organic compounds
1,2,3,5-Tetrahydronaphtho[2,1-c]oxepine
aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alan.lough@utoronto.ca
In the title compound, C14H14O, the seven-membered ring is in a pseudo-chair conformation. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds forming layers parallel to (010). In addition, there are weak π–π stacking interactions between inversion-related naphthalene ring systems, with a ring centroid–ring centroid distance of 3.518 (5) Å.
Keywords: crystal structure; ring-opening reaction; regioisomer; weak hydrogen bonds.
CCDC reference: 1987387
Structure description
In past years, our research group has investigated the ring-opening reactions of cyclopropanated oxabenzonorbornadienes (CPOBD) (Carlson et al., 2014, 2016, 2018; Tait et al., 2016; Tigchelaar et al., 2014). Recently, we have examined the intramolecular ring-opening of reaction of CPOBD with tethered alcohol nucleophiles (Wicks et al., 2019). Based on previous work done in our research group, we anticipated two possible modes of ring-opening through nucleophilic attack at either the proximal or distal cyclopropyl carbon atom. Reaction of the C1-alcohol tethered CPOBD I (see Fig. 3) in the presence of p-TsOH·H2O in toluene afforded the Type 2 II and Type 3 III ring-opened products in 12% and 59% yields, respectively. The title structure of the Type 2 (II) regioisomer was verified by single-crystal X-ray analysis.
The molecular structure of the title compound is shown in Fig. 1. The seven-membered ring (C1–C6/O1) is in a pseudo-chair conformation. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds (Table 1), forming layers parallel to (010) (Fig. 2). In addtion, there are weak π–π stacking interaction between inversion related naphthalene ring systems (C1/C2/C7–C14) with a ring centroid–ring centroid distance of 3.518 (5) Å.
Synthesis and crystallization
To a 6 dram vial open to air were added the alcohol-tethered cyclopropanated oxabenzonorbornadiene I (0.3547 g, 1.64 mmol), and p-TsOH·H2O (57.7 mg, 20 mol%) dissolved in 7 ml of toluene (see Fig. 3). The reaction was left to stir at 333 K for 1.5 h, after which the reaction mixture was cooled and quenched with 10 ml of water. The aqueous layers were combined and back extracted with EtOAc (3 × 5 ml). The organic layers were combined, washed with brine, dried over MgSO4, and concentrated in vacuo. The resulting crude oil was purified by flash (EtOAc:hexanes, 10: 90) to obtain ring-opened products II (38.5 mg, 0.194 mmol, 12%) and III (189.8 mg, 0.957 mmol) as a white solid and clear oil, respectively. The title compound II was subsequently crystallized from DCM solution by slow evaporation of the solvent to afford colourless blocks.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1987387
https://doi.org/10.1107/S2414314620002886/hb4340sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620002886/hb4340Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620002886/hb4340Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C14H14O | F(000) = 424 |
Mr = 198.25 | Dx = 1.300 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4559 (3) Å | Cell parameters from 9948 reflections |
b = 12.8405 (4) Å | θ = 2.3–27.5° |
c = 8.9638 (3) Å | µ = 0.08 mm−1 |
β = 111.445 (1)° | T = 150 K |
V = 1013.02 (6) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.26 × 0.25 mm |
Bruker Kappa APEX DUO CCD diffractometer | 2055 reflections with I > 2σ(I) |
Radiation source: selaed tube with Bruker Triumph monochromator | Rint = 0.021 |
φ and ω scans | θmax = 27.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→12 |
Tmin = 0.723, Tmax = 0.746 | k = −16→16 |
21543 measured reflections | l = −11→11 |
2347 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | All H-atom parameters refined |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.052P)2 + 0.3073P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2347 reflections | Δρmax = 0.30 e Å−3 |
192 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.00150 (8) | 0.34280 (6) | 0.72056 (9) | 0.02263 (19) | |
C1 | 0.77678 (11) | 0.44489 (7) | 0.56216 (11) | 0.0171 (2) | |
C2 | 0.65678 (11) | 0.37620 (7) | 0.53419 (11) | 0.0163 (2) | |
C3 | 0.66501 (11) | 0.29413 (8) | 0.65822 (12) | 0.0209 (2) | |
H3A | 0.5679 (16) | 0.2539 (11) | 0.6272 (16) | 0.029 (3)* | |
H3B | 0.6758 (16) | 0.3299 (11) | 0.7608 (17) | 0.031 (3)* | |
C4 | 0.79563 (12) | 0.21581 (8) | 0.68926 (13) | 0.0235 (2) | |
H4A | 0.7759 (16) | 0.1550 (11) | 0.7461 (16) | 0.029 (3)* | |
H4B | 0.7980 (16) | 0.1911 (12) | 0.5840 (18) | 0.035 (4)* | |
C5 | 0.95069 (12) | 0.25805 (9) | 0.79119 (14) | 0.0254 (2) | |
H5A | 0.9486 (16) | 0.2824 (11) | 0.8993 (18) | 0.033 (4)* | |
H5B | 1.0304 (15) | 0.2034 (10) | 0.8079 (16) | 0.025 (3)* | |
C6 | 0.91744 (11) | 0.43684 (8) | 0.71202 (13) | 0.0214 (2) | |
H6A | 0.9889 (14) | 0.4953 (11) | 0.7133 (14) | 0.023 (3)* | |
H6B | 0.8913 (15) | 0.4415 (10) | 0.8106 (17) | 0.028 (3)* | |
C7 | 0.77109 (12) | 0.52380 (7) | 0.45040 (12) | 0.0194 (2) | |
H7A | 0.8559 (16) | 0.5724 (11) | 0.4711 (16) | 0.029 (3)* | |
C8 | 0.64771 (12) | 0.53392 (7) | 0.31122 (12) | 0.0198 (2) | |
H8A | 0.6454 (15) | 0.5891 (11) | 0.2355 (16) | 0.027 (3)* | |
C9 | 0.52464 (11) | 0.46395 (7) | 0.27548 (11) | 0.0172 (2) | |
C10 | 0.39883 (12) | 0.47042 (8) | 0.12770 (12) | 0.0218 (2) | |
H10A | 0.4011 (15) | 0.5267 (11) | 0.0541 (16) | 0.026 (3)* | |
C11 | 0.28267 (12) | 0.40005 (9) | 0.08940 (13) | 0.0248 (2) | |
H11A | 0.1987 (17) | 0.4037 (11) | −0.0128 (19) | 0.036 (4)* | |
C12 | 0.28495 (12) | 0.32073 (9) | 0.19878 (13) | 0.0236 (2) | |
H12A | 0.2036 (16) | 0.2691 (11) | 0.1702 (16) | 0.031 (3)* | |
C13 | 0.40269 (11) | 0.31364 (8) | 0.34385 (12) | 0.0201 (2) | |
H13A | 0.4012 (15) | 0.2577 (11) | 0.4170 (16) | 0.027 (3)* | |
C14 | 0.52804 (10) | 0.38377 (7) | 0.38733 (11) | 0.0157 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0183 (4) | 0.0229 (4) | 0.0269 (4) | 0.0028 (3) | 0.0085 (3) | 0.0040 (3) |
C1 | 0.0174 (4) | 0.0164 (4) | 0.0174 (5) | 0.0016 (3) | 0.0064 (4) | −0.0017 (3) |
C2 | 0.0178 (4) | 0.0157 (4) | 0.0168 (4) | 0.0018 (3) | 0.0080 (4) | 0.0008 (3) |
C3 | 0.0190 (5) | 0.0241 (5) | 0.0207 (5) | 0.0002 (4) | 0.0086 (4) | 0.0058 (4) |
C4 | 0.0254 (5) | 0.0193 (5) | 0.0274 (5) | 0.0016 (4) | 0.0115 (4) | 0.0069 (4) |
C5 | 0.0217 (5) | 0.0276 (6) | 0.0268 (5) | 0.0052 (4) | 0.0088 (4) | 0.0092 (4) |
C6 | 0.0197 (5) | 0.0203 (5) | 0.0215 (5) | 0.0003 (4) | 0.0043 (4) | −0.0025 (4) |
C7 | 0.0215 (5) | 0.0142 (4) | 0.0239 (5) | −0.0025 (4) | 0.0099 (4) | −0.0024 (4) |
C8 | 0.0260 (5) | 0.0143 (4) | 0.0207 (5) | 0.0010 (4) | 0.0105 (4) | 0.0016 (4) |
C9 | 0.0190 (5) | 0.0160 (4) | 0.0175 (5) | 0.0034 (4) | 0.0077 (4) | −0.0004 (3) |
C10 | 0.0231 (5) | 0.0234 (5) | 0.0185 (5) | 0.0061 (4) | 0.0070 (4) | 0.0015 (4) |
C11 | 0.0192 (5) | 0.0324 (6) | 0.0197 (5) | 0.0048 (4) | 0.0035 (4) | −0.0043 (4) |
C12 | 0.0177 (5) | 0.0265 (5) | 0.0265 (5) | −0.0023 (4) | 0.0080 (4) | −0.0074 (4) |
C13 | 0.0194 (5) | 0.0195 (5) | 0.0231 (5) | −0.0011 (4) | 0.0099 (4) | −0.0025 (4) |
C14 | 0.0167 (4) | 0.0151 (4) | 0.0170 (4) | 0.0017 (3) | 0.0081 (4) | −0.0016 (3) |
O1—C5 | 1.4277 (13) | C6—H6B | 1.003 (14) |
O1—C6 | 1.4323 (12) | C7—C8 | 1.3675 (14) |
C1—C2 | 1.3858 (13) | C7—H7A | 0.979 (14) |
C1—C7 | 1.4120 (14) | C8—C9 | 1.4112 (14) |
C1—C6 | 1.5092 (13) | C8—H8A | 0.975 (14) |
C2—C14 | 1.4327 (13) | C9—C10 | 1.4229 (13) |
C2—C3 | 1.5131 (13) | C9—C14 | 1.4292 (13) |
C3—C4 | 1.5372 (14) | C10—C11 | 1.3657 (16) |
C3—H3A | 1.000 (14) | C10—H10A | 0.984 (14) |
C3—H3B | 0.999 (14) | C11—C12 | 1.4084 (16) |
C4—C5 | 1.5163 (15) | C11—H11A | 0.969 (15) |
C4—H4A | 0.987 (14) | C12—C13 | 1.3712 (15) |
C4—H4B | 1.004 (15) | C12—H12A | 0.976 (14) |
C5—H5A | 1.025 (15) | C13—C14 | 1.4248 (13) |
C5—H5B | 1.000 (13) | C13—H13A | 0.977 (14) |
C6—H6A | 1.007 (13) | ||
C5—O1—C6 | 113.34 (8) | O1—C6—H6B | 108.3 (8) |
C2—C1—C7 | 120.80 (9) | C1—C6—H6B | 111.0 (8) |
C2—C1—C6 | 120.95 (9) | H6A—C6—H6B | 109.0 (10) |
C7—C1—C6 | 118.24 (9) | C8—C7—C1 | 120.93 (9) |
C1—C2—C14 | 119.18 (9) | C8—C7—H7A | 118.6 (8) |
C1—C2—C3 | 119.45 (9) | C1—C7—H7A | 120.5 (8) |
C14—C2—C3 | 121.38 (8) | C7—C8—C9 | 120.28 (9) |
C2—C3—C4 | 114.25 (8) | C7—C8—H8A | 119.9 (8) |
C2—C3—H3A | 111.1 (8) | C9—C8—H8A | 119.8 (8) |
C4—C3—H3A | 107.9 (8) | C8—C9—C10 | 120.90 (9) |
C2—C3—H3B | 108.5 (8) | C8—C9—C14 | 119.61 (9) |
C4—C3—H3B | 109.2 (8) | C10—C9—C14 | 119.47 (9) |
H3A—C3—H3B | 105.5 (11) | C11—C10—C9 | 121.14 (10) |
C5—C4—C3 | 114.27 (9) | C11—C10—H10A | 122.0 (8) |
C5—C4—H4A | 107.2 (8) | C9—C10—H10A | 116.8 (8) |
C3—C4—H4A | 108.7 (8) | C10—C11—C12 | 119.82 (10) |
C5—C4—H4B | 109.3 (8) | C10—C11—H11A | 120.8 (9) |
C3—C4—H4B | 109.2 (8) | C12—C11—H11A | 119.4 (9) |
H4A—C4—H4B | 108.0 (12) | C13—C12—C11 | 120.57 (10) |
O1—C5—C4 | 114.42 (9) | C13—C12—H12A | 119.5 (8) |
O1—C5—H5A | 108.2 (8) | C11—C12—H12A | 119.9 (8) |
C4—C5—H5A | 109.3 (8) | C12—C13—C14 | 121.55 (10) |
O1—C5—H5B | 104.1 (8) | C12—C13—H13A | 118.7 (8) |
C4—C5—H5B | 110.4 (8) | C14—C13—H13A | 119.7 (8) |
H5A—C5—H5B | 110.3 (11) | C13—C14—C9 | 117.41 (9) |
O1—C6—C1 | 113.36 (8) | C13—C14—C2 | 123.42 (9) |
O1—C6—H6A | 105.7 (7) | C9—C14—C2 | 119.15 (8) |
C1—C6—H6A | 109.2 (7) | ||
C7—C1—C2—C14 | 2.09 (14) | C7—C8—C9—C14 | 1.43 (14) |
C6—C1—C2—C14 | −177.41 (8) | C8—C9—C10—C11 | 177.03 (9) |
C7—C1—C2—C3 | −178.58 (9) | C14—C9—C10—C11 | −1.35 (15) |
C6—C1—C2—C3 | 1.92 (14) | C9—C10—C11—C12 | 1.34 (15) |
C1—C2—C3—C4 | −62.32 (12) | C10—C11—C12—C13 | 0.19 (16) |
C14—C2—C3—C4 | 117.00 (10) | C11—C12—C13—C14 | −1.72 (15) |
C2—C3—C4—C5 | 76.33 (12) | C12—C13—C14—C9 | 1.66 (14) |
C6—O1—C5—C4 | 69.71 (12) | C12—C13—C14—C2 | −176.93 (9) |
C3—C4—C5—O1 | −63.49 (12) | C8—C9—C14—C13 | −178.54 (9) |
C5—O1—C6—C1 | −87.27 (10) | C10—C9—C14—C13 | −0.14 (13) |
C2—C1—C6—O1 | 65.29 (12) | C8—C9—C14—C2 | 0.11 (13) |
C7—C1—C6—O1 | −114.22 (10) | C10—C9—C14—C2 | 178.51 (8) |
C2—C1—C7—C8 | −0.56 (15) | C1—C2—C14—C13 | 176.72 (9) |
C6—C1—C7—C8 | 178.95 (9) | C3—C2—C14—C13 | −2.60 (14) |
C1—C7—C8—C9 | −1.23 (15) | C1—C2—C14—C9 | −1.84 (13) |
C7—C8—C9—C10 | −176.95 (9) | C3—C2—C14—C9 | 178.83 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O1i | 0.970 (16) | 2.558 (16) | 3.4803 (14) | 159.0 (11) |
C12—H12A···O1ii | 0.976 (15) | 2.560 (15) | 3.4661 (14) | 154.5 (11) |
Symmetry codes: (i) x−1, y, z−1; (ii) x−1, −y+1/2, z−1/2. |
Acknowledgements
The University of Toronto thanks NSERC for funding.
References
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carlson, E., Boutin, R. & Tam, W. (2018). Tetrahedron, 74, 5510–5518. Web of Science CrossRef CAS Google Scholar
Carlson, E., Haner, J., McKee, M. & Tam, W. (2014). Org. Lett. 16, 1776–1779. Web of Science CrossRef CAS PubMed Google Scholar
Carlson, E., Hong, D. & Tam, W. (2016). Synthesis, 48, 4253–4259. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tait, K., Alrifai, O., Boutin, R., Haner, J. & Tam, W. (2016). Beilstein J. Org. Chem. 12, 2189–2196. Web of Science CrossRef CAS PubMed Google Scholar
Tigchelaar, A., Haner, J., Carlson, E. & Tam, W. (2014). Synlett, 25, 2355–2359. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wicks, C., Koh, S., Pounder, A., Carlson, E. & Tam, W. (2019). Tetrahedron Lett. 60, 151228. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.