organic compounds
Trimethyl 4,4′,4′′-(ethene-1,1,2-triyl)tribenzoate
aDepartment of Chemistry, Southern Connecticut State University, 501 Crescent, Street, New Haven, CT, 06515-1355, USA, and bDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
*Correspondence e-mail: lesleym1@southernct.edu
The title compound, C26H22O6, is formed as the major product from the reaction between syn-1,2-bis(pinacolatoboron)-1,2-bis(4-methylcarboxyphenyl)ethene and excess methyl 4-iodobenzoate in basic DMSO using a palladium catalyst at 80°C via Suzuki coupling followed by protodeboronation. Crystals were grown by slow evaporation of a hexanes solution at room temperature.
Keywords: crystal structure; protodeboronation; Suzuki coupling.
CCDC reference: 1984328
Structure description
Protodeboronation is a well-known side reaction resulting in the replacement of boryl groups with hydrogen (Lee & Cheon, 2016). Initial studies of reductive deboronation have been reported for alkene (Brown & Murray, 1959, 1986) and alkyne (Brown & Zweifel, 1961; Zweifel et al., 1971) derivatives under acidic conditions as an alternative method to the hydrogenation of π-bonds. More recent studies have focused on the beneficial outcomes of protodeboronation for the control of regioselectivity in reactions with arylboronic acid or arylboronate ester derivatives and heteroatomic ring structures utilizing both acidic (Beckett et al., 1993; Kuivila & Nahabedian, 1961; Nahabedian & Kuivila, 1961) and basic (Lozada et al., 2014) reaction conditions. Protodeboronation has also been reported for reactions involving metal catalysis employing copper (Liu et al., 2014), gold (Barker et al., 2015) and palladium (Lai et al., 2006; Brown & Armstrong, 1996). The palladium-catalyzed Suzuki coupling reaction (Lennox & Lloyd-Jones, 2014; Suzuki, 2011; Miyaura & Suzuki, 1995) commonly employs basic conditions in hygroscopic solvents such as DMSO and DMF in addition to water for the dissolution of the base. These reactions are therefore prone to protodeboronation especially when elevated temperatures are employed. The title compound, (I), was the major product isolated in the attempted synthesis of 1,1′,2,2′-tetrakis(4-methylcarboxyphenyl)ethene via the Pd-catalyzed double Suzuki coupling reaction (Ishiyama et al., 1993; Ishiyama, Yamamoto et al., 1996) between syn-1,2-bis(pinacolatoboron)-1,2-bis(4-methylcarboxyphenyl)ethene (Ishiyama, Matsuda et al., 1996) and methyl 4-iodobenzoate. The molecular structure of (I) is shown in Fig. 1.
The title compound (I) contains four molecules in the et al., 1987). There are a number of short C—O⋯H—C intermolecular interactions (Table 1) observed in the crystal packing as shown in Fig. 2.
The three methyl 4-carboxyphenyl rings 1 (C11–C16), 2 (C21–C26), and 3 (C31–C36) form dihedral angles of 23.37 (6), 65.95 (4), and 33.72 (7)°, respectively, with the plane including the alkene vector (C10/C11) made up from the atoms C1, C10, C11, C21 and C31. The angles between the methoxy groups and the phenyl rings were calculated and indicate the groups are close to coplanar with angles of 6.3 (1)° for the mean planes defined by (C11–C16) and (C17, O2, C18); 12.5 (1)° for the mean planes defined by (C21–C26) and (C27, O4, C28); and 6.7 (2)° for the mean planes defined by (C31–C36) and (C37, O6, C38). The bond lengths and angles conform to typical value ranges (AllenSynthesis and crystallization
A 100-ml Schlenk flask was equipped with a magnetic stir bar and charged with syn-1,2-bis(pinacolatoboron)-1,2-bis(4-methylcarboxyphenyl)ethene (3.710 g, 6.77 mmol), methyl 4-iodobenzoate (3.723 g, 14.2 mmol), Pd2(dba)3 (0.155 g, 2.5 mol%), and P(o-tolyl)3 (0.108 g, 5.25 mol%). The reaction flask was evacuated for a period of 30 minutes and placed under a dry N2 (g) atmosphere. An aqueous solution of degassed K2CO3 (2.42 ml, 7 M, 2.5 equiv.) was added via syringe followed by the addition of degassed DME (50 ml). A condenser was attached and the reaction was heated to reflux under an N2 atmosphere for 24 h. The reaction mixture was cooled to room temperature and water and diethyl ether were added. The orange ether layer was isolated and dried in vacuo. Recrystallization from ether/hexanes gave a white precipitate that was isolated by filtration and washed with hexane (2 × 10 ml) yielding a white solid (2.345 g, 81%; m.p. 397 K). The hexane layers were combined and slow evaporation in air gave a crop of colorless crystals of (I). Analytical data for C26H22O6; calculated (found): %C: 72.55 (71.28); %H: 5.15 (5.16); HRMS (EI: m + 1+) calculated (found): 431.142 (431.149); 1H NMR (300 MHz, CDCl3): 8.01 (d, J = 7.8 Hz, 2H, Ar—H), 7.99 (d, J = 7.8 Hz, 2H, Ar—H), 7.81 (d, J = 6.3 Hz, 2H, Ar—H), 7.36 (d, J = 7.8 Hz, 2H, Ar—H), 7.25 (d, J = 7.8 Hz, 2H, Ar—H), 7.12 (s, 1H, =CH), 7.07 (d, J = 6.3 Hz, 2H, Ar—H), 3.94 (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 3.88 (s, 3H, OCH3); 13C{1H} (75 MHz, CDCl3): 166.71(1 C, C=O), 166.70 (1 C, C=O), 166.64 (1 C, C=O), 146.6 (1 C, C4—Ar), 144.1 (1 C, C4—Ar), 143.0 (1 C, C4—Ar), 141.0 (1 C, Ph(Ph)—C=), 130.4 (2 C, Ar—C—H), 130.1 (2 C, Ar—C—H), 129.8 (1 C, C1—Ar), 129.7 (overlapped 2 C, Ar—C—H and 1 C, =CH), 129.6 (1 C, C1—Ar), 129.5 (2 C, Ar—C–-H) 129.4 (2 C, Ar—C—H), 128.8 (1 C, C1—Ar), 127.6 (2 C, Ar—C—H), 52.22 (1 C, OCH3), 52.18 (1 C, OCH3), 52.08 (1 C, OCH3).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1984328
https://doi.org/10.1107/S2414314620004174/zl4040sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620004174/zl4040Isup2.hkl
Data collection: SMART (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C26H22O6 | F(000) = 904 |
Mr = 430.43 | Dx = 1.343 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1631 (6) Å | Cell parameters from 6842 reflections |
b = 19.253 (2) Å | θ = 2.3–28.2° |
c = 18.0743 (19) Å | µ = 0.10 mm−1 |
β = 96.830 (1)° | T = 100 K |
V = 2129.5 (4) Å3 | Needle, colourless |
Z = 4 | 0.4 × 0.12 × 0.06 mm |
Bruker SMART APEX CCD area detector diffractometer | 4358 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.021 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 28.3°, θmin = 1.6° |
Tmin = 0.964, Tmax = 1.00 | h = −8→7 |
19788 measured reflections | k = −25→25 |
5132 independent reflections | l = −24→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0603P)2 + 1.2194P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5132 reflections | Δρmax = 0.42 e Å−3 |
292 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms were placed geometrically and treated with riding constraints and thermal parameters derived from the C atoms to which they were attached. All –CH and CH2 groups had H—Uiso fixed at 1.2 times the C atom. Methyls were idealized as freely rotating CH3 groups with H—Uiso fixed at 1.5 times that of the C atom. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.4240 (2) | 0.76631 (7) | 0.24887 (7) | 0.0368 (3) | |
O2 | 1.39707 (17) | 0.77704 (6) | 0.12488 (6) | 0.0271 (2) | |
O3 | 0.73744 (19) | 0.41585 (6) | 0.52402 (6) | 0.0316 (3) | |
O4 | 1.06230 (17) | 0.40164 (6) | 0.48215 (6) | 0.0276 (2) | |
O5 | −0.37892 (18) | 0.37535 (6) | 0.03473 (6) | 0.0307 (3) | |
O6 | −0.20613 (18) | 0.28543 (6) | 0.09445 (6) | 0.0286 (3) | |
C1 | 0.5152 (2) | 0.52320 (7) | 0.18403 (8) | 0.0195 (3) | |
C10 | 0.5799 (2) | 0.57397 (7) | 0.14079 (8) | 0.0209 (3) | |
H10 | 0.4962 | 0.5785 | 0.0934 | 0.025* | |
C11 | 0.7611 (2) | 0.62360 (7) | 0.15587 (8) | 0.0204 (3) | |
C12 | 0.8586 (2) | 0.64214 (8) | 0.22724 (8) | 0.0251 (3) | |
H12 | 0.7998 | 0.6249 | 0.2699 | 0.030* | |
C13 | 1.0391 (2) | 0.68521 (8) | 0.23623 (9) | 0.0260 (3) | |
H13 | 1.1035 | 0.6972 | 0.2849 | 0.031* | |
C14 | 1.1273 (2) | 0.71115 (7) | 0.17448 (8) | 0.0219 (3) | |
C15 | 1.0257 (2) | 0.69628 (7) | 0.10334 (8) | 0.0216 (3) | |
H15 | 1.0810 | 0.7155 | 0.0609 | 0.026* | |
C16 | 0.8438 (2) | 0.65346 (7) | 0.09441 (8) | 0.0215 (3) | |
H16 | 0.7739 | 0.6442 | 0.0457 | 0.026* | |
C17 | 1.3300 (2) | 0.75414 (8) | 0.18812 (9) | 0.0236 (3) | |
C18 | 1.5992 (2) | 0.81570 (8) | 0.13491 (10) | 0.0286 (3) | |
H18A | 1.5806 | 0.8571 | 0.1650 | 0.043* | |
H18B | 1.6390 | 0.8297 | 0.0862 | 0.043* | |
H18C | 1.7152 | 0.7865 | 0.1604 | 0.043* | |
C21 | 0.6187 (2) | 0.50418 (7) | 0.26047 (8) | 0.0189 (3) | |
C22 | 0.4967 (2) | 0.51013 (7) | 0.32031 (8) | 0.0201 (3) | |
H22 | 0.3573 | 0.5318 | 0.3132 | 0.024* | |
C23 | 0.5766 (2) | 0.48481 (7) | 0.39003 (8) | 0.0204 (3) | |
H23 | 0.4915 | 0.4888 | 0.4303 | 0.024* | |
C24 | 0.7814 (2) | 0.45347 (7) | 0.40100 (8) | 0.0189 (3) | |
C25 | 0.9079 (2) | 0.44951 (8) | 0.34232 (8) | 0.0212 (3) | |
H25 | 1.0498 | 0.4296 | 0.3501 | 0.025* | |
C26 | 0.8270 (2) | 0.47469 (8) | 0.27240 (8) | 0.0220 (3) | |
H26 | 0.9139 | 0.4718 | 0.2325 | 0.026* | |
C27 | 0.8533 (2) | 0.42235 (7) | 0.47540 (8) | 0.0216 (3) | |
C28 | 1.1394 (3) | 0.36749 (9) | 0.55144 (9) | 0.0318 (4) | |
H28A | 1.0950 | 0.3944 | 0.5932 | 0.048* | |
H28B | 1.2992 | 0.3642 | 0.5564 | 0.048* | |
H28C | 1.0765 | 0.3208 | 0.5518 | 0.048* | |
C31 | 0.3270 (2) | 0.47814 (7) | 0.15514 (8) | 0.0188 (3) | |
C32 | 0.3224 (2) | 0.40802 (8) | 0.17503 (8) | 0.0207 (3) | |
H32 | 0.4409 | 0.3891 | 0.2072 | 0.025* | |
C33 | 0.1488 (2) | 0.36576 (7) | 0.14883 (8) | 0.0216 (3) | |
H33 | 0.1491 | 0.3181 | 0.1626 | 0.026* | |
C34 | −0.0268 (2) | 0.39329 (7) | 0.10213 (8) | 0.0200 (3) | |
C35 | −0.0243 (2) | 0.46303 (8) | 0.08209 (8) | 0.0210 (3) | |
H35 | −0.1436 | 0.4820 | 0.0504 | 0.025* | |
C36 | 0.1507 (2) | 0.50481 (7) | 0.10801 (8) | 0.0205 (3) | |
H36 | 0.1510 | 0.5523 | 0.0936 | 0.025* | |
C37 | −0.2229 (2) | 0.35197 (8) | 0.07316 (8) | 0.0220 (3) | |
C38 | −0.3997 (3) | 0.24411 (9) | 0.07264 (10) | 0.0312 (4) | |
H38A | −0.5224 | 0.2627 | 0.0964 | 0.047* | |
H38B | −0.3724 | 0.1959 | 0.0884 | 0.047* | |
H38C | −0.4353 | 0.2458 | 0.0184 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0355 (6) | 0.0451 (7) | 0.0285 (6) | −0.0181 (5) | −0.0013 (5) | −0.0022 (5) |
O2 | 0.0243 (5) | 0.0288 (6) | 0.0287 (6) | −0.0083 (4) | 0.0056 (4) | −0.0029 (4) |
O3 | 0.0357 (6) | 0.0374 (6) | 0.0231 (6) | 0.0127 (5) | 0.0088 (5) | 0.0084 (5) |
O4 | 0.0238 (5) | 0.0371 (6) | 0.0208 (5) | 0.0077 (4) | −0.0018 (4) | 0.0055 (4) |
O5 | 0.0261 (6) | 0.0356 (6) | 0.0282 (6) | −0.0044 (5) | −0.0060 (5) | 0.0026 (5) |
O6 | 0.0270 (5) | 0.0254 (5) | 0.0320 (6) | −0.0065 (4) | −0.0029 (4) | −0.0014 (4) |
C1 | 0.0184 (6) | 0.0222 (7) | 0.0178 (7) | 0.0020 (5) | 0.0010 (5) | −0.0010 (5) |
C10 | 0.0200 (6) | 0.0237 (7) | 0.0184 (7) | 0.0007 (5) | 0.0000 (5) | −0.0005 (5) |
C11 | 0.0176 (6) | 0.0192 (7) | 0.0241 (7) | 0.0010 (5) | 0.0015 (5) | 0.0003 (5) |
C12 | 0.0288 (7) | 0.0271 (7) | 0.0197 (7) | −0.0048 (6) | 0.0042 (6) | 0.0022 (6) |
C13 | 0.0277 (7) | 0.0282 (8) | 0.0208 (7) | −0.0037 (6) | −0.0022 (6) | −0.0006 (6) |
C14 | 0.0203 (6) | 0.0190 (6) | 0.0265 (7) | −0.0008 (5) | 0.0026 (5) | −0.0009 (5) |
C15 | 0.0229 (7) | 0.0206 (7) | 0.0220 (7) | 0.0003 (5) | 0.0050 (5) | 0.0021 (5) |
C16 | 0.0235 (7) | 0.0211 (7) | 0.0192 (7) | 0.0016 (5) | −0.0011 (5) | −0.0009 (5) |
C17 | 0.0241 (7) | 0.0210 (7) | 0.0254 (7) | −0.0014 (5) | 0.0014 (6) | −0.0018 (6) |
C18 | 0.0229 (7) | 0.0262 (8) | 0.0373 (9) | −0.0079 (6) | 0.0067 (6) | −0.0047 (6) |
C21 | 0.0191 (6) | 0.0191 (6) | 0.0180 (6) | −0.0007 (5) | 0.0006 (5) | 0.0005 (5) |
C22 | 0.0171 (6) | 0.0222 (7) | 0.0206 (7) | 0.0028 (5) | 0.0007 (5) | 0.0004 (5) |
C23 | 0.0209 (6) | 0.0223 (7) | 0.0187 (7) | 0.0017 (5) | 0.0050 (5) | −0.0003 (5) |
C24 | 0.0200 (6) | 0.0184 (6) | 0.0176 (6) | 0.0005 (5) | −0.0002 (5) | −0.0001 (5) |
C25 | 0.0166 (6) | 0.0258 (7) | 0.0206 (7) | 0.0033 (5) | 0.0006 (5) | 0.0005 (5) |
C26 | 0.0199 (6) | 0.0282 (7) | 0.0187 (7) | 0.0026 (5) | 0.0051 (5) | 0.0009 (6) |
C27 | 0.0248 (7) | 0.0203 (7) | 0.0192 (7) | 0.0038 (5) | 0.0004 (5) | 0.0000 (5) |
C28 | 0.0354 (8) | 0.0336 (8) | 0.0243 (8) | 0.0096 (7) | −0.0056 (6) | 0.0061 (6) |
C31 | 0.0180 (6) | 0.0218 (7) | 0.0168 (6) | −0.0008 (5) | 0.0035 (5) | −0.0014 (5) |
C32 | 0.0192 (6) | 0.0233 (7) | 0.0190 (7) | 0.0028 (5) | −0.0010 (5) | 0.0023 (5) |
C33 | 0.0255 (7) | 0.0187 (6) | 0.0207 (7) | −0.0003 (5) | 0.0034 (5) | 0.0010 (5) |
C34 | 0.0199 (6) | 0.0247 (7) | 0.0155 (6) | −0.0028 (5) | 0.0032 (5) | −0.0031 (5) |
C35 | 0.0197 (6) | 0.0270 (7) | 0.0160 (6) | 0.0022 (5) | 0.0004 (5) | 0.0028 (5) |
C36 | 0.0226 (7) | 0.0201 (6) | 0.0189 (7) | 0.0013 (5) | 0.0028 (5) | 0.0037 (5) |
C37 | 0.0241 (7) | 0.0259 (7) | 0.0163 (7) | −0.0018 (6) | 0.0038 (5) | −0.0025 (5) |
C38 | 0.0295 (8) | 0.0297 (8) | 0.0331 (9) | −0.0109 (6) | −0.0017 (7) | −0.0055 (7) |
O1—C17 | 1.2021 (19) | C21—C22 | 1.3934 (19) |
O2—C17 | 1.3356 (19) | C21—C26 | 1.3967 (19) |
O2—C18 | 1.4439 (17) | C22—H22 | 0.9500 |
O3—C27 | 1.2030 (18) | C22—C23 | 1.3857 (19) |
O4—C27 | 1.3400 (17) | C23—H23 | 0.9500 |
O4—C28 | 1.4439 (18) | C23—C24 | 1.3921 (19) |
O5—C37 | 1.2046 (18) | C24—C25 | 1.391 (2) |
O6—C37 | 1.3380 (19) | C24—C27 | 1.4905 (19) |
O6—C38 | 1.4491 (17) | C25—H25 | 0.9500 |
C1—C10 | 1.341 (2) | C25—C26 | 1.390 (2) |
C1—C21 | 1.4968 (19) | C26—H26 | 0.9500 |
C1—C31 | 1.4922 (19) | C28—H28A | 0.9800 |
C10—H10 | 0.9500 | C28—H28B | 0.9800 |
C10—C11 | 1.4704 (19) | C28—H28C | 0.9800 |
C11—C12 | 1.403 (2) | C31—C32 | 1.398 (2) |
C11—C16 | 1.399 (2) | C31—C36 | 1.3963 (19) |
C12—H12 | 0.9500 | C32—H32 | 0.9500 |
C12—C13 | 1.382 (2) | C32—C33 | 1.382 (2) |
C13—H13 | 0.9500 | C33—H33 | 0.9500 |
C13—C14 | 1.391 (2) | C33—C34 | 1.396 (2) |
C14—C15 | 1.391 (2) | C34—C35 | 1.391 (2) |
C14—C17 | 1.495 (2) | C34—C37 | 1.4891 (19) |
C15—H15 | 0.9500 | C35—H35 | 0.9500 |
C15—C16 | 1.386 (2) | C35—C36 | 1.382 (2) |
C16—H16 | 0.9500 | C36—H36 | 0.9500 |
C18—H18A | 0.9800 | C38—H38A | 0.9800 |
C18—H18B | 0.9800 | C38—H38B | 0.9800 |
C18—H18C | 0.9800 | C38—H38C | 0.9800 |
C17—O2—C18 | 114.39 (12) | C23—C24—C27 | 118.03 (12) |
C27—O4—C28 | 115.36 (12) | C25—C24—C23 | 119.75 (13) |
C37—O6—C38 | 114.49 (12) | C25—C24—C27 | 122.17 (12) |
C10—C1—C21 | 126.32 (13) | C24—C25—H25 | 120.0 |
C10—C1—C31 | 119.49 (13) | C26—C25—C24 | 120.08 (13) |
C31—C1—C21 | 114.16 (12) | C26—C25—H25 | 120.0 |
C1—C10—H10 | 115.2 | C21—C26—H26 | 119.8 |
C1—C10—C11 | 129.60 (13) | C25—C26—C21 | 120.40 (13) |
C11—C10—H10 | 115.2 | C25—C26—H26 | 119.8 |
C12—C11—C10 | 124.65 (13) | O3—C27—O4 | 123.37 (13) |
C16—C11—C10 | 117.39 (13) | O3—C27—C24 | 124.22 (13) |
C16—C11—C12 | 117.95 (13) | O4—C27—C24 | 112.41 (12) |
C11—C12—H12 | 119.6 | O4—C28—H28A | 109.5 |
C13—C12—C11 | 120.77 (14) | O4—C28—H28B | 109.5 |
C13—C12—H12 | 119.6 | O4—C28—H28C | 109.5 |
C12—C13—H13 | 119.8 | H28A—C28—H28B | 109.5 |
C12—C13—C14 | 120.47 (14) | H28A—C28—H28C | 109.5 |
C14—C13—H13 | 119.8 | H28B—C28—H28C | 109.5 |
C13—C14—C15 | 119.48 (13) | C32—C31—C1 | 120.65 (12) |
C13—C14—C17 | 117.72 (13) | C36—C31—C1 | 121.06 (13) |
C15—C14—C17 | 122.80 (13) | C36—C31—C32 | 118.29 (12) |
C14—C15—H15 | 120.0 | C31—C32—H32 | 119.4 |
C16—C15—C14 | 119.93 (13) | C33—C32—C31 | 121.24 (13) |
C16—C15—H15 | 120.0 | C33—C32—H32 | 119.4 |
C11—C16—H16 | 119.4 | C32—C33—H33 | 120.1 |
C15—C16—C11 | 121.20 (13) | C32—C33—C34 | 119.78 (13) |
C15—C16—H16 | 119.4 | C34—C33—H33 | 120.1 |
O1—C17—O2 | 123.56 (14) | C33—C34—C37 | 123.26 (13) |
O1—C17—C14 | 124.15 (14) | C35—C34—C33 | 119.49 (13) |
O2—C17—C14 | 112.30 (12) | C35—C34—C37 | 117.24 (13) |
O2—C18—H18A | 109.5 | C34—C35—H35 | 119.8 |
O2—C18—H18B | 109.5 | C36—C35—C34 | 120.39 (13) |
O2—C18—H18C | 109.5 | C36—C35—H35 | 119.8 |
H18A—C18—H18B | 109.5 | C31—C36—H36 | 119.6 |
H18A—C18—H18C | 109.5 | C35—C36—C31 | 120.81 (13) |
H18B—C18—H18C | 109.5 | C35—C36—H36 | 119.6 |
C22—C21—C1 | 119.09 (12) | O5—C37—O6 | 123.55 (13) |
C22—C21—C26 | 118.98 (13) | O5—C37—C34 | 124.19 (14) |
C26—C21—C1 | 121.67 (12) | O6—C37—C34 | 112.26 (12) |
C21—C22—H22 | 119.6 | O6—C38—H38A | 109.5 |
C23—C22—C21 | 120.73 (13) | O6—C38—H38B | 109.5 |
C23—C22—H22 | 119.6 | O6—C38—H38C | 109.5 |
C22—C23—H23 | 120.0 | H38A—C38—H38B | 109.5 |
C22—C23—C24 | 119.99 (13) | H38A—C38—H38C | 109.5 |
C24—C23—H23 | 120.0 | H38B—C38—H38C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O5i | 0.95 | 2.51 | 3.4082 (18) | 159 |
C18—H18B···O4ii | 0.98 | 2.72 | 3.5520 (19) | 144 |
C28—H28C···O6iii | 0.98 | 2.85 | 3.769 (2) | 156 |
C38—H38A···O1iv | 0.98 | 2.79 | 3.275 (2) | 111 |
C38—H38B···O3v | 0.98 | 2.57 | 3.339 (2) | 135 |
C38—H38C···O2vi | 0.98 | 2.66 | 3.595 (2) | 159 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+3, y+1/2, −z+1/2; (iii) x+1, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) x−1, −y+1/2, z−1/2; (vi) −x+1, −y+1, −z. |
Footnotes
‡Current address: Institute of Marine Sciences, Department of Oceanography, Middle East Technical University, Erdemli, Mersin, Turkey.
Acknowledgements
MJGL thanks IDW and HKUST for hosting a sabbatical leave used to complete this work.
Funding information
Funding for this research was provided by: CSU Faculty Research Grant (grant to MJGL); CSU Faculty Travel Grant (grant to MJGL).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19. CrossRef Web of Science Google Scholar
Barker, G., Webster, S., Johnson, D. G., Curley, R., Andrews, M., Young, P. C., Macgregor, S. A. & Lee, A.-L. (2015). J. Org. Chem. 80, 9807–9816. CrossRef CAS PubMed Google Scholar
Beckett, M. A., Gilmore, R. J. & Idrees, K. (1993). J. Organomet. Chem. 455, 47–49. CrossRef CAS Google Scholar
Brown, H. C. & Murray, K. J. (1959). J. Am. Chem. Soc. 81, 4108–4109. CrossRef CAS Google Scholar
Brown, H. C. & Murray, K. J. (1986). Tetrahedron, 42, 5497–5504. CrossRef CAS Google Scholar
Brown, H. C. & Zweifel, G. (1961). J. Am. Chem. Soc. 83, 3834–3840. CrossRef CAS Google Scholar
Brown, S. D. & Armstrong, R. W. (1996). J. Am. Chem. Soc. 118, 6331–6332. CrossRef CAS Google Scholar
Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ishiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. (1993). J. Am. Chem. Soc. 115, 11018–11019. CrossRef CAS Google Scholar
Ishiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A. & Miyaura, N. (1996). Organometallics, 15, 713–720. CSD CrossRef CAS Web of Science Google Scholar
Ishiyama, T., Yamamoto, M. & Miyaura, N. (1996). Chem. Lett. 25, 1117–1118. CrossRef Google Scholar
Kuivila, H. G. & Nahabedian, K. V. (1961). J. Am. Chem. Soc. 83, 2159–2163. CrossRef CAS Google Scholar
Lai, R.-Y., Chen, C.-L. & Liu, S.-T. (2006). Jnl Chin. Chem. Soc. 53, 979–985. CrossRef CAS Google Scholar
Lee, C.-Y. & Cheon, C.-H. (2016). Development of Organic Transformations Based on Protodeboronation. In Boron Reagents in Synthesis, ACS Symposium Series Vol. 1236, edited by A. Coca, pp. 483–523. Washington: ACS. Google Scholar
Lennox, A. J. J. & Lloyd-Jones, G. C. (2014). Chem. Soc. Rev. 43, 412–443. CrossRef CAS PubMed Google Scholar
Liu, C., Li, X., Wu, Y. & Qiu, J. (2014). RSC Adv. 4, 54307–54311. CrossRef CAS Google Scholar
Lozada, J., Liu, Z. & Perrin, D. M. (2014). J. Org. Chem. 79, 5365–5368. CrossRef CAS PubMed Google Scholar
Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483. Web of Science CrossRef CAS Google Scholar
Nahabedian, K. V. & Kuivila, H. G. (1961). J. Am. Chem. Soc. 83, 2167–2174. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722–6737. Web of Science CrossRef CAS Google Scholar
Zweifel, G., Clark, G. M. & Polston, N. L. (1971). J. Am. Chem. Soc. 93, 3395–3399. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.