metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(N-adamantyl-N′-ethyl­imidazolium) tetra­bromido­manganate(II)

aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany, and bDepartment Life, Light and Matter, Universität Rostock, 18051 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 January 2020; accepted 25 February 2020; online 3 March 2020)

The title compound, (C15H23N2)2[MnBr4], comprises two N-adamantyl-N′-ethyl­imidazolium cations and one tetra­hedral [MnBr4]2− anion. Next to Coulombic inter­actions, weak hydrogen bonds of the type C—H⋯Br consolidate the crystal packing, building up a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds comprising the tetra­bromido­manganate(II) anion [MnBr4]2– are well known and may find applications as green-light-emitting diodes (Xu et al., 2017[Xu, L.-J., Sun, C.-Z., Xiao, H., Wu, Y. & Chen, Z.-N. (2017). Adv. Mater. 29, 1605739.]). The title compound is a further member of the so far small group of manganese complexes with imidazolium cations (Del Sesto et al., 2008[Del Sesto, R. E., McCleskey, T. M., Burrell, A. K., Baker, G. A., Thompson, J. D., Scott, B. L., Wilkes, J. S. & Williams, P. (2008). Chem. Commun. pp. 447-449.]; Peppel et al., 2019[Peppel, T., Geppert-Rybczyńska, M., Neise, C., Kragl, U. & Köckerling, M. (2019). Materials, 12, 3764-3779.]). To the best of our knowledge, no other structure of a complex salt has been published so far that contains the N-adamantyl-N′-ethyl-imidazolium cation. Nevertheless, several compounds with adamantyl-imidazolium units have been described to be useful in anion-exchange membranes (Wang et al., 2018[Wang, J., Wang, X., Zu, D., Hua, Y., Li, Y., Yang, S., Wei, H. & Ding, Y. (2018). J. Membr. Sci. 545, 116-125.]). Compounds containing the adamantyl-substituted imidazolium cation, for which structures have been established, contain two adamantyl (Ad) units, e.g. [(Ad)2Im]+ (Arduengo et al., 1991[Arduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]; Grasa et al., 2004[Grasa, G. A., Singh, R., Scott, N. M., Stevens, E. D. & Nolan, S. P. (2004). Chem. Commun. pp. 2890-2891.]).

The asymmetric unit of the title compound comprises two N-adamantyl-N′-ethyl-imidazolium cations and one tetra­bromido­manganate(II) anion (Fig. 1[link]). The latter has a slightly distorted tetra­hedral geometry, with the shortest Mn—Br bond length being 2.4983 (6) Å (Mn1—Br4) and the longest 2.5194 (5) Å (Mn1—Br2). The Mn—Br bond lengths are in good agreement with reference values (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]). The Br—Mn—Br angles range from 105.88 (2)° for Br4—Mn1—Br2 to 113.61 (2)° for Br1—Mn1—Br2. The mol­ecular entities of the cation, viz. the ethyl group, the imidazole ring and the adamantyl group, have normal distances and angles. In the crystal (Fig. 2[link]), cations and complex anions are linked via an intricate network of weak C—H⋯Br hydrogen bonds into a three-dimensional network (Fig. 3[link], Table 1[link]). Br1 is the acceptor of four contacts, Br2 of three, Br3 of one and Br4 of four.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br2 0.95 2.84 3.766 (3) 166
C2—H2⋯Br1i 0.95 2.92 3.864 (3) 170
C3—H3⋯Br4ii 0.95 2.99 3.785 (3) 143
C5—H5C⋯Br4ii 0.98 3.00 3.738 (3) 134
C13—H13A⋯Br2iii 0.99 3.05 3.941 (3) 151
C16—H16⋯Br2 0.95 3.04 3.929 (3) 156
C16—H16⋯Br4 0.95 3.01 3.549 (3) 117
C17—H17⋯Br1iv 0.95 2.82 3.719 (3) 159
C18—H18⋯Br3v 0.95 2.82 3.718 (3) 158
C19—H19A⋯Br1v 0.99 2.81 3.781 (3) 168
C22—H22A⋯Br4 0.99 2.93 3.898 (3) 166
C28—H28A⋯Br1iv 0.99 3.00 3.939 (3) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of (C15H23N2)2[MnBr4] with atom labelling.
[Figure 2]
Figure 2
A view of the unit-cell contents in projection down the a axis.
[Figure 3]
Figure 3
Selected hydrogen bonds between the cations and anions in the crystal structure of (C15H23N2)2[MnBr4]. Anisotropic displacement ellipsoids are shown at the 50% probability level. Symmetry operators refer to Table 1[link].

Synthesis and crystallization

N-adamantyl-N′-ethyl-imidazolium bromide (0.19 g, 6 mmol) and MnBr2·2H2O (0.07 g, 3 mmol) were mixed in methanol (3 ml). The mixture was heated for 3 d at 453 K in a sand bath. After cooling to room temperature, a clear beige-coloured solution was obtained. The solvent was partly removed and large light-green crystals were grown through slow diffusion of diethyl ether or ethyl acetate into the solution. The yield was nearly qu­anti­tative. The compound was also accessible through stirring the starting mixture for several hours at ambient temperature. M.p. 501 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Nine reflections were omitted from the structure refinement because their intensities were affected by the beam stop. Details can be found in the refine_special_details field in the CIF.

Table 2
Experimental details

Crystal data
Chemical formula (C15H23N2)2[MnBr4]
Mr 837.29
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 123
a, b, c (Å) 18.020 (1), 18.742 (1), 19.740 (1)
V3) 6666.6 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.22
Crystal size (mm) 0.22 × 0.22 × 0.05
 
Data collection
Diffractometer Bruker APEX KappaII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 182157, 5883, 5029
Rint 0.084
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.21
No. of reflections 5883
No. of parameters 354
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(N-adamantyl-N'-ethylimidazolium) tetrabromidomanganate(II) top
Crystal data top
(C15H23N2)2[MnBr4]Dx = 1.668 Mg m3
Mr = 837.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9879 reflections
a = 18.020 (1) Åθ = 2.4–28.3°
b = 18.742 (1) ŵ = 5.22 mm1
c = 19.740 (1) ÅT = 123 K
V = 6666.6 (7) Å3Irregular block, green
Z = 80.22 × 0.22 × 0.05 mm
F(000) = 3352
Data collection top
Bruker APEX KappaII CCD
diffractometer
5029 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.084
φ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2121
k = 2222
182157 measured reflectionsl = 2323
5883 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0237P)2 + 8.9922P]
where P = (Fo2 + 2Fc2)/3
5883 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.40086 (3)0.31017 (2)0.38565 (2)0.0165 (1)
Br10.49923 (2)0.26519 (2)0.30615 (2)0.02108 (8)
Br20.45216 (2)0.37029 (2)0.48975 (2)0.02183 (9)
Br30.32660 (2)0.40185 (2)0.32299 (2)0.02521 (9)
Br40.32464 (2)0.20800 (2)0.42767 (2)0.02693 (9)
N10.3626 (2)0.5761 (1)0.4061 (1)0.0195 (6)
C10.4241 (2)0.5403 (2)0.3913 (2)0.0175 (7)
H10.43930.49690.41200.021*
N20.4607 (1)0.5746 (1)0.3433 (1)0.0169 (6)
C20.4208 (2)0.6354 (2)0.3273 (2)0.0252 (8)
H20.43420.67030.29460.030*
C30.3598 (2)0.6362 (2)0.3664 (2)0.0269 (8)
H30.32200.67150.36650.032*
C40.3072 (2)0.5525 (2)0.4560 (2)0.0257 (8)
H4A0.31490.50130.46580.031*
H4B0.25700.55800.43630.031*
C50.3115 (2)0.5940 (2)0.5210 (2)0.0256 (8)
H5A0.36280.59420.53750.038*
H5B0.27930.57180.55500.038*
H5C0.29520.64320.51300.038*
C60.5299 (2)0.5498 (2)0.3095 (2)0.0169 (7)
C70.5569 (2)0.4811 (2)0.3433 (2)0.0187 (7)
H7A0.56680.49000.39190.022*
H7B0.51820.44380.33980.022*
C80.6278 (2)0.4557 (2)0.3085 (2)0.0201 (7)
H80.64560.41090.33070.024*
C90.6113 (2)0.4407 (2)0.2337 (2)0.0223 (7)
H9A0.65690.42390.21060.027*
H9B0.57310.40290.22990.027*
C100.5835 (2)0.5092 (2)0.2001 (2)0.0242 (8)
H100.57280.49970.15120.029*
C110.6438 (2)0.5669 (2)0.2057 (2)0.0284 (8)
H11A0.68950.55070.18240.034*
H11B0.62660.61130.18360.034*
C120.6606 (2)0.5814 (2)0.2805 (2)0.0249 (8)
H120.69990.61890.28420.030*
C130.5895 (2)0.6073 (2)0.3154 (2)0.0206 (7)
H13A0.59960.61740.36370.025*
H13B0.57200.65190.29370.025*
C140.5133 (2)0.5353 (2)0.2349 (2)0.0224 (7)
H14A0.47390.49880.23090.027*
H14B0.49560.57960.21280.027*
C150.6877 (2)0.5128 (2)0.3142 (2)0.0254 (8)
H15A0.73370.49610.29180.030*
H15B0.69890.52200.36250.030*
N30.3189 (1)0.2326 (1)0.6412 (1)0.0188 (6)
C160.2941 (2)0.2756 (2)0.5933 (2)0.0170 (7)
H160.32270.29380.55670.020*
N40.2229 (1)0.2893 (1)0.6046 (1)0.0176 (6)
C170.2018 (2)0.2531 (2)0.6622 (2)0.0241 (7)
H170.15380.25320.68210.029*
C180.2615 (2)0.2178 (2)0.6850 (2)0.0244 (8)
H180.26380.18830.72400.029*
C190.3932 (2)0.2006 (2)0.6441 (2)0.0238 (7)
H19A0.41370.20650.69030.029*
H19B0.42640.22590.61210.029*
C200.3911 (2)0.1228 (2)0.6265 (2)0.0339 (9)
H20A0.37460.11710.57950.051*
H20B0.35650.09810.65680.051*
H20C0.44090.10230.63170.051*
C210.1721 (2)0.3319 (2)0.5610 (2)0.0151 (6)
C220.2154 (2)0.3683 (2)0.5044 (2)0.0184 (7)
H22A0.24160.33200.47690.022*
H22B0.25280.40100.52400.022*
C230.1614 (2)0.4104 (2)0.4596 (2)0.0200 (7)
H230.18950.43420.42230.024*
C240.1223 (2)0.4669 (2)0.5024 (2)0.0234 (7)
H24A0.15940.50010.52180.028*
H24B0.08780.49480.47370.028*
C250.0792 (2)0.4307 (2)0.5594 (2)0.0223 (7)
H250.05350.46780.58730.027*
C260.0218 (2)0.3798 (2)0.5297 (2)0.0263 (8)
H26A0.01390.40680.50150.032*
H26B0.00610.35630.56670.032*
C270.0606 (2)0.3233 (2)0.4863 (2)0.0250 (7)
H270.02280.29030.46660.030*
C280.1149 (2)0.2810 (2)0.5303 (2)0.0198 (7)
H28A0.08760.25620.56690.024*
H28B0.14040.24450.50240.024*
C290.1040 (2)0.3593 (2)0.4292 (2)0.0245 (8)
H29A0.06950.38610.39950.029*
H29B0.12930.32270.40140.029*
C300.1326 (2)0.3882 (2)0.6044 (2)0.0198 (7)
H30A0.10470.36460.64140.024*
H30B0.16960.42070.62500.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0176 (3)0.0162 (2)0.0156 (2)0.0006 (2)0.0003 (2)0.0033 (2)
Br10.0200 (2)0.0267 (2)0.0165 (2)0.0050 (1)0.0003 (1)0.0028 (1)
Br20.0295 (2)0.0212 (2)0.0148 (2)0.0047 (1)0.0028 (1)0.0020 (1)
Br30.0272 (2)0.0236 (2)0.0249 (2)0.0070 (1)0.0093 (1)0.0060 (1)
Br40.0278 (2)0.0201 (2)0.0330 (2)0.0077 (1)0.0104 (2)0.0088 (1)
N10.020 (2)0.017 (1)0.022 (1)0.003 (1)0.004 (1)0.002 (1)
C10.022 (2)0.013 (2)0.018 (2)0.000 (1)0.000 (1)0.001 (1)
N20.021 (1)0.014 (1)0.016 (1)0.000 (1)0.002 (1)0.000 (1)
C20.030 (2)0.019 (2)0.026 (2)0.005 (1)0.005 (2)0.006 (1)
C30.029 (2)0.021 (2)0.031 (2)0.008 (2)0.005 (2)0.003 (2)
C40.025 (2)0.021 (2)0.032 (2)0.003 (1)0.010 (2)0.001 (1)
C50.022 (2)0.032 (2)0.022 (2)0.001 (2)0.002 (1)0.007 (2)
C60.021 (2)0.015 (2)0.015 (2)0.001 (1)0.002 (1)0.000 (1)
C70.025 (2)0.016 (2)0.015 (2)0.001 (1)0.000 (1)0.002 (1)
C80.022 (2)0.019 (2)0.020 (2)0.003 (1)0.001 (1)0.000 (1)
C90.026 (2)0.021 (2)0.020 (2)0.002 (1)0.004 (1)0.006 (1)
C100.033 (2)0.026 (2)0.013 (2)0.005 (2)0.001 (1)0.001 (1)
C110.035 (2)0.027 (2)0.024 (2)0.004 (2)0.012 (2)0.006 (2)
C120.024 (2)0.022 (2)0.028 (2)0.005 (1)0.008 (2)0.001 (1)
C130.026 (2)0.015 (2)0.021 (2)0.006 (1)0.002 (1)0.001 (1)
C140.029 (2)0.023 (2)0.015 (2)0.004 (1)0.003 (1)0.001 (1)
C150.021 (2)0.032 (2)0.023 (2)0.001 (2)0.001 (1)0.001 (1)
N30.018 (1)0.020 (1)0.019 (1)0.004 (1)0.002 (1)0.001 (1)
C160.017 (2)0.018 (2)0.016 (2)0.001 (1)0.001 (1)0.002 (1)
N40.016 (1)0.020 (1)0.017 (1)0.001 (1)0.001 (1)0.001 (1)
C170.020 (2)0.030 (2)0.023 (2)0.002 (2)0.003 (1)0.012 (1)
C180.027 (2)0.027 (2)0.019 (2)0.002 (2)0.002 (2)0.007 (1)
C190.020 (2)0.027 (2)0.025 (2)0.006 (1)0.007 (1)0.003 (1)
C200.032 (2)0.028 (2)0.043 (2)0.010 (2)0.003 (2)0.004 (2)
C210.013 (2)0.017 (2)0.015 (2)0.003 (1)0.001 (1)0.002 (1)
C220.017 (2)0.020 (2)0.018 (2)0.003 (1)0.005 (1)0.002 (1)
C230.025 (2)0.018 (2)0.017 (2)0.002 (1)0.004 (1)0.006 (1)
C240.027 (2)0.016 (2)0.027 (2)0.004 (1)0.003 (2)0.004 (1)
C250.023 (2)0.020 (2)0.024 (2)0.008 (1)0.007 (1)0.002 (1)
C260.020 (2)0.031 (2)0.029 (2)0.006 (2)0.001 (2)0.011 (2)
C270.024 (2)0.025 (2)0.027 (2)0.004 (2)0.009 (2)0.004 (1)
C280.023 (2)0.016 (2)0.021 (2)0.001 (1)0.001 (1)0.003 (1)
C290.034 (2)0.023 (2)0.018 (2)0.004 (2)0.004 (2)0.002 (1)
C300.022 (2)0.020 (2)0.017 (2)0.002 (1)0.005 (1)0.000 (1)
Geometric parameters (Å, º) top
Mn1—Br42.4983 (6)C15—H15A0.9900
Mn1—Br32.5046 (6)C15—H15B0.9900
Mn1—Br12.5130 (6)N3—C161.321 (4)
Mn1—Br22.5194 (5)N3—C181.375 (4)
N1—C11.327 (4)N3—C191.468 (4)
N1—C31.373 (4)C16—N41.327 (4)
N1—C41.470 (4)C16—H160.9500
C1—N21.322 (4)N4—C171.379 (4)
C1—H10.9500N4—C211.488 (4)
N2—C21.384 (4)C17—C181.340 (5)
N2—C61.488 (4)C17—H170.9500
C2—C31.343 (5)C18—H180.9500
C2—H20.9500C19—C201.501 (5)
C3—H30.9500C19—H19A0.9900
C4—C51.503 (5)C19—H19B0.9900
C4—H4A0.9900C20—H20A0.9800
C4—H4B0.9900C20—H20B0.9800
C5—H5A0.9800C20—H20C0.9800
C5—H5B0.9800C21—C221.524 (4)
C5—H5C0.9800C21—C281.529 (4)
C6—C131.526 (4)C21—C301.534 (4)
C6—C141.527 (4)C22—C231.533 (4)
C6—C71.531 (4)C22—H22A0.9900
C7—C81.527 (4)C22—H22B0.9900
C7—H7A0.9900C23—C241.527 (4)
C7—H7B0.9900C23—C291.531 (5)
C8—C151.522 (5)C23—H231.0000
C8—C91.532 (4)C24—C251.526 (4)
C8—H81.0000C24—H24A0.9900
C9—C101.530 (4)C24—H24B0.9900
C9—H9A0.9900C25—C261.525 (5)
C9—H9B0.9900C25—C301.533 (4)
C10—C141.520 (5)C25—H251.0000
C10—C111.537 (5)C26—C271.530 (5)
C10—H101.0000C26—H26A0.9900
C11—C121.531 (5)C26—H26B0.9900
C11—H11A0.9900C27—C291.529 (5)
C11—H11B0.9900C27—C281.532 (4)
C12—C151.527 (5)C27—H271.0000
C12—C131.534 (5)C28—H28A0.9900
C12—H121.0000C28—H28B0.9900
C13—H13A0.9900C29—H29A0.9900
C13—H13B0.9900C29—H29B0.9900
C14—H14A0.9900C30—H30A0.9900
C14—H14B0.9900C30—H30B0.9900
Br4—Mn1—Br3113.33 (2)C8—C15—H15B109.8
Br4—Mn1—Br1109.76 (2)C12—C15—H15B109.8
Br3—Mn1—Br1107.37 (2)H15A—C15—H15B108.2
Br4—Mn1—Br2105.88 (2)C16—N3—C18108.6 (3)
Br3—Mn1—Br2106.98 (2)C16—N3—C19125.8 (3)
Br1—Mn1—Br2113.61 (2)C18—N3—C19125.4 (3)
C1—N1—C3108.6 (3)N3—C16—N4108.9 (3)
C1—N1—C4124.2 (3)N3—C16—H16125.5
C3—N1—C4127.2 (3)N4—C16—H16125.5
N2—C1—N1109.2 (3)C16—N4—C17108.1 (3)
N2—C1—H1125.4C16—N4—C21127.0 (3)
N1—C1—H1125.4C17—N4—C21124.8 (3)
C1—N2—C2107.8 (3)C18—C17—N4107.4 (3)
C1—N2—C6126.0 (3)C18—C17—H17126.3
C2—N2—C6126.1 (3)N4—C17—H17126.3
C3—C2—N2107.6 (3)C17—C18—N3107.0 (3)
C3—C2—H2126.2C17—C18—H18126.5
N2—C2—H2126.2N3—C18—H18126.5
C2—C3—N1106.8 (3)N3—C19—C20111.4 (3)
C2—C3—H3126.6N3—C19—H19A109.4
N1—C3—H3126.6C20—C19—H19A109.4
N1—C4—C5112.4 (3)N3—C19—H19B109.4
N1—C4—H4A109.1C20—C19—H19B109.4
C5—C4—H4A109.1H19A—C19—H19B108.0
N1—C4—H4B109.1C19—C20—H20A109.5
C5—C4—H4B109.1C19—C20—H20B109.5
H4A—C4—H4B107.9H20A—C20—H20B109.5
C4—C5—H5A109.5C19—C20—H20C109.5
C4—C5—H5B109.5H20A—C20—H20C109.5
H5A—C5—H5B109.5H20B—C20—H20C109.5
C4—C5—H5C109.5N4—C21—C22110.4 (2)
H5A—C5—H5C109.5N4—C21—C28108.0 (2)
H5B—C5—H5C109.5C22—C21—C28109.5 (2)
N2—C6—C13109.5 (2)N4—C21—C30109.3 (2)
N2—C6—C14109.0 (3)C22—C21—C30109.8 (2)
C13—C6—C14109.7 (3)C28—C21—C30109.8 (3)
N2—C6—C7109.5 (2)C21—C22—C23109.1 (3)
C13—C6—C7109.7 (3)C21—C22—H22A109.9
C14—C6—C7109.5 (2)C23—C22—H22A109.9
C8—C7—C6109.3 (2)C21—C22—H22B109.9
C8—C7—H7A109.8C23—C22—H22B109.9
C6—C7—H7A109.8H22A—C22—H22B108.3
C8—C7—H7B109.8C24—C23—C29109.8 (3)
C6—C7—H7B109.8C24—C23—C22109.3 (3)
H7A—C7—H7B108.3C29—C23—C22109.5 (3)
C15—C8—C7109.9 (3)C24—C23—H23109.4
C15—C8—C9109.8 (3)C29—C23—H23109.4
C7—C8—C9109.2 (3)C22—C23—H23109.4
C15—C8—H8109.3C25—C24—C23109.5 (3)
C7—C8—H8109.3C25—C24—H24A109.8
C9—C8—H8109.3C23—C24—H24A109.8
C10—C9—C8109.1 (3)C25—C24—H24B109.8
C10—C9—H9A109.9C23—C24—H24B109.8
C8—C9—H9A109.9H24A—C24—H24B108.2
C10—C9—H9B109.9C26—C25—C24109.8 (3)
C8—C9—H9B109.9C26—C25—C30108.9 (3)
H9A—C9—H9B108.3C24—C25—C30109.8 (3)
C14—C10—C9110.3 (3)C26—C25—H25109.4
C14—C10—C11109.2 (3)C24—C25—H25109.4
C9—C10—C11109.1 (3)C30—C25—H25109.4
C14—C10—H10109.4C25—C26—C27109.8 (3)
C9—C10—H10109.4C25—C26—H26A109.7
C11—C10—H10109.4C27—C26—H26A109.7
C12—C11—C10109.6 (3)C25—C26—H26B109.7
C12—C11—H11A109.8C27—C26—H26B109.7
C10—C11—H11A109.8H26A—C26—H26B108.2
C12—C11—H11B109.8C29—C27—C26109.9 (3)
C10—C11—H11B109.8C29—C27—C28108.7 (3)
H11A—C11—H11B108.2C26—C27—C28109.5 (3)
C15—C12—C11109.5 (3)C29—C27—H27109.6
C15—C12—C13109.7 (3)C26—C27—H27109.6
C11—C12—C13108.9 (3)C28—C27—H27109.6
C15—C12—H12109.6C21—C28—C27109.4 (2)
C11—C12—H12109.6C21—C28—H28A109.8
C13—C12—H12109.6C27—C28—H28A109.8
C6—C13—C12109.3 (3)C21—C28—H28B109.8
C6—C13—H13A109.8C27—C28—H28B109.8
C12—C13—H13A109.8H28A—C28—H28B108.2
C6—C13—H13B109.8C27—C29—C23109.4 (3)
C12—C13—H13B109.8C27—C29—H29A109.8
H13A—C13—H13B108.3C23—C29—H29A109.8
C10—C14—C6109.3 (3)C27—C29—H29B109.8
C10—C14—H14A109.8C23—C29—H29B109.8
C6—C14—H14A109.8H29A—C29—H29B108.2
C10—C14—H14B109.8C25—C30—C21108.9 (2)
C6—C14—H14B109.8C25—C30—H30A109.9
H14A—C14—H14B108.3C21—C30—H30A109.9
C8—C15—C12109.5 (3)C25—C30—H30B109.9
C8—C15—H15A109.8C21—C30—H30B109.9
C12—C15—H15A109.8H30A—C30—H30B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br20.952.843.766 (3)166
C2—H2···Br1i0.952.923.864 (3)170
C3—H3···Br4ii0.952.993.785 (3)143
C5—H5C···Br4ii0.983.003.738 (3)134
C13—H13A···Br2iii0.993.053.941 (3)151
C16—H16···Br20.953.043.929 (3)156
C16—H16···Br40.953.013.549 (3)117
C17—H17···Br1iv0.952.823.719 (3)159
C18—H18···Br3v0.952.823.718 (3)158
C19—H19A···Br1v0.992.813.781 (3)168
C22—H22A···Br40.992.933.898 (3)166
C28—H28A···Br1iv0.993.003.939 (3)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z+1; (v) x, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

Funding for this research was provided by: DFG-SPP 1708, Material Synthesis Near Room Temperature.

References

First citationArduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDel Sesto, R. E., McCleskey, T. M., Burrell, A. K., Baker, G. A., Thompson, J. D., Scott, B. L., Wilkes, J. S. & Williams, P. (2008). Chem. Commun. pp. 447–449.  Web of Science CSD CrossRef Google Scholar
First citationGrasa, G. A., Singh, R., Scott, N. M., Stevens, E. D. & Nolan, S. P. (2004). Chem. Commun. pp. 2890–2891.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CrossRef Web of Science Google Scholar
First citationPeppel, T., Geppert-Rybczyńska, M., Neise, C., Kragl, U. & Köckerling, M. (2019). Materials, 12, 3764–3779.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Wang, X., Zu, D., Hua, Y., Li, Y., Yang, S., Wei, H. & Ding, Y. (2018). J. Membr. Sci. 545, 116–125.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L.-J., Sun, C.-Z., Xiao, H., Wu, Y. & Chen, Z.-N. (2017). Adv. Mater. 29, 1605739.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds