organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,2,3,5-Tetra­hydro­naphtho­[2,1-c]oxepine

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alan.lough@utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 February 2020; accepted 1 March 2020; online 5 March 2020)

In the title compound, C14H14O, the seven-membered ring is in a pseudo-chair conformation. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds forming layers parallel to (010). In addition, there are weak ππ stacking inter­actions between inversion-related naphthalene ring systems, with a ring centroid–ring centroid distance of 3.518 (5) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In past years, our research group has investigated the ring-opening reactions of cyclo­propanated oxabenzonorbornadienes (CPOBD) (Carlson et al., 2014[Carlson, E., Haner, J., McKee, M. & Tam, W. (2014). Org. Lett. 16, 1776-1779.], 2016[Carlson, E., Hong, D. & Tam, W. (2016). Synthesis, 48, 4253-4259.], 2018[Carlson, E., Boutin, R. & Tam, W. (2018). Tetrahedron, 74, 5510-5518.]; Tait et al., 2016[Tait, K., Alrifai, O., Boutin, R., Haner, J. & Tam, W. (2016). Beilstein J. Org. Chem. 12, 2189-2196.]; Tigchelaar et al., 2014[Tigchelaar, A., Haner, J., Carlson, E. & Tam, W. (2014). Synlett, 25, 2355-2359.]). Recently, we have examined the intra­molecular ring-opening of reaction of CPOBD with tethered alcohol nucleophiles (Wicks et al., 2019[Wicks, C., Koh, S., Pounder, A., Carlson, E. & Tam, W. (2019). Tetrahedron Lett. 60, 151228.]). Based on previous work done in our research group, we anti­cipated two possible modes of ring-opening through nucleophilic attack at either the proximal or distal cyclo­propyl carbon atom. Reaction of the C1-alcohol tethered CPOBD I (see Fig. 3[link]) in the presence of p-TsOH·H2O in toluene afforded the Type 2 II and Type 3 III ring-opened products in 12% and 59% yields, respectively. The title structure of the Type 2 (II) regioisomer was verified by single-crystal X-ray analysis.

[Figure 3]
Figure 3
The reaction scheme.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The seven-membered ring (C1–C6/O1) is in a pseudo-chair conformation. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1[link]), forming layers parallel to (010) (Fig. 2[link]). In addtion, there are weak ππ stacking inter­action between inversion related naphthalene ring systems (C1/C2/C7–C14) with a ring centroid–ring centroid distance of 3.518 (5) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.970 (16) 2.558 (16) 3.4803 (14) 159.0 (11)
C12—H12A⋯O1ii 0.976 (15) 2.560 (15) 3.4661 (14) 154.5 (11)
Symmetry codes: (i) x-1, y, z-1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure with weak hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

Synthesis and crystallization

To a 6 dram vial open to air were added the alcohol-tethered cyclo­propanated oxabenzonorbornadiene I (0.3547 g, 1.64 mmol), and p-TsOH·H2O (57.7 mg, 20 mol%) dissolved in 7 ml of toluene (see Fig. 3[link]). The reaction was left to stir at 333 K for 1.5 h, after which the reaction mixture was cooled and quenched with 10 ml of water. The aqueous layers were combined and back extracted with EtOAc (3 × 5 ml). The organic layers were combined, washed with brine, dried over MgSO4, and concentrated in vacuo. The resulting crude oil was purified by flash chromatography (EtOAc:hexa­nes, 10: 90) to obtain ring-opened products II (38.5 mg, 0.194 mmol, 12%) and III (189.8 mg, 0.957 mmol) as a white solid and clear oil, respectively. The title compound II was subsequently crystallized from DCM solution by slow evaporation of the solvent to afford colourless blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H14O
Mr 198.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.4559 (3), 12.8405 (4), 8.9638 (3)
β (°) 111.445 (1)
V3) 1013.02 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.37 × 0.26 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.723, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21543, 2347, 2055
Rint 0.021
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.07
No. of reflections 2347
No. of parameters 192
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1,2,3,5-Tetrahydronaphtho[2,1-c]oxepine top
Crystal data top
C14H14OF(000) = 424
Mr = 198.25Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4559 (3) ÅCell parameters from 9948 reflections
b = 12.8405 (4) Åθ = 2.3–27.5°
c = 8.9638 (3) ŵ = 0.08 mm1
β = 111.445 (1)°T = 150 K
V = 1013.02 (6) Å3Block, colourless
Z = 40.37 × 0.26 × 0.25 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2055 reflections with I > 2σ(I)
Radiation source: selaed tube with Bruker Triumph monochromatorRint = 0.021
φ and ω scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.723, Tmax = 0.746k = 1616
21543 measured reflectionsl = 1111
2347 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.052P)2 + 0.3073P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2347 reflectionsΔρmax = 0.30 e Å3
192 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.00150 (8)0.34280 (6)0.72056 (9)0.02263 (19)
C10.77678 (11)0.44489 (7)0.56216 (11)0.0171 (2)
C20.65678 (11)0.37620 (7)0.53419 (11)0.0163 (2)
C30.66501 (11)0.29413 (8)0.65822 (12)0.0209 (2)
H3A0.5679 (16)0.2539 (11)0.6272 (16)0.029 (3)*
H3B0.6758 (16)0.3299 (11)0.7608 (17)0.031 (3)*
C40.79563 (12)0.21581 (8)0.68926 (13)0.0235 (2)
H4A0.7759 (16)0.1550 (11)0.7461 (16)0.029 (3)*
H4B0.7980 (16)0.1911 (12)0.5840 (18)0.035 (4)*
C50.95069 (12)0.25805 (9)0.79119 (14)0.0254 (2)
H5A0.9486 (16)0.2824 (11)0.8993 (18)0.033 (4)*
H5B1.0304 (15)0.2034 (10)0.8079 (16)0.025 (3)*
C60.91744 (11)0.43684 (8)0.71202 (13)0.0214 (2)
H6A0.9889 (14)0.4953 (11)0.7133 (14)0.023 (3)*
H6B0.8913 (15)0.4415 (10)0.8106 (17)0.028 (3)*
C70.77109 (12)0.52380 (7)0.45040 (12)0.0194 (2)
H7A0.8559 (16)0.5724 (11)0.4711 (16)0.029 (3)*
C80.64771 (12)0.53392 (7)0.31122 (12)0.0198 (2)
H8A0.6454 (15)0.5891 (11)0.2355 (16)0.027 (3)*
C90.52464 (11)0.46395 (7)0.27548 (11)0.0172 (2)
C100.39883 (12)0.47042 (8)0.12770 (12)0.0218 (2)
H10A0.4011 (15)0.5267 (11)0.0541 (16)0.026 (3)*
C110.28267 (12)0.40005 (9)0.08940 (13)0.0248 (2)
H11A0.1987 (17)0.4037 (11)0.0128 (19)0.036 (4)*
C120.28495 (12)0.32073 (9)0.19878 (13)0.0236 (2)
H12A0.2036 (16)0.2691 (11)0.1702 (16)0.031 (3)*
C130.40269 (11)0.31364 (8)0.34385 (12)0.0201 (2)
H13A0.4012 (15)0.2577 (11)0.4170 (16)0.027 (3)*
C140.52804 (10)0.38377 (7)0.38733 (11)0.0157 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (4)0.0229 (4)0.0269 (4)0.0028 (3)0.0085 (3)0.0040 (3)
C10.0174 (4)0.0164 (4)0.0174 (5)0.0016 (3)0.0064 (4)0.0017 (3)
C20.0178 (4)0.0157 (4)0.0168 (4)0.0018 (3)0.0080 (4)0.0008 (3)
C30.0190 (5)0.0241 (5)0.0207 (5)0.0002 (4)0.0086 (4)0.0058 (4)
C40.0254 (5)0.0193 (5)0.0274 (5)0.0016 (4)0.0115 (4)0.0069 (4)
C50.0217 (5)0.0276 (6)0.0268 (5)0.0052 (4)0.0088 (4)0.0092 (4)
C60.0197 (5)0.0203 (5)0.0215 (5)0.0003 (4)0.0043 (4)0.0025 (4)
C70.0215 (5)0.0142 (4)0.0239 (5)0.0025 (4)0.0099 (4)0.0024 (4)
C80.0260 (5)0.0143 (4)0.0207 (5)0.0010 (4)0.0105 (4)0.0016 (4)
C90.0190 (5)0.0160 (4)0.0175 (5)0.0034 (4)0.0077 (4)0.0004 (3)
C100.0231 (5)0.0234 (5)0.0185 (5)0.0061 (4)0.0070 (4)0.0015 (4)
C110.0192 (5)0.0324 (6)0.0197 (5)0.0048 (4)0.0035 (4)0.0043 (4)
C120.0177 (5)0.0265 (5)0.0265 (5)0.0023 (4)0.0080 (4)0.0074 (4)
C130.0194 (5)0.0195 (5)0.0231 (5)0.0011 (4)0.0099 (4)0.0025 (4)
C140.0167 (4)0.0151 (4)0.0170 (4)0.0017 (3)0.0081 (4)0.0016 (3)
Geometric parameters (Å, º) top
O1—C51.4277 (13)C6—H6B1.003 (14)
O1—C61.4323 (12)C7—C81.3675 (14)
C1—C21.3858 (13)C7—H7A0.979 (14)
C1—C71.4120 (14)C8—C91.4112 (14)
C1—C61.5092 (13)C8—H8A0.975 (14)
C2—C141.4327 (13)C9—C101.4229 (13)
C2—C31.5131 (13)C9—C141.4292 (13)
C3—C41.5372 (14)C10—C111.3657 (16)
C3—H3A1.000 (14)C10—H10A0.984 (14)
C3—H3B0.999 (14)C11—C121.4084 (16)
C4—C51.5163 (15)C11—H11A0.969 (15)
C4—H4A0.987 (14)C12—C131.3712 (15)
C4—H4B1.004 (15)C12—H12A0.976 (14)
C5—H5A1.025 (15)C13—C141.4248 (13)
C5—H5B1.000 (13)C13—H13A0.977 (14)
C6—H6A1.007 (13)
C5—O1—C6113.34 (8)O1—C6—H6B108.3 (8)
C2—C1—C7120.80 (9)C1—C6—H6B111.0 (8)
C2—C1—C6120.95 (9)H6A—C6—H6B109.0 (10)
C7—C1—C6118.24 (9)C8—C7—C1120.93 (9)
C1—C2—C14119.18 (9)C8—C7—H7A118.6 (8)
C1—C2—C3119.45 (9)C1—C7—H7A120.5 (8)
C14—C2—C3121.38 (8)C7—C8—C9120.28 (9)
C2—C3—C4114.25 (8)C7—C8—H8A119.9 (8)
C2—C3—H3A111.1 (8)C9—C8—H8A119.8 (8)
C4—C3—H3A107.9 (8)C8—C9—C10120.90 (9)
C2—C3—H3B108.5 (8)C8—C9—C14119.61 (9)
C4—C3—H3B109.2 (8)C10—C9—C14119.47 (9)
H3A—C3—H3B105.5 (11)C11—C10—C9121.14 (10)
C5—C4—C3114.27 (9)C11—C10—H10A122.0 (8)
C5—C4—H4A107.2 (8)C9—C10—H10A116.8 (8)
C3—C4—H4A108.7 (8)C10—C11—C12119.82 (10)
C5—C4—H4B109.3 (8)C10—C11—H11A120.8 (9)
C3—C4—H4B109.2 (8)C12—C11—H11A119.4 (9)
H4A—C4—H4B108.0 (12)C13—C12—C11120.57 (10)
O1—C5—C4114.42 (9)C13—C12—H12A119.5 (8)
O1—C5—H5A108.2 (8)C11—C12—H12A119.9 (8)
C4—C5—H5A109.3 (8)C12—C13—C14121.55 (10)
O1—C5—H5B104.1 (8)C12—C13—H13A118.7 (8)
C4—C5—H5B110.4 (8)C14—C13—H13A119.7 (8)
H5A—C5—H5B110.3 (11)C13—C14—C9117.41 (9)
O1—C6—C1113.36 (8)C13—C14—C2123.42 (9)
O1—C6—H6A105.7 (7)C9—C14—C2119.15 (8)
C1—C6—H6A109.2 (7)
C7—C1—C2—C142.09 (14)C7—C8—C9—C141.43 (14)
C6—C1—C2—C14177.41 (8)C8—C9—C10—C11177.03 (9)
C7—C1—C2—C3178.58 (9)C14—C9—C10—C111.35 (15)
C6—C1—C2—C31.92 (14)C9—C10—C11—C121.34 (15)
C1—C2—C3—C462.32 (12)C10—C11—C12—C130.19 (16)
C14—C2—C3—C4117.00 (10)C11—C12—C13—C141.72 (15)
C2—C3—C4—C576.33 (12)C12—C13—C14—C91.66 (14)
C6—O1—C5—C469.71 (12)C12—C13—C14—C2176.93 (9)
C3—C4—C5—O163.49 (12)C8—C9—C14—C13178.54 (9)
C5—O1—C6—C187.27 (10)C10—C9—C14—C130.14 (13)
C2—C1—C6—O165.29 (12)C8—C9—C14—C20.11 (13)
C7—C1—C6—O1114.22 (10)C10—C9—C14—C2178.51 (8)
C2—C1—C7—C80.56 (15)C1—C2—C14—C13176.72 (9)
C6—C1—C7—C8178.95 (9)C3—C2—C14—C132.60 (14)
C1—C7—C8—C91.23 (15)C1—C2—C14—C91.84 (13)
C7—C8—C9—C10176.95 (9)C3—C2—C14—C9178.83 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.970 (16)2.558 (16)3.4803 (14)159.0 (11)
C12—H12A···O1ii0.976 (15)2.560 (15)3.4661 (14)154.5 (11)
Symmetry codes: (i) x1, y, z1; (ii) x1, y+1/2, z1/2.
 

Acknowledgements

The University of Toronto thanks NSERC for funding.

References

First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlson, E., Boutin, R. & Tam, W. (2018). Tetrahedron, 74, 5510–5518.  Web of Science CrossRef CAS Google Scholar
First citationCarlson, E., Haner, J., McKee, M. & Tam, W. (2014). Org. Lett. 16, 1776–1779.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCarlson, E., Hong, D. & Tam, W. (2016). Synthesis, 48, 4253–4259.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTait, K., Alrifai, O., Boutin, R., Haner, J. & Tam, W. (2016). Beilstein J. Org. Chem. 12, 2189–2196.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTigchelaar, A., Haner, J., Carlson, E. & Tam, W. (2014). Synlett, 25, 2355–2359.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWicks, C., Koh, S., Pounder, A., Carlson, E. & Tam, W. (2019). Tetrahedron Lett. 60, 151228.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds