organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tri­methyl 4,4′,4′′-(ethene-1,1,2-tri­yl)tribenzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Southern Connecticut State University, 501 Crescent, Street, New Haven, CT, 06515-1355, USA, and bDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
*Correspondence e-mail: lesleym1@southernct.edu

Edited by M. Zeller, Purdue University, USA (Received 21 February 2020; accepted 26 March 2020; online 31 March 2020)

The title compound, C26H22O6, is formed as the major product from the reaction between syn-1,2-bis­(pinacolatoboron)-1,2-bis­(4-methyl­carb­oxy­phen­yl)ethene and excess methyl 4-iodo­benzoate in basic DMSO using a palladium catalyst at 80°C via Suzuki coupling followed by protodeboronation. Crystals were grown by slow evaporation of a hexa­nes solution at room temperature.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Protodeboronation is a well-known side reaction resulting in the replacement of boryl groups with hydrogen (Lee & Cheon, 2016[Lee, C.-Y. & Cheon, C.-H. (2016). Development of Organic Transformations Based on Protodeboronation. In Boron Reagents in Synthesis, ACS Symposium Series Vol. 1236, edited by A. Coca, pp. 483-523. Washington: ACS.]). Initial studies of reductive deboronation have been reported for alkene (Brown & Murray, 1959[Brown, H. C. & Murray, K. J. (1959). J. Am. Chem. Soc. 81, 4108-4109.], 1986[Brown, H. C. & Murray, K. J. (1986). Tetrahedron, 42, 5497-5504.]) and alkyne (Brown & Zweifel, 1961[Brown, H. C. & Zweifel, G. (1961). J. Am. Chem. Soc. 83, 3834-3840.]; Zweifel et al., 1971[Zweifel, G., Clark, G. M. & Polston, N. L. (1971). J. Am. Chem. Soc. 93, 3395-3399.]) derivatives under acidic conditions as an alternative method to the hydrogenation of π-bonds. More recent studies have focused on the beneficial outcomes of protodeboronation for the control of regioselectivity in reactions with aryl­boronic acid or aryl­boronate ester derivatives and heteroatomic ring structures utilizing both acidic (Beckett et al., 1993[Beckett, M. A., Gilmore, R. J. & Idrees, K. (1993). J. Organomet. Chem. 455, 47-49.]; Kuivila & Nahabedian, 1961[Kuivila, H. G. & Nahabedian, K. V. (1961). J. Am. Chem. Soc. 83, 2159-2163.]; Nahabedian & Kuivila, 1961[Nahabedian, K. V. & Kuivila, H. G. (1961). J. Am. Chem. Soc. 83, 2167-2174.]) and basic (Lozada et al., 2014[Lozada, J., Liu, Z. & Perrin, D. M. (2014). J. Org. Chem. 79, 5365-5368.]) reaction conditions. Protodeboronation has also been reported for reactions involving metal catalysis employing copper (Liu et al., 2014[Liu, C., Li, X., Wu, Y. & Qiu, J. (2014). RSC Adv. 4, 54307-54311.]), gold (Barker et al., 2015[Barker, G., Webster, S., Johnson, D. G., Curley, R., Andrews, M., Young, P. C., Macgregor, S. A. & Lee, A.-L. (2015). J. Org. Chem. 80, 9807-9816.]) and palladium (Lai et al., 2006[Lai, R.-Y., Chen, C.-L. & Liu, S.-T. (2006). Jnl Chin. Chem. Soc. 53, 979-985.]; Brown & Armstrong, 1996[Brown, S. D. & Armstrong, R. W. (1996). J. Am. Chem. Soc. 118, 6331-6332.]). The palladium-catalyzed Suzuki coupling reaction (Lennox & Lloyd-Jones, 2014[Lennox, A. J. J. & Lloyd-Jones, G. C. (2014). Chem. Soc. Rev. 43, 412-443.]; Suzuki, 2011[Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.]; Miyaura & Suzuki, 1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]) commonly employs basic conditions in hygroscopic solvents such as DMSO and DMF in addition to water for the dissolution of the base. These reactions are therefore prone to protodeboronation especially when elevated temperatures are employed. The title compound, (I), was the major product isolated in the attempted synthesis of 1,1′,2,2′-tetra­kis­(4-methyl­carb­oxy­phen­yl)ethene via the Pd-catalyzed double Suzuki coupling reaction (Ishiyama et al., 1993[Ishiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. (1993). J. Am. Chem. Soc. 115, 11018-11019.]; Ishiyama, Yamamoto et al., 1996[Ishiyama, T., Yamamoto, M. & Miyaura, N. (1996). Chem. Lett. 25, 1117-1118.]) between syn-1,2-bis­(pinacolatoboron)-1,2-bis­(4-methyl­carb­oxy­phen­yl)ethene (Ishiyama, Matsuda et al., 1996[Ishiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A. & Miyaura, N. (1996). Organometallics, 15, 713-720.]) and methyl 4-iodo­benzoate. The mol­ecular structure of (I) is shown in Fig. 1[link].

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level.

The title compound (I) contains four mol­ecules in the unit cell. The three methyl 4-carb­oxy­phenyl rings 1 (C11–C16), 2 (C21–C26), and 3 (C31–C36) form dihedral angles of 23.37 (6), 65.95 (4), and 33.72 (7)°, respectively, with the plane including the alkene vector (C10/C11) made up from the atoms C1, C10, C11, C21 and C31. The angles between the meth­oxy groups and the phenyl rings were calculated and indicate the groups are close to coplanar with angles of 6.3 (1)° for the mean planes defined by (C11–C16) and (C17, O2, C18); 12.5 (1)° for the mean planes defined by (C21–C26) and (C27, O4, C28); and 6.7 (2)° for the mean planes defined by (C31–C36) and (C37, O6, C38). The bond lengths and angles conform to typical value ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-S19.]). There are a number of short C—O⋯H—C inter­molecular inter­actions (Table 1[link]) observed in the crystal packing as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O5i 0.95 2.51 3.4082 (18) 159
C18—H18B⋯O4ii 0.98 2.72 3.5520 (19) 144
C28—H28C⋯O6iii 0.98 2.85 3.769 (2) 156
C38—H38A⋯O1iv 0.98 2.79 3.275 (2) 111
C38—H38B⋯O3v 0.98 2.57 3.339 (2) 135
C38—H38C⋯O2vi 0.98 2.66 3.595 (2) 159
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+3, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+1, -z.
[Figure 2]
Figure 2
A view of the packing diagram showing short C—O⋯H—C inter­molecular inter­actions.

Synthesis and crystallization

A 100-ml Schlenk flask was equipped with a magnetic stir bar and charged with syn-1,2-bis­(pinacolatoboron)-1,2-bis­(4-methyl­carb­oxy­phen­yl)ethene (3.710 g, 6.77 mmol), methyl 4-iodo­benzoate (3.723 g, 14.2 mmol), Pd2(dba)3 (0.155 g, 2.5 mol%), and P(o-tol­yl)3 (0.108 g, 5.25 mol%). The reaction flask was evacuated for a period of 30 minutes and placed under a dry N2 (g) atmosphere. An aqueous solution of degassed K2CO3 (2.42 ml, 7 M, 2.5 equiv.) was added via syringe followed by the addition of degassed DME (50 ml). A condenser was attached and the reaction was heated to reflux under an N2 atmosphere for 24 h. The reaction mixture was cooled to room temperature and water and diethyl ether were added. The orange ether layer was isolated and dried in vacuo. Recrystallization from ether/hexa­nes gave a white precipitate that was isolated by filtration and washed with hexane (2 × 10 ml) yielding a white solid (2.345 g, 81%; m.p. 397 K). The hexane layers were combined and slow evaporation in air gave a crop of colorless crystals of (I). Analytical data for C26H22O6; calculated (found): %C: 72.55 (71.28); %H: 5.15 (5.16); HRMS (EI: m + 1+) calculated (found): 431.142 (431.149); 1H NMR (300 MHz, CDCl3): 8.01 (d, J = 7.8 Hz, 2H, Ar—H), 7.99 (d, J = 7.8 Hz, 2H, Ar—H), 7.81 (d, J = 6.3 Hz, 2H, Ar—H), 7.36 (d, J = 7.8 Hz, 2H, Ar—H), 7.25 (d, J = 7.8 Hz, 2H, Ar—H), 7.12 (s, 1H, =CH), 7.07 (d, J = 6.3 Hz, 2H, Ar—H), 3.94 (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 3.88 (s, 3H, OCH3); 13C{1H} (75 MHz, CDCl3): 166.71(1 C, C=O), 166.70 (1 C, C=O), 166.64 (1 C, C=O), 146.6 (1 C, C4—Ar), 144.1 (1 C, C4—Ar), 143.0 (1 C, C4—Ar), 141.0 (1 C, Ph(Ph)—C=), 130.4 (2 C, Ar—C—H), 130.1 (2 C, Ar—C—H), 129.8 (1 C, C1—Ar), 129.7 (overlapped 2 C, Ar—C—H and 1 C, =CH), 129.6 (1 C, C1—Ar), 129.5 (2 C, Ar—C–-H) 129.4 (2 C, Ar—C—H), 128.8 (1 C, C1—Ar), 127.6 (2 C, Ar—C—H), 52.22 (1 C, OCH3), 52.18 (1 C, OCH3), 52.08 (1 C, OCH3).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H22O6
Mr 430.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.1631 (6), 19.253 (2), 18.0743 (19)
β (°) 96.830 (1)
V3) 2129.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.4 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.964, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 19788, 5132, 4358
Rint 0.021
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.02
No. of reflections 5132
No. of parameters 292
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.23
Computer programs: SMART and SAINT (Bruker, 2006[Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Trimethyl 4,4',4''-(ethene-1,1,2-triyl)tribenzoate top
Crystal data top
C26H22O6F(000) = 904
Mr = 430.43Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1631 (6) ÅCell parameters from 6842 reflections
b = 19.253 (2) Åθ = 2.3–28.2°
c = 18.0743 (19) ŵ = 0.10 mm1
β = 96.830 (1)°T = 100 K
V = 2129.5 (4) Å3Needle, colourless
Z = 40.4 × 0.12 × 0.06 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
4358 reflections with I > 2σ(I)
ω and φ scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.964, Tmax = 1.00h = 87
19788 measured reflectionsk = 2525
5132 independent reflectionsl = 2420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0603P)2 + 1.2194P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5132 reflectionsΔρmax = 0.42 e Å3
292 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed geometrically and treated with riding constraints and thermal parameters derived from the C atoms to which they were attached. All –CH and CH2 groups had H—Uiso fixed at 1.2 times the C atom. Methyls were idealized as freely rotating CH3 groups with H—Uiso fixed at 1.5 times that of the C atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4240 (2)0.76631 (7)0.24887 (7)0.0368 (3)
O21.39707 (17)0.77704 (6)0.12488 (6)0.0271 (2)
O30.73744 (19)0.41585 (6)0.52402 (6)0.0316 (3)
O41.06230 (17)0.40164 (6)0.48215 (6)0.0276 (2)
O50.37892 (18)0.37535 (6)0.03473 (6)0.0307 (3)
O60.20613 (18)0.28543 (6)0.09445 (6)0.0286 (3)
C10.5152 (2)0.52320 (7)0.18403 (8)0.0195 (3)
C100.5799 (2)0.57397 (7)0.14079 (8)0.0209 (3)
H100.49620.57850.09340.025*
C110.7611 (2)0.62360 (7)0.15587 (8)0.0204 (3)
C120.8586 (2)0.64214 (8)0.22724 (8)0.0251 (3)
H120.79980.62490.26990.030*
C131.0391 (2)0.68521 (8)0.23623 (9)0.0260 (3)
H131.10350.69720.28490.031*
C141.1273 (2)0.71115 (7)0.17448 (8)0.0219 (3)
C151.0257 (2)0.69628 (7)0.10334 (8)0.0216 (3)
H151.08100.71550.06090.026*
C160.8438 (2)0.65346 (7)0.09441 (8)0.0215 (3)
H160.77390.64420.04570.026*
C171.3300 (2)0.75414 (8)0.18812 (9)0.0236 (3)
C181.5992 (2)0.81570 (8)0.13491 (10)0.0286 (3)
H18A1.58060.85710.16500.043*
H18B1.63900.82970.08620.043*
H18C1.71520.78650.16040.043*
C210.6187 (2)0.50418 (7)0.26047 (8)0.0189 (3)
C220.4967 (2)0.51013 (7)0.32031 (8)0.0201 (3)
H220.35730.53180.31320.024*
C230.5766 (2)0.48481 (7)0.39003 (8)0.0204 (3)
H230.49150.48880.43030.024*
C240.7814 (2)0.45347 (7)0.40100 (8)0.0189 (3)
C250.9079 (2)0.44951 (8)0.34232 (8)0.0212 (3)
H251.04980.42960.35010.025*
C260.8270 (2)0.47469 (8)0.27240 (8)0.0220 (3)
H260.91390.47180.23250.026*
C270.8533 (2)0.42235 (7)0.47540 (8)0.0216 (3)
C281.1394 (3)0.36749 (9)0.55144 (9)0.0318 (4)
H28A1.09500.39440.59320.048*
H28B1.29920.36420.55640.048*
H28C1.07650.32080.55180.048*
C310.3270 (2)0.47814 (7)0.15514 (8)0.0188 (3)
C320.3224 (2)0.40802 (8)0.17503 (8)0.0207 (3)
H320.44090.38910.20720.025*
C330.1488 (2)0.36576 (7)0.14883 (8)0.0216 (3)
H330.14910.31810.16260.026*
C340.0268 (2)0.39329 (7)0.10213 (8)0.0200 (3)
C350.0243 (2)0.46303 (8)0.08209 (8)0.0210 (3)
H350.14360.48200.05040.025*
C360.1507 (2)0.50481 (7)0.10801 (8)0.0205 (3)
H360.15100.55230.09360.025*
C370.2229 (2)0.35197 (8)0.07316 (8)0.0220 (3)
C380.3997 (3)0.24411 (9)0.07264 (10)0.0312 (4)
H38A0.52240.26270.09640.047*
H38B0.37240.19590.08840.047*
H38C0.43530.24580.01840.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (6)0.0451 (7)0.0285 (6)0.0181 (5)0.0013 (5)0.0022 (5)
O20.0243 (5)0.0288 (6)0.0287 (6)0.0083 (4)0.0056 (4)0.0029 (4)
O30.0357 (6)0.0374 (6)0.0231 (6)0.0127 (5)0.0088 (5)0.0084 (5)
O40.0238 (5)0.0371 (6)0.0208 (5)0.0077 (4)0.0018 (4)0.0055 (4)
O50.0261 (6)0.0356 (6)0.0282 (6)0.0044 (5)0.0060 (5)0.0026 (5)
O60.0270 (5)0.0254 (5)0.0320 (6)0.0065 (4)0.0029 (4)0.0014 (4)
C10.0184 (6)0.0222 (7)0.0178 (7)0.0020 (5)0.0010 (5)0.0010 (5)
C100.0200 (6)0.0237 (7)0.0184 (7)0.0007 (5)0.0000 (5)0.0005 (5)
C110.0176 (6)0.0192 (7)0.0241 (7)0.0010 (5)0.0015 (5)0.0003 (5)
C120.0288 (7)0.0271 (7)0.0197 (7)0.0048 (6)0.0042 (6)0.0022 (6)
C130.0277 (7)0.0282 (8)0.0208 (7)0.0037 (6)0.0022 (6)0.0006 (6)
C140.0203 (6)0.0190 (6)0.0265 (7)0.0008 (5)0.0026 (5)0.0009 (5)
C150.0229 (7)0.0206 (7)0.0220 (7)0.0003 (5)0.0050 (5)0.0021 (5)
C160.0235 (7)0.0211 (7)0.0192 (7)0.0016 (5)0.0011 (5)0.0009 (5)
C170.0241 (7)0.0210 (7)0.0254 (7)0.0014 (5)0.0014 (6)0.0018 (6)
C180.0229 (7)0.0262 (8)0.0373 (9)0.0079 (6)0.0067 (6)0.0047 (6)
C210.0191 (6)0.0191 (6)0.0180 (6)0.0007 (5)0.0006 (5)0.0005 (5)
C220.0171 (6)0.0222 (7)0.0206 (7)0.0028 (5)0.0007 (5)0.0004 (5)
C230.0209 (6)0.0223 (7)0.0187 (7)0.0017 (5)0.0050 (5)0.0003 (5)
C240.0200 (6)0.0184 (6)0.0176 (6)0.0005 (5)0.0002 (5)0.0001 (5)
C250.0166 (6)0.0258 (7)0.0206 (7)0.0033 (5)0.0006 (5)0.0005 (5)
C260.0199 (6)0.0282 (7)0.0187 (7)0.0026 (5)0.0051 (5)0.0009 (6)
C270.0248 (7)0.0203 (7)0.0192 (7)0.0038 (5)0.0004 (5)0.0000 (5)
C280.0354 (8)0.0336 (8)0.0243 (8)0.0096 (7)0.0056 (6)0.0061 (6)
C310.0180 (6)0.0218 (7)0.0168 (6)0.0008 (5)0.0035 (5)0.0014 (5)
C320.0192 (6)0.0233 (7)0.0190 (7)0.0028 (5)0.0010 (5)0.0023 (5)
C330.0255 (7)0.0187 (6)0.0207 (7)0.0003 (5)0.0034 (5)0.0010 (5)
C340.0199 (6)0.0247 (7)0.0155 (6)0.0028 (5)0.0032 (5)0.0031 (5)
C350.0197 (6)0.0270 (7)0.0160 (6)0.0022 (5)0.0004 (5)0.0028 (5)
C360.0226 (7)0.0201 (6)0.0189 (7)0.0013 (5)0.0028 (5)0.0037 (5)
C370.0241 (7)0.0259 (7)0.0163 (7)0.0018 (6)0.0038 (5)0.0025 (5)
C380.0295 (8)0.0297 (8)0.0331 (9)0.0109 (6)0.0017 (7)0.0055 (7)
Geometric parameters (Å, º) top
O1—C171.2021 (19)C21—C221.3934 (19)
O2—C171.3356 (19)C21—C261.3967 (19)
O2—C181.4439 (17)C22—H220.9500
O3—C271.2030 (18)C22—C231.3857 (19)
O4—C271.3400 (17)C23—H230.9500
O4—C281.4439 (18)C23—C241.3921 (19)
O5—C371.2046 (18)C24—C251.391 (2)
O6—C371.3380 (19)C24—C271.4905 (19)
O6—C381.4491 (17)C25—H250.9500
C1—C101.341 (2)C25—C261.390 (2)
C1—C211.4968 (19)C26—H260.9500
C1—C311.4922 (19)C28—H28A0.9800
C10—H100.9500C28—H28B0.9800
C10—C111.4704 (19)C28—H28C0.9800
C11—C121.403 (2)C31—C321.398 (2)
C11—C161.399 (2)C31—C361.3963 (19)
C12—H120.9500C32—H320.9500
C12—C131.382 (2)C32—C331.382 (2)
C13—H130.9500C33—H330.9500
C13—C141.391 (2)C33—C341.396 (2)
C14—C151.391 (2)C34—C351.391 (2)
C14—C171.495 (2)C34—C371.4891 (19)
C15—H150.9500C35—H350.9500
C15—C161.386 (2)C35—C361.382 (2)
C16—H160.9500C36—H360.9500
C18—H18A0.9800C38—H38A0.9800
C18—H18B0.9800C38—H38B0.9800
C18—H18C0.9800C38—H38C0.9800
C17—O2—C18114.39 (12)C23—C24—C27118.03 (12)
C27—O4—C28115.36 (12)C25—C24—C23119.75 (13)
C37—O6—C38114.49 (12)C25—C24—C27122.17 (12)
C10—C1—C21126.32 (13)C24—C25—H25120.0
C10—C1—C31119.49 (13)C26—C25—C24120.08 (13)
C31—C1—C21114.16 (12)C26—C25—H25120.0
C1—C10—H10115.2C21—C26—H26119.8
C1—C10—C11129.60 (13)C25—C26—C21120.40 (13)
C11—C10—H10115.2C25—C26—H26119.8
C12—C11—C10124.65 (13)O3—C27—O4123.37 (13)
C16—C11—C10117.39 (13)O3—C27—C24124.22 (13)
C16—C11—C12117.95 (13)O4—C27—C24112.41 (12)
C11—C12—H12119.6O4—C28—H28A109.5
C13—C12—C11120.77 (14)O4—C28—H28B109.5
C13—C12—H12119.6O4—C28—H28C109.5
C12—C13—H13119.8H28A—C28—H28B109.5
C12—C13—C14120.47 (14)H28A—C28—H28C109.5
C14—C13—H13119.8H28B—C28—H28C109.5
C13—C14—C15119.48 (13)C32—C31—C1120.65 (12)
C13—C14—C17117.72 (13)C36—C31—C1121.06 (13)
C15—C14—C17122.80 (13)C36—C31—C32118.29 (12)
C14—C15—H15120.0C31—C32—H32119.4
C16—C15—C14119.93 (13)C33—C32—C31121.24 (13)
C16—C15—H15120.0C33—C32—H32119.4
C11—C16—H16119.4C32—C33—H33120.1
C15—C16—C11121.20 (13)C32—C33—C34119.78 (13)
C15—C16—H16119.4C34—C33—H33120.1
O1—C17—O2123.56 (14)C33—C34—C37123.26 (13)
O1—C17—C14124.15 (14)C35—C34—C33119.49 (13)
O2—C17—C14112.30 (12)C35—C34—C37117.24 (13)
O2—C18—H18A109.5C34—C35—H35119.8
O2—C18—H18B109.5C36—C35—C34120.39 (13)
O2—C18—H18C109.5C36—C35—H35119.8
H18A—C18—H18B109.5C31—C36—H36119.6
H18A—C18—H18C109.5C35—C36—C31120.81 (13)
H18B—C18—H18C109.5C35—C36—H36119.6
C22—C21—C1119.09 (12)O5—C37—O6123.55 (13)
C22—C21—C26118.98 (13)O5—C37—C34124.19 (14)
C26—C21—C1121.67 (12)O6—C37—C34112.26 (12)
C21—C22—H22119.6O6—C38—H38A109.5
C23—C22—C21120.73 (13)O6—C38—H38B109.5
C23—C22—H22119.6O6—C38—H38C109.5
C22—C23—H23120.0H38A—C38—H38B109.5
C22—C23—C24119.99 (13)H38A—C38—H38C109.5
C24—C23—H23120.0H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.952.513.4082 (18)159
C18—H18B···O4ii0.982.723.5520 (19)144
C28—H28C···O6iii0.982.853.769 (2)156
C38—H38A···O1iv0.982.793.275 (2)111
C38—H38B···O3v0.982.573.339 (2)135
C38—H38C···O2vi0.982.663.595 (2)159
Symmetry codes: (i) x, y+1, z; (ii) x+3, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y+1/2, z1/2; (vi) x+1, y+1, z.
 

Footnotes

Current address: Institute of Marine Sciences, Department of Oceanography, Middle East Technical University, Erdemli, Mersin, Turkey.

Acknowledgements

MJGL thanks IDW and HKUST for hosting a sabbatical leave used to complete this work.

Funding information

Funding for this research was provided by: CSU Faculty Research Grant (grant to MJGL); CSU Faculty Travel Grant (grant to MJGL).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19.  CrossRef Web of Science Google Scholar
First citationBarker, G., Webster, S., Johnson, D. G., Curley, R., Andrews, M., Young, P. C., Macgregor, S. A. & Lee, A.-L. (2015). J. Org. Chem. 80, 9807–9816.  CrossRef CAS PubMed Google Scholar
First citationBeckett, M. A., Gilmore, R. J. & Idrees, K. (1993). J. Organomet. Chem. 455, 47–49.  CrossRef CAS Google Scholar
First citationBrown, H. C. & Murray, K. J. (1959). J. Am. Chem. Soc. 81, 4108–4109.  CrossRef CAS Google Scholar
First citationBrown, H. C. & Murray, K. J. (1986). Tetrahedron, 42, 5497–5504.  CrossRef CAS Google Scholar
First citationBrown, H. C. & Zweifel, G. (1961). J. Am. Chem. Soc. 83, 3834–3840.  CrossRef CAS Google Scholar
First citationBrown, S. D. & Armstrong, R. W. (1996). J. Am. Chem. Soc. 118, 6331–6332.  CrossRef CAS Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. (1993). J. Am. Chem. Soc. 115, 11018–11019.  CrossRef CAS Google Scholar
First citationIshiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A. & Miyaura, N. (1996). Organometallics, 15, 713–720.  CSD CrossRef CAS Web of Science Google Scholar
First citationIshiyama, T., Yamamoto, M. & Miyaura, N. (1996). Chem. Lett. 25, 1117–1118.  CrossRef Google Scholar
First citationKuivila, H. G. & Nahabedian, K. V. (1961). J. Am. Chem. Soc. 83, 2159–2163.  CrossRef CAS Google Scholar
First citationLai, R.-Y., Chen, C.-L. & Liu, S.-T. (2006). Jnl Chin. Chem. Soc. 53, 979–985.  CrossRef CAS Google Scholar
First citationLee, C.-Y. & Cheon, C.-H. (2016). Development of Organic Transformations Based on Protodeboronation. In Boron Reagents in Synthesis, ACS Symposium Series Vol. 1236, edited by A. Coca, pp. 483–523. Washington: ACS.  Google Scholar
First citationLennox, A. J. J. & Lloyd-Jones, G. C. (2014). Chem. Soc. Rev. 43, 412–443.  CrossRef CAS PubMed Google Scholar
First citationLiu, C., Li, X., Wu, Y. & Qiu, J. (2014). RSC Adv. 4, 54307–54311.  CrossRef CAS Google Scholar
First citationLozada, J., Liu, Z. & Perrin, D. M. (2014). J. Org. Chem. 79, 5365–5368.  CrossRef CAS PubMed Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationNahabedian, K. V. & Kuivila, H. G. (1961). J. Am. Chem. Soc. 83, 2167–2174.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722–6737.  Web of Science CrossRef CAS Google Scholar
First citationZweifel, G., Clark, G. M. & Polston, N. L. (1971). J. Am. Chem. Soc. 93, 3395–3399.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds