metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(3-methyl-1-propyl-1H-imidazol-3-ium) bis­­(4,6-disulfanidyl-4,6-disulfanyl­­idene-1,2,3,5,4,6-tetra­thia­diphosphinane-κ3S2,S4,S6)nickel

aDepartment of Chemistry, Lake Forest College, 555 N. Sheridan Rd., Lake Forest, IL 60045, USA
*Correspondence e-mail: cody@lakeforest.edu

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 10 December 2019; accepted 5 March 2020; online 24 April 2020)

The title salt, (PMIM)2[Ni(P2S8)2] (PMIM = 3-methyl-1-propyl-1H-imidazol-3-ium, C7H13N2+), consists of a nickel–thio­phosphate anion charge-balanced by a pair of crystallographically independent PMIM cations. It crystallizes in the monoclinic space group P21/n. The structure exhibits the known [Ni(P2S8)2]2− anion with two unique imidazolium cations in the asymmetric unit. Whereas one PMIM cation is well ordered, the other is disordered over two orientations with refined occupancies of 0.798 (2) and 0.202 (2). The salt was prepared directly from the elements in the ionic liquid [PMIM]CF3SO3. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ionothermal synthesis of inorganic compounds has received increased inter­est over the past two decades because of the high thermal stability, low vapor pressure, and reusability of ionic liquids (IL) (Wasserscheid & Welton, 2002[Wasserscheid, P. & Welton, T. (2002). Editors. Ionic Liquids in Synthesis, ch. 6, pp. 289-317. Weinheim: Wiley-VCH.]; Freudenmann et al., 2011[Freudenmann, D., Wolf, S., Wolff, M. & Feldmann, C. (2011). Angew. Chem. Int. Ed. 50, 11050-11060.]; Zhang et al., 2016[Zhang, S., Zhang, Y., Zhang, Y., Chen, Z., Watanabe, M. & Deng, Y. (2016). Prog. Mater. Sci. 77, 80-124.]). Ionothermal methods have been used to prepare a wide range of materials, including metal–organic frameworks (Cook et al., 2013[Cook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734-777.]) and chalcogenides (Santner et al., 2016[Santner, S., Heine, J. & Dehnen, S. (2016). Angew. Chem. Int. Ed. 55, 876-893.]).

Because of the inter­esting properties observed in metal thio­phosphates, especially luminescence (Huang et al., 1992[Huang, Z., Cajipe, V. B., Le Rolland, B., Colombet, P., Schipper, W. J. & Blasse, G. (1992). Eur. J. Solid State Inorg. Chem. 29, 1133-1144.]; Wu & Bensch, 2008[Wu, Y. & Bensch, W. (2008). Inorg. Chem. 47, 7523-7534.]), we have explored the preparation of these materials in ionic liquids. Ionothermal synthesis with nickel yielded four new nickel thio­phosphate anions: [Ni(P2S8)2]2−, [Ni(P3S9)(P2S8)]3−, [Ni(P3S9)2]4−, and [(NiP3S8)4(PS4)]7−, all crystallized with 1-ethyl-3-methyl­imidazolium [EMIM] cations from the IL (Cody et al., 2012[Cody, J. A., Finch, K. B., Reynders, G. J. III, Alexander, G. C. B., Lim, H. G., Näther, C. & Bensch, W. (2012). Inorg. Chem. 51, 13357-13362.]). The compound presented herein was synthesized by substitution of [EMIM] with 3-methyl-1-propyl­imidazolium [PMIM] cation, resulting in the most readily isolated anion of the group, [Ni(P2S8)2]2−, as a PMIM salt.

The structure consists of a single [Ni(P2S8)2]2− anion (Cody et al., 2012[Cody, J. A., Finch, K. B., Reynders, G. J. III, Alexander, G. C. B., Lim, H. G., Näther, C. & Bensch, W. (2012). Inorg. Chem. 51, 13357-13362.]) and two PMIM cations. The anion exhibits the same shape as those previously isolated. The centrosymmetric space group P21/n contains both optical isomers of the anion whereas Fig. 1[link] only shows the Δ isomer. Whereas one of the PMIM cations is well behaved (it does not exhibit disorder even in the propyl side chain), the other is found in two overlapping positions. The refined occupancies for the two orientations are roughly 80:20. Here, too, there appears to be little disorder in the propyl arm.

[Figure 1]
Figure 1
Structure of [PMIM]2[Ni(P2S8)2]. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. The minor disorder component is shown with dashed bonds.

Synthesis and crystallization

The ionic liquid 3-methyl-1-propyl-1H-imidazol-3-ium tri­fluoro­methane­sulfonate ([PMIM]CF3SO3) was prepared by a modified literature method (Bonhôte et al., 1996[Bonhôte, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K. & Grätzel, M. (1996). Inorg. Chem. 35, 1168-1178.]): under a nitro­gen atmosphere, a stoichiometric amount of methyl tri­fluoro­methane­sulfonate was added dropwise to 1-propyl-1H-imidazole in di­chloro­methane.

Crystals of the title compound were prepared from a 125 mg mixture of the elements (ratio 1 Ni: 4 P: 16 S) that were weighed as a 1250 mg preparation, ground together, and portioned into Pyrex reaction tubes in a glove box. Then, in a glove bag, 1.25 ml portions of the ionic liquid [PMIM]CF3SO3 were added to the reaction tubes. The tubes were evacuated, sealed with a torch, heated at 150°C for 96 h, and then cooled to room temperature at a rate of 0.5°C /h. Similar crystals were obtained from a similar reaction in an ionic liquid with the same cation but different anion, [PMIM]BF4.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula (C7H13N2)2[Ni(P2S8)2]
Mr 945.94
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 23.042 (4), 7.1825 (12), 24.418 (4)
β (°) 117.505 (3)
V3) 3584.3 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.67
Crystal size (mm) 0.28 × 0.16 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.655, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 84130, 14239, 9766
Rint 0.082
(sin θ/λ)max−1) 0.781
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.083, 1.00
No. of reflections 14239
No. of parameters 388
No. of restraints 60
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The disorder of the PMIM cation was discovered by noticing slightly enlarged isotropic displacement parameters for the cation relative to the other cation in the structure. Also, residual electron density peaks near the cation formed a noticeable penta­gon, indicating the presence of the imidazolium core of the cation. The occupancies of the two disorder components refined to 0.798 (2) and 0.202 (2).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(3-methyl-1-propyl-1H-imidazol-3-ium) bis(4,6-disulfanidyl-4,6-disulfanylidene-1,2,3,5,4,6-tetrathiadiphosphinane-κ3S2,S4,S6)nickel top
Crystal data top
(C7H13N2)2[Ni(P2S8)2]F(000) = 1928
Mr = 945.94Dx = 1.753 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 23.042 (4) ÅCell parameters from 9334 reflections
b = 7.1825 (12) Åθ = 2.5–31.7°
c = 24.418 (4) ŵ = 1.67 mm1
β = 117.505 (3)°T = 100 K
V = 3584.3 (11) Å3Needle, dark orange
Z = 40.28 × 0.16 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
9766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ and ω scansθmax = 33.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 3535
Tmin = 0.655, Tmax = 0.747k = 1011
84130 measured reflectionsl = 3837
14239 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0312P)2 + 1.1383P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
14239 reflectionsΔρmax = 0.96 e Å3
388 parametersΔρmin = 0.52 e Å3
60 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positions with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å for aromatic, 0.97 Å for methylene and 0.96 Å for methyl H-atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.52291 (2)0.16445 (4)0.27543 (2)0.01107 (6)
S10.58517 (3)0.10825 (7)0.28600 (2)0.01437 (10)
S20.74680 (3)0.17840 (9)0.33188 (3)0.02335 (13)
S30.70711 (3)0.06248 (8)0.42211 (2)0.01638 (11)
S40.67644 (3)0.33269 (9)0.51111 (2)0.02210 (12)
S50.54721 (3)0.16876 (8)0.38156 (2)0.01444 (10)
S60.68504 (3)0.23021 (8)0.28616 (2)0.01543 (10)
S70.61254 (3)0.38979 (7)0.28950 (2)0.01320 (10)
S80.65016 (3)0.49267 (7)0.37821 (2)0.01545 (10)
S110.49662 (3)0.16109 (8)0.16862 (2)0.01392 (10)
S120.38843 (3)0.40281 (8)0.04311 (2)0.01923 (11)
S130.33544 (2)0.22267 (8)0.13143 (2)0.01423 (10)
S140.27374 (3)0.07818 (9)0.21939 (3)0.02258 (12)
S150.43218 (3)0.02240 (7)0.26043 (2)0.01456 (10)
S160.43958 (3)0.58100 (7)0.18019 (2)0.01442 (10)
S170.46596 (3)0.47461 (7)0.26699 (2)0.01354 (10)
S180.38028 (3)0.41072 (8)0.26949 (2)0.01621 (10)
P10.67724 (3)0.01963 (8)0.32921 (3)0.01460 (11)
P20.63910 (3)0.25869 (8)0.42497 (2)0.01368 (11)
P110.42011 (3)0.33097 (8)0.12893 (2)0.01227 (10)
P120.35650 (3)0.15073 (8)0.22274 (3)0.01355 (10)
N10.85499 (9)0.5648 (3)0.47085 (8)0.0168 (4)
N20.87391 (9)0.4589 (3)0.39798 (9)0.0180 (4)
C10.83490 (11)0.4454 (3)0.42436 (10)0.0191 (4)
H10.79860.36360.41190.023*
C20.92065 (13)0.5906 (3)0.42907 (12)0.0265 (5)
H20.95500.62800.42030.032*
C30.90864 (12)0.6573 (3)0.47467 (12)0.0237 (5)
H30.93290.75080.50380.028*
C40.82347 (12)0.5986 (4)0.50984 (11)0.0237 (5)
H4A0.80040.71820.49860.036*
H4B0.85670.60190.55320.036*
H4C0.79220.49860.50380.036*
C50.86870 (13)0.3488 (4)0.34505 (11)0.0262 (5)
H5A0.86690.43390.31240.031*
H5B0.82760.27600.32780.031*
C60.92698 (13)0.2153 (4)0.36383 (12)0.0277 (5)
H6A0.92220.14680.32680.033*
H6B0.96780.28920.37950.033*
C70.93295 (14)0.0783 (4)0.41199 (14)0.0344 (6)
H7A0.89160.01050.39800.052*
H7B0.94290.14420.45050.052*
H7C0.96820.00980.41910.052*
N110.70511 (12)0.8449 (3)0.60795 (12)0.0189 (5)0.798 (2)
N120.63038 (12)1.0204 (3)0.60984 (11)0.0169 (5)0.798 (2)
C110.69112 (14)1.0146 (4)0.61822 (13)0.0182 (6)0.798 (2)
H110.72031.11740.62990.022*0.798 (2)
C120.60435 (15)0.8442 (4)0.59479 (15)0.0245 (6)0.798 (2)
H120.56130.80660.58560.029*0.798 (2)
C130.65107 (13)0.7397 (4)0.59582 (13)0.0317 (6)0.798 (2)
H130.64800.60890.58910.038*0.798 (2)
C140.76729 (16)0.7843 (5)0.61090 (19)0.0282 (8)0.798 (2)
H14A0.78040.87200.58780.042*0.798 (2)
H14B0.76200.65990.59270.042*0.798 (2)
H14C0.80110.78060.65410.042*0.798 (2)
C150.5966 (2)1.1859 (6)0.6159 (2)0.0209 (8)0.798 (2)
H15A0.62551.29560.62440.025*0.798 (2)
H15B0.58721.16930.65130.025*0.798 (2)
C160.5327 (2)1.2216 (10)0.5576 (2)0.0222 (7)0.798 (2)
H16A0.54231.25740.52350.027*0.798 (2)
H16B0.50621.10630.54550.027*0.798 (2)
C170.4944 (2)1.3755 (6)0.56866 (18)0.0422 (10)0.798 (2)
H17A0.45551.40460.52990.063*0.798 (2)
H17B0.52191.48680.58370.063*0.798 (2)
H17C0.48121.33470.59950.063*0.798 (2)
N210.6813 (4)0.8140 (13)0.5709 (4)0.0189 (5)0.202 (2)
N220.5807 (4)0.7520 (14)0.5062 (4)0.0245 (6)0.202 (2)
C210.6387 (5)0.7999 (18)0.5113 (5)0.0317 (6)0.202 (2)
H210.64820.82080.47780.038*0.202 (2)
C220.5866 (4)0.7297 (15)0.5644 (4)0.0169 (5)0.202 (2)
H220.55440.71240.57780.020*0.202 (2)
C230.65107 (13)0.7397 (4)0.59582 (13)0.0317 (6)0.202 (2)
H230.67360.69100.63650.038*0.202 (2)
C240.7522 (5)0.8455 (19)0.5975 (6)0.0209 (8)0.202 (2)
H24A0.76200.90730.56690.031*0.202 (2)
H24B0.76670.92440.63420.031*0.202 (2)
H24C0.77510.72570.60900.031*0.202 (2)
C250.5235 (5)0.7101 (18)0.4475 (5)0.0222 (7)0.202 (2)
H25A0.51900.57360.44150.027*0.202 (2)
H25B0.52950.76440.41320.027*0.202 (2)
C260.4624 (9)0.788 (6)0.4465 (13)0.0422 (10)0.202 (2)
H26A0.46750.92480.45300.051*0.202 (2)
H26B0.45710.73430.48120.051*0.202 (2)
C270.4014 (10)0.750 (2)0.3869 (10)0.032 (5)0.202 (2)
H27A0.40360.81770.35310.048*0.202 (2)
H27B0.36290.79120.39080.048*0.202 (2)
H27C0.39800.61610.37820.048*0.202 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00997 (12)0.01233 (12)0.01185 (12)0.00070 (10)0.00585 (10)0.00124 (9)
S10.0126 (2)0.0121 (2)0.0182 (2)0.00127 (18)0.0069 (2)0.00146 (19)
S20.0171 (3)0.0269 (3)0.0281 (3)0.0101 (2)0.0121 (2)0.0059 (2)
S30.0119 (2)0.0202 (3)0.0146 (2)0.0027 (2)0.0040 (2)0.00467 (19)
S40.0189 (3)0.0338 (3)0.0114 (2)0.0049 (2)0.0052 (2)0.0013 (2)
S50.0114 (2)0.0203 (3)0.0125 (2)0.00157 (19)0.00631 (19)0.00121 (19)
S60.0133 (2)0.0187 (3)0.0167 (2)0.0002 (2)0.0089 (2)0.00277 (19)
S70.0132 (2)0.0142 (2)0.0127 (2)0.00025 (18)0.00633 (19)0.00244 (18)
S80.0171 (3)0.0149 (2)0.0141 (2)0.0028 (2)0.0069 (2)0.00007 (19)
S110.0133 (2)0.0174 (2)0.0131 (2)0.00321 (19)0.00789 (19)0.00051 (19)
S120.0207 (3)0.0240 (3)0.0121 (2)0.0008 (2)0.0068 (2)0.0036 (2)
S130.0102 (2)0.0184 (3)0.0131 (2)0.00093 (19)0.00459 (19)0.00028 (18)
S140.0127 (3)0.0314 (3)0.0267 (3)0.0028 (2)0.0117 (2)0.0037 (2)
S150.0129 (2)0.0133 (2)0.0179 (2)0.00071 (19)0.0075 (2)0.00236 (19)
S160.0156 (2)0.0126 (2)0.0151 (2)0.00023 (19)0.0071 (2)0.00093 (18)
S170.0135 (2)0.0141 (2)0.0131 (2)0.00046 (19)0.00628 (19)0.00095 (18)
S180.0154 (3)0.0196 (3)0.0175 (2)0.0016 (2)0.0109 (2)0.0018 (2)
P10.0113 (2)0.0162 (3)0.0168 (3)0.0028 (2)0.0069 (2)0.0037 (2)
P20.0122 (3)0.0170 (3)0.0116 (2)0.0007 (2)0.0053 (2)0.00183 (19)
P110.0118 (2)0.0146 (3)0.0109 (2)0.0006 (2)0.0057 (2)0.00054 (19)
P120.0106 (2)0.0167 (3)0.0147 (2)0.0007 (2)0.0070 (2)0.0006 (2)
N10.0181 (9)0.0189 (9)0.0184 (9)0.0016 (7)0.0126 (8)0.0030 (7)
N20.0208 (10)0.0189 (9)0.0188 (9)0.0028 (7)0.0129 (8)0.0015 (7)
C10.0169 (11)0.0234 (12)0.0182 (10)0.0008 (9)0.0091 (9)0.0025 (9)
C20.0344 (14)0.0203 (12)0.0395 (14)0.0050 (10)0.0295 (13)0.0042 (10)
C30.0268 (13)0.0194 (11)0.0346 (13)0.0051 (10)0.0226 (11)0.0062 (10)
C40.0295 (13)0.0267 (13)0.0260 (12)0.0015 (10)0.0222 (11)0.0008 (10)
C50.0309 (14)0.0334 (14)0.0173 (11)0.0042 (11)0.0135 (10)0.0007 (10)
C60.0317 (14)0.0282 (13)0.0307 (13)0.0006 (11)0.0208 (12)0.0044 (10)
C70.0338 (15)0.0298 (15)0.0444 (17)0.0094 (12)0.0222 (14)0.0048 (12)
N110.0159 (12)0.0191 (11)0.0248 (12)0.0003 (9)0.0120 (10)0.0012 (10)
N120.0197 (12)0.0170 (11)0.0175 (11)0.0006 (9)0.0116 (9)0.0016 (8)
C110.0168 (13)0.0191 (14)0.0199 (13)0.0024 (11)0.0095 (11)0.0001 (10)
C120.0207 (14)0.0201 (14)0.0375 (17)0.0034 (11)0.0176 (13)0.0002 (12)
C130.0223 (13)0.0242 (13)0.0455 (16)0.0045 (10)0.0128 (12)0.0054 (11)
C140.0221 (17)0.0242 (17)0.045 (2)0.0051 (13)0.0210 (16)0.0031 (15)
C150.0254 (18)0.021 (2)0.0199 (16)0.0015 (16)0.0134 (13)0.0003 (17)
C160.0253 (16)0.0199 (17)0.0224 (16)0.0002 (13)0.0120 (12)0.0034 (12)
C170.040 (2)0.040 (2)0.034 (2)0.0199 (17)0.0063 (17)0.0089 (16)
N210.0159 (12)0.0191 (11)0.0248 (12)0.0003 (9)0.0120 (10)0.0012 (10)
N220.0207 (14)0.0201 (14)0.0375 (17)0.0034 (11)0.0176 (13)0.0002 (12)
C210.0223 (13)0.0242 (13)0.0455 (16)0.0045 (10)0.0128 (12)0.0054 (11)
C220.0197 (12)0.0170 (11)0.0175 (11)0.0006 (9)0.0116 (9)0.0016 (8)
C230.0223 (13)0.0242 (13)0.0455 (16)0.0045 (10)0.0128 (12)0.0054 (11)
C240.0254 (18)0.021 (2)0.0199 (16)0.0015 (16)0.0134 (13)0.0003 (17)
C250.0253 (16)0.0199 (17)0.0224 (16)0.0002 (13)0.0120 (12)0.0034 (12)
C260.040 (2)0.040 (2)0.034 (2)0.0199 (17)0.0063 (17)0.0089 (16)
C270.052 (11)0.020 (9)0.040 (9)0.002 (9)0.036 (8)0.003 (8)
Geometric parameters (Å, º) top
Ni1—S12.3705 (7)C2—C31.353 (3)
Ni1—S52.3852 (7)C5—C61.538 (4)
Ni1—S72.5195 (7)C6—C71.490 (4)
Ni1—S112.3897 (7)N11—C111.314 (4)
Ni1—S152.3662 (7)N11—C131.367 (3)
Ni1—S172.5450 (7)N11—C141.467 (4)
S1—P11.9879 (8)N11—N210.843 (9)
S2—P11.9436 (8)N11—C231.367 (3)
S3—P12.1272 (9)N11—C241.224 (12)
S3—P22.1325 (8)N12—C111.318 (3)
S4—P21.9431 (8)N12—C121.375 (4)
S5—P21.9877 (8)N12—C151.465 (5)
S6—S72.0583 (8)C11—N211.795 (10)
S6—P12.1290 (8)C12—C131.303 (4)
S7—S82.0629 (8)C12—C221.056 (11)
S8—P22.1123 (8)C12—C231.303 (4)
S11—P111.9893 (8)C13—N211.238 (8)
S12—P111.9435 (8)C13—C221.321 (9)
S13—P112.1273 (8)C14—N211.771 (9)
S13—P122.1152 (8)C14—C240.562 (12)
S14—P121.9419 (8)C15—C161.523 (6)
S15—P121.9879 (8)C16—C171.514 (6)
S16—S172.0629 (8)N21—C211.332 (12)
S16—P112.1153 (8)N21—C231.238 (8)
S17—S182.0552 (8)N21—C241.469 (11)
S18—P122.1243 (8)N22—C211.329 (11)
N1—C11.324 (3)N22—C221.371 (11)
N1—C31.368 (3)N22—C251.462 (11)
N1—C41.460 (3)C22—C231.321 (9)
N2—C11.329 (3)C25—C261.508 (16)
N2—C21.369 (3)C26—C271.510 (16)
N2—C51.472 (3)
S1—Ni1—S593.78 (2)C11—N11—C14125.9 (3)
S1—Ni1—S795.69 (2)C11—N11—C23106.0 (2)
S1—Ni1—S1186.91 (2)C13—N11—C14128.1 (3)
S1—Ni1—S17174.59 (2)N21—N11—C11110.8 (7)
S5—Ni1—S794.43 (2)N21—N11—C1363.0 (6)
S5—Ni1—S11179.01 (2)N21—N11—C1496.3 (7)
S5—Ni1—S1786.00 (2)N21—N11—C2363.0 (6)
S7—Ni1—S1778.95 (2)N21—N11—C2488.6 (8)
S11—Ni1—S786.21 (2)C23—N11—C14128.1 (3)
S11—Ni1—S1793.387 (19)C24—N11—C11110.9 (7)
S15—Ni1—S189.73 (2)C24—N11—C13139.7 (7)
S15—Ni1—S585.57 (2)C24—N11—C23139.7 (7)
S15—Ni1—S7174.57 (2)C11—N12—C12108.2 (2)
S15—Ni1—S1193.72 (2)C11—N12—C15125.8 (3)
S15—Ni1—S1795.64 (2)C12—N12—C15125.9 (3)
P1—S1—Ni1103.71 (3)N11—C11—N12109.6 (2)
P1—S3—P2109.72 (3)N12—C11—N2196.7 (3)
P2—S5—Ni1103.97 (3)C13—C12—N12105.7 (3)
S7—S6—P1101.22 (3)C22—C12—N12152.1 (6)
S6—S7—Ni1105.43 (3)C22—C12—C1367.2 (5)
S6—S7—S8106.62 (3)C22—C12—C2367.2 (5)
S8—S7—Ni1107.08 (3)C23—C12—N12105.7 (3)
S7—S8—P2100.69 (3)C12—C13—N11110.3 (3)
P11—S11—Ni1104.27 (3)C12—C13—C2247.5 (5)
P12—S13—P11110.65 (3)N21—C13—C12112.9 (5)
P12—S15—Ni1103.90 (3)N21—C13—C22118.3 (6)
S17—S16—P11100.07 (3)C22—C13—N11145.3 (5)
S16—S17—Ni1107.68 (3)C24—C14—N1154.0 (13)
S18—S17—Ni1105.58 (3)C24—C14—N2149.5 (13)
S18—S17—S16106.38 (3)N12—C15—C16111.9 (4)
S17—S18—P12101.14 (3)C17—C16—C15110.4 (4)
S1—P1—S3113.28 (3)N11—N21—C1379.7 (7)
S1—P1—S6108.70 (3)N11—N21—C1455.4 (5)
S2—P1—S1119.43 (4)N11—N21—C21168.3 (13)
S2—P1—S3105.74 (3)N11—N21—C2379.7 (7)
S2—P1—S6104.75 (4)N11—N21—C2456.4 (7)
S3—P1—S6103.49 (3)C13—N21—C1187.8 (5)
S4—P2—S3104.56 (3)C13—N21—C14114.7 (6)
S4—P2—S5119.76 (4)C13—N21—C21101.9 (8)
S4—P2—S8105.29 (4)C13—N21—C24127.8 (9)
S5—P2—S3112.69 (4)C14—N21—C1188.0 (4)
S5—P2—S8109.57 (3)C21—N21—C11125.1 (9)
S8—P2—S3103.54 (3)C21—N21—C14131.7 (8)
S11—P11—S13112.33 (3)C21—N21—C24127.0 (9)
S11—P11—S16109.54 (3)C23—N21—C1187.8 (5)
S12—P11—S11119.68 (4)C23—N21—C14114.7 (6)
S12—P11—S13103.60 (3)C23—N21—C21101.9 (8)
S12—P11—S16106.50 (3)C23—N21—C24127.8 (9)
S16—P11—S13103.89 (3)C24—N21—C1179.0 (7)
S13—P12—S18103.20 (3)C21—N22—C22108.6 (8)
S14—P12—S13106.16 (3)C21—N22—C25123.8 (9)
S14—P12—S15119.08 (4)C22—N22—C25127.2 (9)
S14—P12—S18105.25 (3)N22—C21—N21108.8 (10)
S15—P12—S13111.47 (3)C12—C22—C1365.4 (5)
S15—P12—S18110.35 (3)C12—C22—N22117.3 (10)
C1—N1—C3108.68 (19)C12—C22—C2365.4 (5)
C1—N1—C4125.8 (2)C13—C22—N2298.2 (7)
C3—N1—C4125.5 (2)C23—C22—N2298.2 (7)
C1—N2—C2108.46 (19)C12—C23—N11110.3 (3)
C1—N2—C5125.9 (2)C12—C23—C2247.5 (5)
C2—N2—C5125.6 (2)N21—C23—C12112.9 (5)
N1—C1—N2108.7 (2)N21—C23—C22118.3 (6)
C3—C2—N2107.1 (2)C22—C23—N11145.3 (5)
C2—C3—N1107.1 (2)C14—C24—N11104.2 (17)
N2—C5—C6111.6 (2)C14—C24—N21113.6 (17)
C7—C6—C5113.4 (2)N22—C25—C26110.5 (12)
C11—N11—C13106.0 (2)C25—C26—C27113.2 (17)
 

Acknowledgements

The authors thank Charlotte C. Stern for the data acquisition. This work made use of the EPIC, Keck-II, and/or SPID facilities of Northwestern University's NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the Inter­national Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.

References

First citationBonhôte, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K. & Grätzel, M. (1996). Inorg. Chem. 35, 1168–1178.  PubMed Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCody, J. A., Finch, K. B., Reynders, G. J. III, Alexander, G. C. B., Lim, H. G., Näther, C. & Bensch, W. (2012). Inorg. Chem. 51, 13357–13362.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCook, T. R., Zheng, Y.-R. & Stang, P. J. (2013). Chem. Rev. 113, 734–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreudenmann, D., Wolf, S., Wolff, M. & Feldmann, C. (2011). Angew. Chem. Int. Ed. 50, 11050–11060.  Web of Science CrossRef CAS Google Scholar
First citationHuang, Z., Cajipe, V. B., Le Rolland, B., Colombet, P., Schipper, W. J. & Blasse, G. (1992). Eur. J. Solid State Inorg. Chem. 29, 1133–1144.  CAS Google Scholar
First citationSantner, S., Heine, J. & Dehnen, S. (2016). Angew. Chem. Int. Ed. 55, 876–893.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWasserscheid, P. & Welton, T. (2002). Editors. Ionic Liquids in Synthesis, ch. 6, pp. 289–317. Weinheim: Wiley-VCH.  Google Scholar
First citationWu, Y. & Bensch, W. (2008). Inorg. Chem. 47, 7523–7534.  CrossRef ICSD PubMed CAS Google Scholar
First citationZhang, S., Zhang, Y., Zhang, Y., Chen, Z., Watanabe, M. & Deng, Y. (2016). Prog. Mater. Sci. 77, 80–124.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds