organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The head-to-head photodimer of indeno­indene

aJohannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 15 February 2020; accepted 4 March 2020; online 5 March 2020)

Irradiation of 1-(1-benzo­cyclo­butenyl­idene)benzo­cyclo­butene gives indeno­indene and its head-to-head photodimer nona­cyclo­[9.7.7.72,10.01,11.02,10.03,8.012,17.019,24.026,31]dotriaconta-3,5,7,12,14,16,19,21,23,26,28,30-dodeca­ene, C32H24. The mol­ecule is built from four essentially planar indane units attached to an elongated cyclo­butane ring. In the crystal, C—H⋯π inter­actions connect mol­ecules into layers parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The photo­cyclo­addition of 5,10-di­hydro­indeno­[2,1-a]indene (Detert & Schollmeyer, 2019[Detert, H. & Schollmeyer, D. (2019). IUCrData, 4, x191179.]) has been studied by Shim (Shim et al., 1983[Shim, S. C., Chae, J. S. & Choi, J. H. (1983). J. Org. Chem. 48, 417-421.]) and Wolff (Wolff et al., 1992[Wolff, T., Schmidt, F. & Volz, P. (1992). J. Org. Chem. 57, 4255-4262.]). Head-to-head and head-to-tail photodimers have been found in a 1: 2 ratio (Shim & Chae, 1982[Shim, S. C. & Chae, J. S. (1982). Bull. Chem. Soc. Jpn, 55, 1310-1312.]). As part of a project on strained (Detert et al., 2009[Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. 2009, 1181-1190.]; Dobryakov et al., 2016[Dobryakov, A., Quick, M., Lenoir, D., Detert, H., Ernsting, N. & Kovalenko, S. A. (2016). Chem. Phys. Lett. 652, 225-229.]; Krohn et al., 2019[Krohn, O., Quick, M., Ioffe, I., Mazaleva, O., Lenoir, D., Detert, H. & Kovalenko, S. (2019). J. Phys. Chem. B, 123, 4291-4300.]) and polycyclic hydro­carbons (Krämer et al., 2009[Krämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810-4812.]; Detert & Meier, 1997a[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1557-1563.],b[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1565-1570.]), indeno­indene was prepared in a photochemical rearrangement of 1-(1-benzo­cyclo­butenyl­idene)benzo­cyclo­butene; concomitant 2 + 2-cyclo­addition of indeno­indene produced the title compound as a byproduct.

The monoclinic unit cell of the title compound (Fig. 1[link]) contains two centrosymmetrical mol­ecules. The indane units, though containing sp3 carbons, are essentially planar with a maximum deviation of 0.043 (2) Å at C16 from the mean plane. An angle of 51.53 (5)° is opened by the least-squares planes of indanes annulated to the cyclo­butane [C8, C16, C8i, C16i; symmetry code: (i) 1 − x, 1 − y, 1 − z], nearly identical to the angle of 52.28 (8)° between the planes of indanes on opposite sides of the cyclo­butane. The C—C bonds in the central cyclo­butane ring are largely elongated, the C8—C16 bond is 1.569 (3) Å long and the C8–C16i bond, connecting the indanoindane units, is even more stretched to 1.597 (3) Å. This is due to the ecliptic conformation of vicinal methyl­ene groups, the minimal distance between C7—H and C15i—H is 1.95 Å, lower than the sum of the van der Waals radii. Bond angles in the cyclo­butane are close to orthogonal, C8—C16—C8i = 90.41 (15) and C16—C8—C16i = 89.59 (15)°. Bond angles on the cyclo­butane are much larger, C1—C16—C8i = 115.12 (17), C1—C16—C15 = 116.65 (19)° and C15—C16—C8i = 118.80 (19)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions (Fig. 2[link], Table 1[link]), forming layers parallel to the bc plane.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.95 2.77 3.713 (3) 171
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The second part of the mol­ecule is generated by the symmetry operation 1 − x, 1 − y, 1 − z.
[Figure 2]
Figure 2
Partial packing diagram of the title compound. View along the a axis.

Synthesis and crystallization

Indeno­[2,1-a]indene (Detert & Schollmeyer, 2019[Detert, H. & Schollmeyer, D. (2019). IUCrData, 4, x191179.]) was prepared from benzo­cyclo­butenone (Schiess & Heitzmann, 1977[Schiess, P. & Heitzmann, M. (1977). Angew. Chem. 89, 485-485.]), according to literature procedures (Detert & Schollmeyer, 2018[Detert, H. & Schollmeyer, D. (2018). IUCrData, 3, x181550.]; Oelgemöller et al., 2002[Oelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760-1771.]). The photochemical rearrangement was performed in a falling film photoreactor (Normag, Ilmenau) equipped with a medium pressure mercury lamp (TQ 718) in a diluted solution (0.1%) in petroleum ether. Contrary to the irradiation of indeno­indene in benzene (Shim & Chae, 1982[Shim, S. C. & Chae, J. S. (1982). Bull. Chem. Soc. Jpn, 55, 1310-1312.]), the head-to-head isomer was the main dimerization product. Crystals were obtained by slow evaporation of a petroleum ether solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C32H24
Mr 408.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 9.3106 (11), 8.7232 (8), 13.4776 (12)
β (°) 91.959 (8)
V3) 1093.99 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.40 × 0.32 × 0.17
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 5905, 2604, 1416
Rint 0.051
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.196, 0.97
No. of reflections 2604
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.22
Computer programs: X-AREA and X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 1996); cell refinement: X-AREA (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020).

Nonacyclo[9.7.7.72,10.01,11.02,10.03,8.012,17.019,24.026,31]dotriaconta-3,5,7,12,14,16,19,21,23,26,28,30-dodecaene top
Crystal data top
C32H24F(000) = 432
Mr = 408.51Dx = 1.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3106 (11) ÅCell parameters from 4760 reflections
b = 8.7232 (8) Åθ = 2.8–28.4°
c = 13.4776 (12) ŵ = 0.07 mm1
β = 91.959 (8)°T = 193 K
V = 1093.99 (19) Å3Block, colourless
Z = 20.40 × 0.32 × 0.17 mm
Data collection top
Stoe IPDS 2T
diffractometer
1416 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.051
Detector resolution: 6.67 pixels mm-1θmax = 28.0°, θmin = 2.8°
rotation method scansh = 1212
5905 measured reflectionsk = 1111
2604 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.1156P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2604 reflectionsΔρmax = 0.19 e Å3
145 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95–0.99 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4266 (2)0.5319 (2)0.65609 (14)0.0434 (5)
C20.3996 (3)0.4508 (3)0.74264 (16)0.0586 (7)
H20.4559010.3634720.7603600.070*
C30.2908 (4)0.4981 (3)0.80229 (18)0.0738 (9)
H30.2718510.4429670.8611990.089*
C40.2099 (3)0.6238 (4)0.77730 (18)0.0675 (8)
H40.1347970.6545710.8189230.081*
C50.2357 (3)0.7075 (3)0.69200 (18)0.0566 (7)
H50.1790570.7948810.6752280.068*
C60.3453 (2)0.6613 (3)0.63188 (15)0.0450 (5)
C70.3945 (3)0.7366 (3)0.53776 (17)0.0553 (6)
H7A0.4350410.8395240.5519220.066*
H7B0.3137910.7467050.4884560.066*
C80.5100 (2)0.6283 (2)0.49985 (14)0.0399 (5)
C90.6561 (2)0.6969 (2)0.48827 (14)0.0384 (5)
C100.6955 (3)0.8137 (2)0.42436 (16)0.0490 (6)
H100.6259380.8610170.3812020.059*
C110.8370 (3)0.8597 (3)0.42464 (19)0.0635 (7)
H110.8651130.9397440.3816280.076*
C120.9381 (3)0.7905 (3)0.48689 (19)0.0618 (7)
H121.0352860.8235620.4862870.074*
C130.9004 (3)0.6743 (3)0.54978 (18)0.0521 (6)
H130.9709460.6265870.5919880.063*
C140.7580 (2)0.6277 (2)0.55081 (16)0.0429 (5)
C150.6931 (3)0.5091 (3)0.6165 (2)0.0581 (7)
H15A0.7003710.5410160.6869920.070*
H15B0.7416690.4089510.6094030.070*
C160.5354 (2)0.4997 (2)0.57990 (15)0.0419 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0536 (13)0.0476 (12)0.0287 (10)0.0135 (10)0.0022 (8)0.0010 (9)
C20.091 (2)0.0540 (14)0.0302 (11)0.0209 (13)0.0020 (11)0.0007 (10)
C30.120 (3)0.0679 (18)0.0344 (12)0.0366 (18)0.0200 (14)0.0072 (13)
C40.081 (2)0.0788 (19)0.0440 (13)0.0325 (16)0.0233 (13)0.0229 (13)
C50.0526 (15)0.0684 (16)0.0492 (13)0.0105 (12)0.0069 (11)0.0150 (12)
C60.0465 (13)0.0534 (13)0.0350 (10)0.0082 (10)0.0017 (9)0.0040 (9)
C70.0527 (15)0.0652 (15)0.0483 (12)0.0166 (12)0.0070 (10)0.0127 (11)
C80.0440 (12)0.0416 (11)0.0342 (10)0.0045 (9)0.0033 (8)0.0083 (9)
C90.0483 (13)0.0309 (10)0.0363 (10)0.0003 (9)0.0061 (8)0.0011 (8)
C100.0686 (17)0.0380 (11)0.0406 (11)0.0071 (11)0.0058 (10)0.0011 (9)
C110.082 (2)0.0577 (15)0.0518 (14)0.0284 (14)0.0125 (13)0.0015 (12)
C120.0597 (17)0.0669 (16)0.0597 (15)0.0245 (13)0.0148 (12)0.0135 (12)
C130.0468 (14)0.0509 (13)0.0587 (14)0.0052 (11)0.0030 (11)0.0090 (11)
C140.0435 (13)0.0358 (11)0.0494 (12)0.0013 (9)0.0017 (9)0.0015 (9)
C150.0492 (14)0.0524 (14)0.0719 (16)0.0063 (12)0.0124 (12)0.0219 (12)
C160.0439 (12)0.0439 (11)0.0377 (11)0.0032 (9)0.0024 (9)0.0117 (9)
Geometric parameters (Å, º) top
C1—C61.392 (3)C8—C161.569 (3)
C1—C21.395 (3)C8—C16i1.597 (3)
C1—C161.494 (3)C9—C141.386 (3)
C2—C31.379 (4)C9—C101.392 (3)
C2—H20.9500C10—C111.376 (4)
C3—C41.366 (4)C10—H100.9500
C3—H30.9500C11—C121.379 (4)
C4—C51.389 (4)C11—H110.9500
C4—H40.9500C12—C131.374 (3)
C5—C61.384 (3)C12—H120.9500
C5—H50.9500C13—C141.388 (3)
C6—C71.513 (3)C13—H130.9500
C7—C81.532 (3)C14—C151.501 (3)
C7—H7A0.9900C15—C161.535 (3)
C7—H7B0.9900C15—H15A0.9900
C8—C91.500 (3)C15—H15B0.9900
C6—C1—C2119.7 (2)C14—C9—C10120.4 (2)
C6—C1—C16111.58 (18)C14—C9—C8111.53 (17)
C2—C1—C16128.7 (2)C10—C9—C8128.0 (2)
C3—C2—C1119.5 (3)C11—C10—C9119.0 (2)
C3—C2—H2120.3C11—C10—H10120.5
C1—C2—H2120.3C9—C10—H10120.5
C4—C3—C2120.5 (2)C10—C11—C12120.5 (2)
C4—C3—H3119.8C10—C11—H11119.8
C2—C3—H3119.8C12—C11—H11119.8
C3—C4—C5121.1 (3)C13—C12—C11121.0 (2)
C3—C4—H4119.5C13—C12—H12119.5
C5—C4—H4119.5C11—C12—H12119.5
C6—C5—C4118.9 (3)C12—C13—C14119.1 (2)
C6—C5—H5120.5C12—C13—H13120.4
C4—C5—H5120.5C14—C13—H13120.4
C5—C6—C1120.3 (2)C9—C14—C13120.0 (2)
C5—C6—C7128.0 (2)C9—C14—C15112.24 (19)
C1—C6—C7111.7 (2)C13—C14—C15127.7 (2)
C6—C7—C8104.37 (18)C14—C15—C16104.30 (17)
C6—C7—H7A110.9C14—C15—H15A110.9
C8—C7—H7A110.9C16—C15—H15A110.9
C6—C7—H7B110.9C14—C15—H15B110.9
C8—C7—H7B110.9C16—C15—H15B110.9
H7A—C7—H7B108.9H15A—C15—H15B108.9
C9—C8—C7115.99 (18)C1—C16—C15115.65 (19)
C9—C8—C16103.94 (16)C1—C16—C8104.37 (17)
C7—C8—C16107.62 (17)C15—C16—C8107.63 (17)
C9—C8—C16i115.41 (17)C1—C16—C8i115.12 (17)
C7—C8—C16i118.91 (19)C15—C16—C8i118.80 (19)
C16—C8—C16i89.59 (15)C8—C16—C8i90.41 (15)
C6—C1—C2—C31.2 (3)C10—C9—C14—C130.2 (3)
C16—C1—C2—C3178.4 (2)C8—C9—C14—C13179.10 (18)
C1—C2—C3—C40.2 (4)C10—C9—C14—C15177.7 (2)
C2—C3—C4—C50.5 (4)C8—C9—C14—C153.0 (3)
C3—C4—C5—C60.1 (4)C12—C13—C14—C90.6 (3)
C4—C5—C6—C10.9 (3)C12—C13—C14—C15176.9 (2)
C4—C5—C6—C7178.3 (2)C9—C14—C15—C165.6 (3)
C2—C1—C6—C51.6 (3)C13—C14—C15—C16176.7 (2)
C16—C1—C6—C5178.12 (19)C6—C1—C16—C15116.9 (2)
C2—C1—C6—C7177.8 (2)C2—C1—C16—C1563.4 (3)
C16—C1—C6—C72.5 (3)C6—C1—C16—C81.1 (2)
C5—C6—C7—C8175.6 (2)C2—C1—C16—C8178.6 (2)
C1—C6—C7—C85.1 (3)C6—C1—C16—C8i98.5 (2)
C6—C7—C8—C9121.4 (2)C2—C1—C16—C8i81.2 (3)
C6—C7—C8—C165.5 (2)C14—C15—C16—C1122.1 (2)
C6—C7—C8—C16i94.1 (2)C14—C15—C16—C86.0 (2)
C7—C8—C9—C14116.93 (19)C14—C15—C16—C8i94.6 (2)
C16—C8—C9—C141.0 (2)C9—C8—C16—C1127.77 (17)
C16i—C8—C9—C1497.3 (2)C7—C8—C16—C14.2 (2)
C7—C8—C9—C1063.9 (3)C16i—C8—C16—C1116.11 (18)
C16—C8—C9—C10178.2 (2)C9—C8—C16—C154.4 (2)
C16i—C8—C9—C1081.9 (3)C7—C8—C16—C15119.2 (2)
C14—C9—C10—C110.3 (3)C16i—C8—C16—C15120.5 (2)
C8—C9—C10—C11179.5 (2)C9—C8—C16—C8i116.13 (18)
C9—C10—C11—C120.4 (4)C7—C8—C16—C8i120.3 (2)
C10—C11—C12—C130.1 (4)C16i—C8—C16—C8i0.002 (1)
C11—C12—C13—C140.6 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1ii0.952.773.713 (3)171
Symmetry code: (ii) x+1, y1/2, z+3/2.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDetert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. 2009, 1181–1190.  Web of Science CSD CrossRef Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1557–1563.  CrossRef Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1565–1570.  CrossRef Google Scholar
First citationDetert, H. & Schollmeyer, D. (2018). IUCrData, 3, x181550.  Google Scholar
First citationDetert, H. & Schollmeyer, D. (2019). IUCrData, 4, x191179.  Google Scholar
First citationDobryakov, A., Quick, M., Lenoir, D., Detert, H., Ernsting, N. & Kovalenko, S. A. (2016). Chem. Phys. Lett. 652, 225–229.  Web of Science CrossRef CAS Google Scholar
First citationKrämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810–4812.  Google Scholar
First citationKrohn, O., Quick, M., Ioffe, I., Mazaleva, O., Lenoir, D., Detert, H. & Kovalenko, S. (2019). J. Phys. Chem. B, 123, 4291–4300.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760–1771.  Google Scholar
First citationSchiess, P. & Heitzmann, M. (1977). Angew. Chem. 89, 485–485.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShim, S. C. & Chae, J. S. (1982). Bull. Chem. Soc. Jpn, 55, 1310–1312.  CrossRef CAS Web of Science Google Scholar
First citationShim, S. C., Chae, J. S. & Choi, J. H. (1983). J. Org. Chem. 48, 417–421.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWolff, T., Schmidt, F. & Volz, P. (1992). J. Org. Chem. 57, 4255–4262.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds