107.1 (2) | C14—C24—N11 | 104.2 (17) |
N2—C5—C6 | 111.6 (2) | C14—C24—N21 | 113.6 (17) |
C7—C6—C5 | 113.4 (2) | N22—C25—C26 | 110.5 (12) |
C11—N11—C13 | 106.0 (2) | C25—C26—C27 | 113.2 (17) |
Acknowledgements
The authors thank Charlotte C. Stern for the data acquisition. This work made use of the EPIC, Keck-II, and/or SPID facilities of Northwestern University's NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.
References
Bonhôte, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K. & Grätzel, M. (1996). Inorg. Chem. 35, 1168–1178. PubMed Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cody, J. A., Finch, K. B., Reynders, G. J. III, Alexander, G. C. B., Lim, H. G., Näther, C. & Bensch, W. (2012). Inorg. Chem. 51, 13357–13362. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734–777. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Freudenmann, D., Wolf, S., Wolff, M. & Feldmann, C. (2011). Angew. Chem. Int. Ed. 50, 11050–11060. Web of Science CrossRef CAS Google Scholar
Huang, Z., Cajipe, V. B., Le Rolland, B., Colombet, P., Schipper, W. J. & Blasse, G. (1992). Eur. J. Solid State Inorg. Chem. 29, 1133–1144. CAS Google Scholar
Santner, S., Heine, J. & Dehnen, S. (2016). Angew. Chem. Int. Ed. 55, 876–893. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wasserscheid, P. & Welton, T. (2002). Editors. Ionic Liquids in Synthesis, ch. 6, pp. 289–317. Weinheim: Wiley-VCH. Google Scholar
Wu, Y. & Bensch, W. (2008). Inorg. Chem. 47, 7523–7534. CrossRef ICSD PubMed CAS Google Scholar
Zhang, S., Zhang, Y., Zhang, Y., Chen, Z., Watanabe, M. & Deng, Y. (2016). Prog. Mater. Sci. 77, 80–124. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.