organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(1H-benzimidazol-2-ylmeth­yl)amine methanol tris­­olvate

CROSSMARK_Color_square_no_text.svg

aCentro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 27 January 2020; accepted 28 February 2020; online 5 March 2020)

The structure of the tertiary amine tris­(1H-benzimidazol-2-ylmeth­yl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the aceto­nitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the tri­methanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The asymmetric unit contains one-half amine, completed through the mirror plane m in space group Pmn21 to form the ntb mol­ecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The asymmetric unit also contains one and a half methanol mol­ecules, one being placed in general position with the hy­droxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hy­droxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb mol­ecules and the methanol mol­ecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol mol­ecule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The tertiary amine tris­(1H-benzimidazol-2-ylmeth­yl)amine (abbreviated ntb in the literature) is a mol­ecule that can act as a tetra­dentate ligand through its three imine N atoms and the central amine one, exhibiting thus a versatile and rich coordination chemistry, where the mol­ecule adopts a tripodal coordination mode to the metal (e.g. Nakata et al., 1997[Nakata, K., Uddin, M. K., Ogawa, K. & Ichikawa, K. (1997). Chem. Lett. 26, 991-992.]; Kwak et al., 1999[Kwak, B., Woong Cho, K., Pyo, M. & Soo Lah, M. (1999). Inorg. Chim. Acta, 290, 21-27.]; Rheingold & Hammes, 2015[Rheingold, A. L. & Hammes, B. (2015). Private Communications (refcodes: 1438672 (CUXJIQ), 1438673 (CUXJOW), 1438675 (CUXKAJ) and 1438676 (CUXKEN)]. CCDC, Cambridge, England.]). In addition, it is a potential hydrogen-bond donor through its three NH amine groups (Su et al., 2000[Su, C.-Y., Kang, B.-S., Wang, Q.-G. & Mak, T. C. W. (2000). J. Chem. Soc. Dalton Trans. pp. 1831-1833.]). Similar tripodal behaviour has been found in ntb solvent adducts such as the monohydrate, C24H21N7·H2O, and the aceto­nitrile–methanol–water (1/0.5/1.5) solvate, C24H21N7·C2H3N·0.5CH4O·1.5H2O. In both cases, ntb forms two N—H⋯O and one O—H⋯N hydrogen bonds with a solvent water mol­ecule (Zhang et al., 2005[Zhang, X.-L., Zheng, S.-R., Liu, Y.-R., Zheng, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o533-o536.]). In addition, the imine N atoms of the benzimidazolyl arms can be protonated with HNO3, and the resulting trication then adopts a stair arrangement, where the N atoms of the benzimidazolium fragments inter­act with anions NO3 through N—H⋯O hydrogen bonds (Cui, 2011[Cui, Y. (2011). Acta Cryst. E67, o625-o626.]).

The present report deals with a new ntb solvate. When this amine is crystallized from methanol solution, the solvate ntb·3CH3OH is obtained, in space group Pmn21. The ntb mol­ecule has one benzimidazolyl arm placed over the mirror m plane (N2/C1⋯C5 group), while the other crystallographically independent arm (N3/N4/C6⋯C13 group) is placed in general position (Fig. 1[link]). As a consequence, instead of the common tripodal mol­ecular geometry (approximate point group: C3v), the ntb mol­ecule adopts a stair-like conformation (point group: Cs), with one benzimidazole group oriented in the opposite direction from the other two (Fig. 2[link]). The imidazol H atom of the arm bis­ected by the mirror plane, H2, is disordered by symmetry so that the π-bond of this imidazole ring is delocalized over C2 N2 and C2 N2i bonds [symmetry code: (i) 1 − x, y, z], with a bond length of 1.342 (3) Å. The same kind of delocalization is observed in the other ntb arm, with the imidazolic H atom equally disordered over N3 and N4, and identical bond lengths C7 N3 and C7 N4 of 1.338 (4) and 1.335 (4) Å. In other words, amine and imine sites in ntb are indistinguishable (Fig. 2[link]). As clearly observed in Fig. 1[link], the methanol molecules of crystallization are recognized by the ntb mol­ecule in a similar way as in the previously described ionic compound ntb·3HNO3 (Cui, 2011[Cui, Y. (2011). Acta Cryst. E67, o625-o626.]). The methanol mol­ecules are sandwiched between two ntb arms, in order to form three O—H⋯N and three N—H⋯O hydrogen bonds (Table 1[link]), with O⋯N separations spanning a short range, from 2.722 (4) to 2.767 (3) Å. Given that all imidazolic H atoms are disordered, the same holds for hy­droxy H atoms: the first methanol mol­ecule C14—O1 lies in the mirror m plane, with its H atom disordered by symmetry (H1); the second methanol mol­ecule, C15—O2, placed in general position, has its hy­droxy H atom disordered over two sites, H2A and H2B, with half occupancy (Fig. 2[link]). With this arrangement, any physically unreasonable H⋯H contact is avoided, despite all heteroatoms, except N1, being involved in efficient hydrogen bonds. The complete adduct ntb·3CH3OH thus features three similar ring motifs R22(10) sharing the central N1 atom (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.84 (3) 1.95 (4) 2.762 (3) 164 (10)
O2—H2A⋯N2i 0.86 (3) 1.91 (3) 2.767 (3) 174 (9)
O2—H2B⋯N4 0.86 (3) 1.87 (3) 2.722 (4) 171 (8)
N2—H2⋯O2i 0.88 (3) 1.92 (3) 2.767 (3) 161 (7)
N3—H3⋯O1 0.88 (3) 1.88 (3) 2.762 (3) 176 (6)
N4—H4⋯O2 0.88 (3) 1.90 (3) 2.722 (4) 156 (3)
Symmetry code: (i) -x+1, y, z.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms at the 50% probability level. For all disordered H atoms, a single site was retained, in order to emphasize the O—H⋯N and N—H⋯O hydrogen bonds (dotted lines). Non-labelled atoms are generated by the symmetry operation 1 − x, y, z.
[Figure 2]
Figure 2
View of the title compound rotated by ca 90° in comparison with Fig. 1[link], showing the stair-like conformation for ntb. All H atoms bonded to heteroatoms are shown. Green H atoms are disordered by symmetry, while purple H atoms are positionally disordered, all having the same half occupancy. The orange line is the trace of the m mirror normal to the a axis.

The supra­molecular structure is further extended by one-dimensional stacks of ntb mol­ecules in the [011] direction. The stair conformation adopted by ntb allows rather close ππ inter­actions between benzimidazole rings along the stacks: mean plane separations for neighbouring rings along a stack are 3.782 (2) and 3.454 (2) Å for the N2/C2–C5 and N3/N4/C7–C13 benzimidazole rings, respectively.

Synthesis and crystallization

The title compound was prepared through the solid-solid condensation reaction of nitrilo­tri­acetic acid (1 g, 5.2 mmol) and o-phenyl­enedi­amine (1.7 g, 15.7 mmol), both reactants contained in a round-bottom flask provided with a septum connected to the outside through a needle, which was maintained at 463–473 K in a sand bath for 1 h. As the heating progressed, a dark-brown solution formed, which solidified when the temperature returned to 298 K. Then, 0.7 g of activated carbon and 20 ml of methanol were added and the mixture refluxed for 2 h. The still hot mixture was filtered in a Büchner funnel, giving an orange filtrate. The product was isolated by successive recrystallizations from methanol in 30% yield, and single crystals grew by slow evaporation at 298 K as colourless needles with a melting point of 543–547 K. IR (KBr): 3391, 3177, 1624, 1535, 1437, 1273, 1119, 737 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal emulates a tetra­gonal system (ab), however, extinctions and structure refinement are consistent with space group Pmn21. The imidazole ring in a general position (N3/H3/N4/H4/C7/C8/C13) was restrained to be flat, within a standard deviation of 0.1 Å3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula C24H21N7·3CH4O
Mr 503.60
Crystal system, space group Orthorhombic, Pmn21
Temperature (K) 293
a, b, c (Å) 16.7781 (17), 16.3902 (18), 4.7894 (5)
V3) 1317.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.77 × 0.17 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Analytical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.975, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 8328, 2938, 1903
Rint 0.047
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.101, 1.03
No. of reflections 2938
No. of parameters 196
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.14
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris(1H-benzimidazol-2-ylmethyl)amine methanol trisolvate top
Crystal data top
C24H21N7·3CH4ODx = 1.270 Mg m3
Mr = 503.60Melting point: 543 K
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71073 Å
a = 16.7781 (17) ÅCell parameters from 1461 reflections
b = 16.3902 (18) Åθ = 3.8–23.1°
c = 4.7894 (5) ŵ = 0.09 mm1
V = 1317.1 (2) Å3T = 293 K
Z = 2Needle, colourless
F(000) = 5360.77 × 0.17 × 0.10 mm
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
2938 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.5564 pixels mm-1θmax = 27.1°, θmin = 3.5°
ω scansh = 2121
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
k = 2020
Tmin = 0.975, Tmax = 0.995l = 66
8328 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2938 reflectionsΔρmax = 0.14 e Å3
196 parametersΔρmin = 0.14 e Å3
11 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.011 (2)
Primary atom site location: dual
Special details top

Refinement. All C-bonded H atoms were placed in calculated positions and refined as riding atoms, while H atoms bonded to N (H2, H3, H4) and O sites (H1, H2A, H2B) were found in difference maps, and refined with free coordinates and occupancy fixed to 1/2. Corresponding bond lengths were restrained to O—H = 0.85 (2) and N—H = 0.90 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5000000.7530 (2)0.4852 (7)0.0411 (8)
N20.43371 (14)0.56374 (16)0.6509 (6)0.0483 (6)
H20.3840 (19)0.578 (4)0.616 (15)0.058*0.5
N30.63616 (15)0.85800 (15)0.2727 (6)0.0481 (7)
H30.593 (3)0.886 (3)0.231 (13)0.058*0.5
N40.71198 (16)0.76093 (15)0.4609 (6)0.0517 (7)
H40.725 (4)0.7189 (17)0.565 (8)0.062*0.5
C10.5000000.6713 (3)0.3595 (8)0.0456 (11)
H1A0.5465310.6670190.2402190.055*0.5
H1B0.4534690.6670190.2402190.055*0.5
C20.5000000.5995 (3)0.5526 (8)0.0441 (11)
C30.45864 (17)0.5001 (2)0.8202 (7)0.0467 (8)
C40.4157 (2)0.4429 (2)0.9728 (8)0.0620 (9)
H4A0.3602380.4427530.9736730.074*
C50.4586 (2)0.3865 (2)1.1222 (9)0.0674 (10)
H50.4316460.3473571.2260650.081*
C60.57325 (16)0.77133 (19)0.6402 (7)0.0461 (7)
H6A0.5889780.7235670.7462910.055*
H6B0.5627220.8150840.7714940.055*
C70.64012 (19)0.79584 (19)0.4532 (7)0.0471 (8)
C80.75915 (19)0.80341 (19)0.2720 (7)0.0495 (8)
C90.8387 (2)0.7945 (2)0.1972 (8)0.0657 (10)
H90.8707590.7546180.2779110.079*
C100.8681 (2)0.8473 (3)0.0016 (9)0.0733 (11)
H100.9209920.8426740.0570550.088*
C110.8205 (3)0.9071 (2)0.1211 (9)0.0712 (11)
H110.8424930.9418760.2538040.085*
C120.7416 (2)0.9164 (2)0.0482 (8)0.0590 (9)
H120.7098320.9562960.1298310.071*
C130.71147 (18)0.86342 (18)0.1529 (7)0.0470 (8)
C140.5000001.0001 (4)0.0870 (13)0.0875 (19)
H14A0.4772951.0496290.0157830.131*0.5
H14B0.4689740.9811800.2425420.131*0.5
H14C0.5537311.0101050.1467200.131*0.5
O10.5000000.9415 (3)0.1199 (10)0.0815 (11)
H10.458 (3)0.923 (6)0.19 (2)0.122*0.5
C150.7479 (2)0.5979 (2)0.9575 (8)0.0747 (11)
H15A0.7680100.5436910.9854120.112*
H15B0.7024870.6065851.0755510.112*
H15C0.7886840.6368241.0031050.112*
O20.72533 (13)0.60776 (15)0.6755 (6)0.0605 (7)
H2A0.676 (2)0.595 (5)0.68 (2)0.091*0.5
H2B0.727 (5)0.657 (2)0.611 (17)0.091*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.043 (2)0.043 (2)0.0379 (19)0.0000.0000.0032 (16)
N20.0407 (14)0.0496 (16)0.0546 (14)0.0032 (13)0.0037 (15)0.0040 (14)
N30.0464 (16)0.0483 (16)0.0496 (15)0.0033 (12)0.0017 (14)0.0020 (15)
N40.0483 (16)0.0488 (16)0.0580 (16)0.0015 (14)0.0008 (15)0.0056 (14)
C10.046 (2)0.050 (3)0.041 (2)0.0000.0000.004 (2)
C20.047 (3)0.044 (3)0.041 (3)0.0000.0000.0046 (19)
C30.0454 (17)0.0455 (18)0.0492 (16)0.0028 (14)0.0037 (15)0.0035 (15)
C40.052 (2)0.062 (2)0.072 (2)0.0085 (18)0.001 (2)0.006 (2)
C50.078 (2)0.053 (2)0.072 (2)0.0092 (17)0.004 (2)0.013 (2)
C60.0480 (18)0.0465 (18)0.0436 (16)0.0053 (14)0.0038 (17)0.0014 (16)
C70.050 (2)0.0470 (19)0.0445 (17)0.0089 (16)0.0031 (16)0.0069 (17)
C80.052 (2)0.0430 (18)0.0535 (19)0.0070 (16)0.0004 (17)0.0004 (17)
C90.048 (2)0.067 (2)0.082 (3)0.0003 (18)0.006 (2)0.001 (2)
C100.056 (2)0.079 (3)0.085 (3)0.013 (2)0.017 (2)0.003 (2)
C110.076 (3)0.065 (3)0.073 (3)0.016 (2)0.013 (2)0.002 (2)
C120.065 (2)0.051 (2)0.061 (2)0.0083 (17)0.003 (2)0.0023 (19)
C130.0523 (19)0.0416 (18)0.0472 (17)0.0087 (15)0.0005 (18)0.0047 (16)
C140.088 (4)0.076 (4)0.099 (5)0.0000.0000.030 (4)
O10.061 (2)0.085 (3)0.099 (3)0.0000.0000.039 (2)
C150.084 (3)0.072 (3)0.068 (3)0.006 (2)0.009 (2)0.004 (2)
O20.0478 (13)0.0639 (16)0.0698 (17)0.0046 (13)0.0019 (15)0.0169 (14)
Geometric parameters (Å, º) top
N1—C6i1.467 (3)C6—H6B0.9700
N1—C61.467 (3)C8—C91.390 (4)
N1—C11.468 (5)C8—C131.390 (4)
N2—C21.342 (3)C9—C101.377 (5)
N2—C31.386 (4)C9—H90.9300
N2—H20.88 (3)C10—C111.388 (5)
N3—C71.338 (4)C10—H100.9300
N3—C131.391 (4)C11—C121.378 (5)
N3—H30.88 (3)C11—H110.9300
N4—C71.335 (4)C12—C131.391 (4)
N4—C81.389 (4)C12—H120.9300
N4—H40.88 (3)C14—O11.379 (6)
C1—C21.496 (6)C14—H14A0.9600
C1—H1A0.9700C14—H14B0.9600
C1—H1B0.9700C14—H14C0.9600
C3—C3i1.388 (6)O1—H10.84 (3)
C3—C41.391 (4)O1—H1i0.84 (3)
C4—C51.373 (5)C15—O21.412 (4)
C4—H4A0.9300C15—H15A0.9600
C5—C5i1.388 (7)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.491 (4)O2—H2A0.86 (3)
C6—H6A0.9700O2—H2B0.86 (3)
C6i—N1—C6113.8 (3)N3—C7—C6123.8 (3)
C6i—N1—C1113.3 (2)N4—C8—C9131.5 (3)
C6—N1—C1113.3 (2)N4—C8—C13107.1 (3)
C2—N2—C3106.5 (3)C9—C8—C13121.4 (3)
C2—N2—H2127 (4)C10—C9—C8117.1 (4)
C3—N2—H2127 (4)C10—C9—H9121.5
C7—N3—C13105.7 (3)C8—C9—H9121.5
C7—N3—H3126 (4)C9—C10—C11121.6 (4)
C13—N3—H3129 (4)C9—C10—H10119.2
C7—N4—C8106.4 (3)C11—C10—H10119.2
C7—N4—H4125 (4)C12—C11—C10121.7 (4)
C8—N4—H4128 (4)C12—C11—H11119.1
N1—C1—C2117.6 (3)C10—C11—H11119.1
N1—C1—H1A107.9C11—C12—C13117.1 (3)
C2—C1—H1A107.9C11—C12—H12121.4
N1—C1—H1B107.9C13—C12—H12121.4
C2—C1—H1B107.9C8—C13—N3108.0 (3)
H1A—C1—H1B107.2C8—C13—C12121.1 (3)
N2—C2—N2i111.9 (4)N3—C13—C12130.9 (3)
N2—C2—C1124.06 (19)O1—C14—H14A109.5
N2i—C2—C1124.06 (19)O1—C14—H14B109.5
N2—C3—C3i107.56 (15)H14A—C14—H14B109.5
N2—C3—C4131.2 (3)O1—C14—H14C109.5
C3i—C3—C4121.2 (2)H14A—C14—H14C109.5
C5—C4—C3117.1 (3)H14B—C14—H14C109.5
C5—C4—H4A121.5C14—O1—H1122 (7)
C3—C4—H4A121.5C14—O1—H1i122 (7)
C4—C5—C5i121.7 (2)H1—O1—H1i116 (10)
C4—C5—H5119.2O2—C15—H15A109.5
C5i—C5—H5119.2O2—C15—H15B109.5
N1—C6—C7112.4 (3)H15A—C15—H15B109.5
N1—C6—H6A109.1O2—C15—H15C109.5
C7—C6—H6A109.1H15A—C15—H15C109.5
N1—C6—H6B109.1H15B—C15—H15C109.5
C7—C6—H6B109.1C15—O2—H2A102 (7)
H6A—C6—H6B107.8C15—O2—H2B116 (6)
N4—C7—N3112.9 (3)H2A—O2—H2B106 (7)
N4—C7—C6123.2 (3)
C6i—N1—C1—C265.7 (2)N1—C6—C7—N4127.8 (3)
C6—N1—C1—C265.8 (2)N1—C6—C7—N356.5 (4)
C3—N2—C2—N2i0.9 (5)C7—N4—C8—C9179.1 (4)
C3—N2—C2—C1179.8 (3)C7—N4—C8—C130.7 (3)
N1—C1—C2—N289.6 (4)N4—C8—C9—C10179.8 (3)
N1—C1—C2—N2i89.6 (4)C13—C8—C9—C100.5 (5)
C2—N2—C3—C3i0.5 (3)C8—C9—C10—C110.4 (6)
C2—N2—C3—C4179.5 (3)C9—C10—C11—C120.4 (6)
N2—C3—C4—C5179.9 (4)C10—C11—C12—C130.5 (6)
C3i—C3—C4—C50.2 (4)N4—C8—C13—N30.9 (3)
C3—C4—C5—C5i0.2 (4)C9—C8—C13—N3178.9 (3)
C6i—N1—C6—C7149.0 (2)N4—C8—C13—C12179.6 (3)
C1—N1—C6—C779.7 (4)C9—C8—C13—C120.6 (5)
C8—N4—C7—N30.2 (4)C7—N3—C13—C80.8 (3)
C8—N4—C7—C6176.0 (3)C7—N3—C13—C12179.8 (3)
C13—N3—C7—N40.4 (3)C11—C12—C13—C80.6 (5)
C13—N3—C7—C6176.5 (3)C11—C12—C13—N3178.8 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.84 (3)1.95 (4)2.762 (3)164 (10)
O2—H2A···N2i0.86 (3)1.91 (3)2.767 (3)174 (9)
O2—H2B···N40.86 (3)1.87 (3)2.722 (4)171 (8)
N2—H2···O2i0.88 (3)1.92 (3)2.767 (3)161 (7)
N3—H3···O10.88 (3)1.88 (3)2.762 (3)176 (6)
N4—H4···O20.88 (3)1.90 (3)2.722 (4)156 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Dr. Angel Mendoza (Instituto de Ciencias, BUAP, Mexico) for diffractometer time.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCui, Y. (2011). Acta Cryst. E67, o625–o626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKwak, B., Woong Cho, K., Pyo, M. & Soo Lah, M. (1999). Inorg. Chim. Acta, 290, 21–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakata, K., Uddin, M. K., Ogawa, K. & Ichikawa, K. (1997). Chem. Lett. 26, 991–992.  CSD CrossRef Web of Science Google Scholar
First citationRheingold, A. L. & Hammes, B. (2015). Private Communications (refcodes: 1438672 (CUXJIQ), 1438673 (CUXJOW), 1438675 (CUXKAJ) and 1438676 (CUXKEN)]. CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, C.-Y., Kang, B.-S., Wang, Q.-G. & Mak, T. C. W. (2000). J. Chem. Soc. Dalton Trans. pp. 1831–1833.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-L., Zheng, S.-R., Liu, Y.-R., Zheng, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o533–o536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds