organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-MeO-DALT: the freebase of N,N-di­allyl-5-meth­­oxy­tryptamine

CROSSMARK_Color_square_no_text.svg

aCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: andrew@caam.tech

Edited by I. Brito, University of Antofagasta, Chile (Received 7 April 2020; accepted 8 April 2020; online 17 April 2020)

The title compound {systematic name: N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]-N-(prop-2-en-1-yl)prop-2-en-1-amine), C17H22N2O, has a single tryptamine mol­ecule in the asymmetric unit. The mol­ecules are linked by strong N—H⋯N hydrogen bonds into zigzag chains with graph-set notation C(7) along the [010] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Psychedelics have garnered a great deal of study of late as potential therapeutics for mood disorders (Davis et al., 2020[Davis, A. K., Barrett, F. S. & Griffiths, R. R. (2020). J. Contextual Behav. Sci. 15, 39-45.]; Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105-2113.]). Toads in the Bufonidae family release alkaloid secretions when they experience stress. These toads are the genesis of the urban myth of `licking toads' because the secretion contains psychedelic tryptamines. The secretion has contents that can vary greatly from species to species. It is a medley of different chemicals; the skin of the species Bufo alvarius, a desert toad of Arizona, contains a number of indole­alkyl­amines, including bufotenine, O-methyl­bufotenine, and bufoviridine, among many others (Erspamer et al., 1967[Erspamer, V., Vitali, T., Roseghini, M. & Cei, J. M. (1967). Biochem. Pharmacol. 16, 1149-1164.]).

Recent studies have shown that the psychotropic experiences of inhaling dried toad excretion and that of inhaling pure synthetic O-methyl­bufotenine [5-meth­oxy-N,N-di­methyl­tryptamine (5-MeO-DMT)] are markedly different (Uthaug, Lancelotta, van Oorsouw et al., 2019[Uthaug, M. V., Lancelotta, R., van Oorsouw, K., Kuypers, K. P. C., Mason, N., Rak, J., Šuláková, A., Jurok, R., Maryška, M., Kuchař, M., Páleníček, T., Riba, J. & Ramaekers, J. G. (2019). Psychopharmacology, 236, 2653-2666.]; Uthaug, Lancelotta, Szabo et al., 2019[Uthaug, M. V., Lancelotta, R., Szabo, A., Davis, A. K., Riba, J. & Ramaekers, J. G. (2019). Psychpharmacology 237, 773-785.]). The varied experiences suggests that the other tryptamines have significant activity in the psychedelic effects, or that they work in combination through an entourage effect. Accordingly, it is important to understand the pharmacology of not just 5-MeO-DMT, but all of the tryptamines in bufotoxin, and other related mol­ecules.

5-meth­oxy-N,N-di­allyl­tryptamine (5-MeO-DALT), streetname Foxtrot, is a synthetic analog of O-methyl­bufotenine first synthesized by Alexander Shulgin in 2004 (Shulgin & Shulgin, 2016[Shulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=56. Accessed 19 March 2020.]). The compound is noted for its quick onset and rapid drop-off, when compared to other psychotropic tryptamines (Corkery et al., 2012[Corkery, J. M., Durkin, E., Elliott, S., Schifano, F. & Ghodse, A. H. (2012). Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 259-262.]), and can cause acute delerium and rhabdomyolysis (Kalasho & Nielsen, 2016[Kalasho, A. & Nielsen, S. V. (2016). Acta Anaesthesiol. Scand. 60, 1332-1336.]). The pharmacology of the compound demonstrates activity at the 5-hy­droxy­tryptamine (5-HT) receptors, particularly 5-HT1A, 5-HT1D, 5-HT2B, 5-HT6, and 5-HT7, though slightly less active at the 5-HT2A receptor, which is believed to be responsible for most psychotropic activity (Cozzi & Daley, 2016[Cozzi, N. V. & Daley, P. F. (2016). Bioorg. Med. Chem. Lett. 26, 959-964.]). As these mol­ecules become more relevant in the treatment of mood disorders, it will be important to have analytically pure, well-characterized compounds, ideally as crystalline materials. Herein, we report the solid-state structure of 5-meth­oxy-N,N-di­allyl­tryptamine.

The asymmetric unit of 5-meth­oxy-N,N-di­allyl­tryptamine contains a single tryptamine mol­ecule (Fig. 1[link]). The indole unit is nearly planar with a deviation from planarity of 0.015 Å. The meth­oxy group is in the same plane, with the indole and meth­oxy group showing an r.m.s. deviation of only 0.025 Å. The ethyl­amine group is turned significantly from the indole plane, with a C1—C8—C9—C10 torsion angle of 103.7 (2)°. The mol­ecules are held together by an N1—H1⋯N2 hydrogen bond between the indole N—H and the amino nitro­gen atom. These hydrogen bonds join the mol­ecules together along [010] (Table 1[link]). The crystal packing of the title compound is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 (1) 2.16 (1) 2.9880 (18) 162 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of 5-meth­oxy-N,N-di­allyl­tryptamine, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of 5-meth­oxy-N,N-di­allyl­tryptamine, viewed along the a axis. The N—H⋯N hydrogen bonds (Table 1[link]) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

The title compound is similar to that of other 5-O-substituted tryptamines whose structures have been reported, including bufotenine (BUFTEN: Falkenberg, 1972a[Falkenberg, G. (1972a). Acta Cryst. B28, 3075-3083.]), melatonin (MELATN: Wakahara et al., 1972[Wakahara, A., Fujiwara, T. & Tomita, K. (1972). Chem. Lett. 1, 1139-1142.]), 5-MeO-DMT hydro­chloride (MOTYPT: Falkenberg & Carlström, 1971[Falkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411-418.]), 5-meth­oxy­tryptamine (MXTRUP: Quarles et al., 1974[Quarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95-98.]), 5-MeO-DMT and 5-meth­oxy­mono­methyl­tryptamine (QQQAGY & QQQAHA: Bergin et al., 1968[Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.]). The structure is also similar to the freebases of other psychedelic tryptamines that have been reported, including psilocybin (PSILOC: Weber & Petcher, 1974[Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942-946.]), psilocin (PSILIN: Petcher & Weber, 1974[Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946-948.]), N,N-di­methyl­tryptamine (DMTRYP: Falkenberg, 1972b[Falkenberg, G. (1972b). Acta Cryst. B28, 3219-3228.]), N-methyl-N-propyl­tryptamine (WOHYAW: Chad­eayne, et al. 2019[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x190962.]) and norpsilocin (Chadeayne et al., 2020[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 589-593.]).

Synthesis and crystallization

Slow evaporation of an acetone solution of a commercial sample (The Indole Shop) of 5-MeO-DALT freebase resulted in the formation of crystals of 5-meth­oxy-N,N-di­allyl­tryptamine suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H22N2O
Mr 270.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 6.1444 (6), 12.8514 (13), 19.3315 (19)
β (°) 91.626 (3)
V3) 1525.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.3 × 0.1 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.694, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 45375, 2810, 2145
Rint 0.068
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.05
No. of reflections 2810
No. of parameters 186
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.13
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[2-(5-Methoxy-1H-indol-3-yl)ethyl]-N-(prop-2-en-1-yl)prop-2-en-1-amine top
Crystal data top
C17H22N2OF(000) = 584
Mr = 270.36Dx = 1.177 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1444 (6) ÅCell parameters from 7918 reflections
b = 12.8514 (13) Åθ = 3.2–24.5°
c = 19.3315 (19) ŵ = 0.07 mm1
β = 91.626 (3)°T = 296 K
V = 1525.9 (3) Å3PLATE, colourless
Z = 40.3 × 0.1 × 0.03 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2145 reflections with I > 2σ(I)
φ and ω scansRint = 0.068
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.5°, θmin = 3.2°
Tmin = 0.694, Tmax = 0.745h = 77
45375 measured reflectionsk = 1515
2810 independent reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.3975P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.15 e Å3
2810 reflectionsΔρmin = 0.13 e Å3
186 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.036 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atom H1 was found from a difference-Fourier map and refined isotropically, using a DFIX restrain with an N–H distance of 0.86 (1) Å. The isotropic displacement parameter was set to 1.2Ueq of the parent indolic nitrogen atom. All other hydrogen atoms were placed in calculated positions with appropriate carbon-hydrogen bond lengths: (sp2) 0.93 Å, (CH3) 0.96 Å, (CH2) 0.97 Å. Isotropic displacement parameters were set to 1.2Ueq (C) for sp2 and CH2 parent carbon atoms and 1.5Ueq (C-methyl)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4047 (2)0.31452 (11)0.55090 (6)0.0675 (4)
N10.0481 (2)0.15647 (10)0.30952 (7)0.0470 (4)
N20.71726 (19)0.46740 (9)0.22429 (6)0.0382 (3)
C10.1988 (3)0.18855 (12)0.26318 (9)0.0459 (4)
H1A0.1926850.1730760.2161650.055*
C20.1120 (2)0.19241 (11)0.37388 (8)0.0417 (4)
C30.0196 (3)0.17930 (13)0.43823 (9)0.0504 (4)
H30.1094060.1423520.4426940.060*
C40.1243 (3)0.22242 (14)0.49473 (9)0.0541 (5)
H40.0645490.2147860.5381070.065*
C50.3194 (3)0.27783 (13)0.48877 (9)0.0491 (4)
C60.4115 (3)0.29288 (12)0.42553 (8)0.0452 (4)
H60.5397200.3306730.4217480.054*
C70.3063 (2)0.24944 (11)0.36668 (8)0.0392 (4)
C80.3590 (2)0.24612 (11)0.29497 (8)0.0406 (4)
C90.5518 (3)0.29470 (12)0.26205 (9)0.0473 (4)
H9A0.5728770.2620730.2174920.057*
H9B0.6806140.2812610.2908270.057*
C100.5280 (2)0.41216 (11)0.25165 (8)0.0389 (4)
H10A0.4043400.4242960.2203770.047*
H10B0.4938550.4430840.2958090.047*
C110.9078 (2)0.46679 (13)0.27223 (8)0.0445 (4)
H11A1.0290070.5004250.2501780.053*
H11B0.9493420.3953450.2819980.053*
C120.8647 (3)0.52092 (13)0.33844 (9)0.0479 (4)
H120.7915520.5842260.3359030.058*
C130.9215 (3)0.48650 (16)0.39976 (10)0.0649 (5)
H13A0.9948650.4234900.4044130.078*
H13B0.8885700.5249460.4388590.078*
C140.7732 (3)0.42746 (13)0.15593 (8)0.0478 (4)
H14A0.6431380.4267480.1263090.057*
H14B0.8237520.3562570.1608260.057*
C150.9444 (3)0.49012 (14)0.12192 (9)0.0540 (5)
H150.9390740.5620620.1267830.065*
C161.0998 (4)0.45147 (19)0.08615 (11)0.0799 (7)
H16A1.1101880.3798480.0802130.096*
H16B1.2011630.4953180.0663650.096*
C170.6043 (4)0.36914 (19)0.54980 (11)0.0765 (6)
H17A0.6418830.3933350.5955800.115*
H17B0.5899630.4275310.5190370.115*
H17C0.7164410.3236510.5340500.115*
H10.053 (3)0.1114 (13)0.3001 (11)0.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0743 (9)0.0789 (9)0.0489 (8)0.0010 (7)0.0049 (6)0.0074 (6)
N10.0463 (8)0.0388 (8)0.0558 (9)0.0055 (6)0.0007 (6)0.0011 (6)
N20.0355 (6)0.0353 (7)0.0437 (7)0.0011 (5)0.0004 (5)0.0024 (5)
C10.0538 (9)0.0367 (8)0.0475 (9)0.0008 (7)0.0026 (7)0.0016 (7)
C20.0418 (8)0.0321 (8)0.0511 (9)0.0035 (6)0.0001 (7)0.0027 (7)
C30.0470 (9)0.0445 (9)0.0600 (11)0.0000 (7)0.0077 (8)0.0084 (8)
C40.0584 (11)0.0562 (10)0.0481 (10)0.0097 (8)0.0087 (8)0.0089 (8)
C50.0527 (10)0.0472 (9)0.0470 (10)0.0095 (8)0.0031 (8)0.0005 (7)
C60.0432 (8)0.0380 (8)0.0542 (10)0.0029 (7)0.0008 (7)0.0010 (7)
C70.0394 (8)0.0299 (7)0.0482 (9)0.0045 (6)0.0011 (7)0.0017 (6)
C80.0430 (8)0.0284 (7)0.0505 (9)0.0037 (6)0.0036 (7)0.0001 (6)
C90.0470 (9)0.0369 (9)0.0586 (10)0.0028 (7)0.0113 (8)0.0011 (7)
C100.0342 (8)0.0364 (8)0.0459 (9)0.0010 (6)0.0001 (6)0.0000 (6)
C110.0359 (8)0.0437 (9)0.0537 (10)0.0013 (7)0.0023 (7)0.0043 (7)
C120.0481 (9)0.0401 (9)0.0552 (10)0.0033 (7)0.0054 (8)0.0054 (7)
C130.0702 (13)0.0677 (12)0.0559 (11)0.0061 (10)0.0122 (9)0.0051 (9)
C140.0490 (9)0.0482 (9)0.0465 (9)0.0083 (7)0.0035 (7)0.0048 (7)
C150.0577 (11)0.0540 (10)0.0505 (10)0.0133 (8)0.0043 (8)0.0003 (8)
C160.0770 (14)0.0871 (15)0.0769 (14)0.0315 (12)0.0275 (12)0.0193 (12)
C170.0753 (14)0.0892 (16)0.0639 (13)0.0017 (12)0.0156 (10)0.0125 (11)
Geometric parameters (Å, º) top
O1—C51.380 (2)C9—H9B0.9700
O1—C171.414 (2)C9—C101.529 (2)
N1—C11.370 (2)C10—H10A0.9700
N1—C21.374 (2)C10—H10B0.9700
N1—H10.863 (5)C11—H11A0.9700
N2—C101.4735 (18)C11—H11B0.9700
N2—C111.4726 (19)C11—C121.487 (2)
N2—C141.4677 (19)C12—H120.9300
C1—H1A0.9300C12—C131.303 (2)
C1—C81.364 (2)C13—H13A0.9300
C2—C31.392 (2)C13—H13B0.9300
C2—C71.411 (2)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C3—C41.369 (2)C14—C151.492 (2)
C4—H40.9300C15—H150.9300
C4—C51.402 (2)C15—C161.294 (3)
C5—C61.375 (2)C16—H16A0.9300
C6—H60.9300C16—H16B0.9300
C6—C71.408 (2)C17—H17A0.9600
C7—C81.433 (2)C17—H17B0.9600
C8—C91.497 (2)C17—H17C0.9600
C9—H9A0.9700
C5—O1—C17117.69 (15)N2—C10—C9116.70 (12)
C1—N1—C2108.04 (13)N2—C10—H10A108.1
C1—N1—H1123.8 (15)N2—C10—H10B108.1
C2—N1—H1127.0 (15)C9—C10—H10A108.1
C11—N2—C10113.15 (12)C9—C10—H10B108.1
C14—N2—C10111.23 (12)H10A—C10—H10B107.3
C14—N2—C11111.24 (12)N2—C11—H11A109.1
N1—C1—H1A124.4N2—C11—H11B109.1
C8—C1—N1111.17 (14)N2—C11—C12112.40 (13)
C8—C1—H1A124.4H11A—C11—H11B107.9
N1—C2—C3130.91 (15)C12—C11—H11A109.1
N1—C2—C7107.83 (14)C12—C11—H11B109.1
C3—C2—C7121.25 (15)C11—C12—H12117.5
C2—C3—H3121.0C13—C12—C11125.04 (17)
C4—C3—C2118.00 (16)C13—C12—H12117.5
C4—C3—H3121.0C12—C13—H13A120.0
C3—C4—H4119.2C12—C13—H13B120.0
C3—C4—C5121.57 (16)H13A—C13—H13B120.0
C5—C4—H4119.2N2—C14—H14A108.9
O1—C5—C4113.98 (15)N2—C14—H14B108.9
C6—C5—O1124.76 (16)N2—C14—C15113.21 (13)
C6—C5—C4121.26 (16)H14A—C14—H14B107.7
C5—C6—H6120.9C15—C14—H14A108.9
C5—C6—C7118.12 (15)C15—C14—H14B108.9
C7—C6—H6120.9C14—C15—H15117.7
C2—C7—C8107.18 (13)C16—C15—C14124.64 (18)
C6—C7—C2119.78 (14)C16—C15—H15117.7
C6—C7—C8133.00 (14)C15—C16—H16A120.0
C1—C8—C7105.77 (13)C15—C16—H16B120.0
C1—C8—C9127.18 (15)H16A—C16—H16B120.0
C7—C8—C9127.04 (14)O1—C17—H17A109.5
C8—C9—H9A108.9O1—C17—H17B109.5
C8—C9—H9B108.9O1—C17—H17C109.5
C8—C9—C10113.19 (13)H17A—C17—H17B109.5
H9A—C9—H9B107.8H17A—C17—H17C109.5
C10—C9—H9A108.9H17B—C17—H17C109.5
C10—C9—H9B108.9
O1—C5—C6—C7179.25 (14)C3—C4—C5—C61.3 (3)
N1—C1—C8—C70.67 (17)C4—C5—C6—C71.1 (2)
N1—C1—C8—C9179.97 (14)C5—C6—C7—C20.0 (2)
N1—C2—C3—C4178.16 (16)C5—C6—C7—C8177.13 (15)
N1—C2—C7—C6178.18 (13)C6—C7—C8—C1177.21 (16)
N1—C2—C7—C80.40 (16)C6—C7—C8—C92.1 (3)
N2—C11—C12—C13135.82 (18)C7—C2—C3—C40.8 (2)
N2—C14—C15—C16140.91 (19)C7—C8—C9—C1077.2 (2)
C1—N1—C2—C3178.24 (16)C8—C9—C10—N2175.60 (13)
C1—N1—C2—C70.80 (17)C10—N2—C11—C1262.30 (17)
C1—C8—C9—C10103.67 (18)C10—N2—C14—C15172.28 (13)
C2—N1—C1—C80.94 (18)C11—N2—C10—C965.85 (17)
C2—C3—C4—C50.3 (2)C11—N2—C14—C1560.60 (18)
C2—C7—C8—C10.16 (16)C14—N2—C10—C960.23 (18)
C2—C7—C8—C9179.46 (14)C14—N2—C11—C12171.63 (13)
C3—C2—C7—C61.0 (2)C17—O1—C5—C4178.50 (16)
C3—C2—C7—C8178.75 (14)C17—O1—C5—C61.8 (2)
C3—C4—C5—O1178.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.86 (1)2.15 (1)2.9880 (18)162 (2)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105–2113.  Web of Science CAS PubMed Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x190962.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 589–593.  CSD CrossRef IUCr Journals Google Scholar
First citationCorkery, J. M., Durkin, E., Elliott, S., Schifano, F. & Ghodse, A. H. (2012). Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 259–262.  CrossRef CAS PubMed Google Scholar
First citationCozzi, N. V. & Daley, P. F. (2016). Bioorg. Med. Chem. Lett. 26, 959–964.  CrossRef CAS PubMed Google Scholar
First citationDavis, A. K., Barrett, F. S. & Griffiths, R. R. (2020). J. Contextual Behav. Sci. 15, 39–45.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErspamer, V., Vitali, T., Roseghini, M. & Cei, J. M. (1967). Biochem. Pharmacol. 16, 1149–1164.  CrossRef CAS PubMed Google Scholar
First citationFalkenberg, G. (1972a). Acta Cryst. B28, 3075–3083.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFalkenberg, G. (1972b). Acta Cryst. B28, 3219–3228.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFalkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411–418.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKalasho, A. & Nielsen, S. V. (2016). Acta Anaesthesiol. Scand. 60, 1332–1336.  CrossRef CAS PubMed Google Scholar
First citationPetcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.  CSD CrossRef Web of Science Google Scholar
First citationQuarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95–98.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=56. Accessed 19 March 2020.  Google Scholar
First citationUthaug, M. V., Lancelotta, R., Szabo, A., Davis, A. K., Riba, J. & Ramaekers, J. G. (2019). Psychpharmacology 237, 773-785.  CrossRef Google Scholar
First citationUthaug, M. V., Lancelotta, R., van Oorsouw, K., Kuypers, K. P. C., Mason, N., Rak, J., Šuláková, A., Jurok, R., Maryška, M., Kuchař, M., Páleníček, T., Riba, J. & Ramaekers, J. G. (2019). Psychopharmacology, 236, 2653–2666.  CrossRef CAS PubMed Google Scholar
First citationWakahara, A., Fujiwara, T. & Tomita, K. (1972). Chem. Lett. 1, 1139–1142.  CSD CrossRef Google Scholar
First citationWeber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942–946.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds