organic compounds
Tris(1H-benzimidazol-2-ylmethyl)amine methanol trisolvate
aCentro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The structure of the tertiary amine tris(1H-benzimidazol-2-ylmethyl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the acetonitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the trimethanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The contains one-half amine, completed through the mirror plane m in Pmn21 to form the ntb molecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The also contains one and a half methanol molecules, one being placed in general position with the hydroxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hydroxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb molecules and the methanol molecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol molecule.
Keywords: crystal structure; tripodal N-donor ligand; methanol solvate; hydrogen bonds; molecular conformation.
CCDC reference: 1987232
Structure description
The tertiary amine tris(1H-benzimidazol-2-ylmethyl)amine (abbreviated ntb in the literature) is a molecule that can act as a tetradentate ligand through its three imine N atoms and the central amine one, exhibiting thus a versatile and rich coordination chemistry, where the molecule adopts a tripodal coordination mode to the metal (e.g. Nakata et al., 1997; Kwak et al., 1999; Rheingold & Hammes, 2015). In addition, it is a potential hydrogen-bond donor through its three NH amine groups (Su et al., 2000). Similar tripodal behaviour has been found in ntb solvent adducts such as the monohydrate, C24H21N7·H2O, and the acetonitrile–methanol–water (1/0.5/1.5) solvate, C24H21N7·C2H3N·0.5CH4O·1.5H2O. In both cases, ntb forms two N—H⋯O and one O—H⋯N hydrogen bonds with a solvent water molecule (Zhang et al., 2005). In addition, the imine N atoms of the benzimidazolyl arms can be protonated with HNO3, and the resulting trication then adopts a stair arrangement, where the N atoms of the benzimidazolium fragments interact with anions NO3− through N—H⋯O hydrogen bonds (Cui, 2011).
The present report deals with a new ntb solvate. When this amine is crystallized from methanol solution, the solvate ntb·3CH3OH is obtained, in Pmn21. The ntb molecule has one benzimidazolyl arm placed over the mirror m plane (N2/C1⋯C5 group), while the other crystallographically independent arm (N3/N4/C6⋯C13 group) is placed in general position (Fig. 1). As a consequence, instead of the common tripodal molecular geometry (approximate C3v), the ntb molecule adopts a stair-like conformation (point group: Cs), with one benzimidazole group oriented in the opposite direction from the other two (Fig. 2). The imidazol H atom of the arm bisected by the mirror plane, H2, is disordered by symmetry so that the π-bond of this imidazole ring is delocalized over C2 N2 and C2 N2i bonds [symmetry code: (i) 1 − x, y, z], with a bond length of 1.342 (3) Å. The same kind of delocalization is observed in the other ntb arm, with the imidazolic H atom equally disordered over N3 and N4, and identical bond lengths C7 N3 and C7 N4 of 1.338 (4) and 1.335 (4) Å. In other words, amine and imine sites in ntb are indistinguishable (Fig. 2). As clearly observed in Fig. 1, the methanol molecules of crystallization are recognized by the ntb molecule in a similar way as in the previously described ionic compound ntb·3HNO3 (Cui, 2011). The methanol molecules are sandwiched between two ntb arms, in order to form three O—H⋯N and three N—H⋯O hydrogen bonds (Table 1), with O⋯N separations spanning a short range, from 2.722 (4) to 2.767 (3) Å. Given that all imidazolic H atoms are disordered, the same holds for hydroxy H atoms: the first methanol molecule C14—O1 lies in the mirror m plane, with its H atom disordered by symmetry (H1); the second methanol molecule, C15—O2, placed in general position, has its hydroxy H atom disordered over two sites, H2A and H2B, with half occupancy (Fig. 2). With this arrangement, any physically unreasonable H⋯H contact is avoided, despite all heteroatoms, except N1, being involved in efficient hydrogen bonds. The complete adduct ntb·3CH3OH thus features three similar ring motifs R22(10) sharing the central N1 atom (Fig. 2).
The supramolecular structure is further extended by one-dimensional stacks of ntb molecules in the [011] direction. The stair conformation adopted by ntb allows rather close π–π interactions between benzimidazole rings along the stacks: mean plane separations for neighbouring rings along a stack are 3.782 (2) and 3.454 (2) Å for the N2/C2–C5 and N3/N4/C7–C13 benzimidazole rings, respectively.
Synthesis and crystallization
The title compound was prepared through the solid-solid condensation reaction of nitrilotriacetic acid (1 g, 5.2 mmol) and o-phenylenediamine (1.7 g, 15.7 mmol), both reactants contained in a round-bottom flask provided with a septum connected to the outside through a needle, which was maintained at 463–473 K in a sand bath for 1 h. As the heating progressed, a dark-brown solution formed, which solidified when the temperature returned to 298 K. Then, 0.7 g of and 20 ml of methanol were added and the mixture refluxed for 2 h. The still hot mixture was filtered in a Büchner funnel, giving an orange filtrate. The product was isolated by successive recrystallizations from methanol in 30% yield, and single crystals grew by slow evaporation at 298 K as colourless needles with a melting point of 543–547 K. IR (KBr): 3391, 3177, 1624, 1535, 1437, 1273, 1119, 737 cm−1.
Refinement
Crystal data, data collection and structure . The crystal emulates a tetragonal system (a ≃ b), however, and structure are consistent with Pmn21. The imidazole ring in a general position (N3/H3/N4/H4/C7/C8/C13) was restrained to be flat, within a standard deviation of 0.1 Å3 (Sheldrick, 2015b).
details are summarized in Table 2
|
Structural data
CCDC reference: 1987232
https://doi.org/10.1107/S2414314620002813/gg4004sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620002813/gg4004Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620002813/gg4004Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C24H21N7·3CH4O | Dx = 1.270 Mg m−3 |
Mr = 503.60 | Melting point: 543 K |
Orthorhombic, Pmn21 | Mo Kα radiation, λ = 0.71073 Å |
a = 16.7781 (17) Å | Cell parameters from 1461 reflections |
b = 16.3902 (18) Å | θ = 3.8–23.1° |
c = 4.7894 (5) Å | µ = 0.09 mm−1 |
V = 1317.1 (2) Å3 | T = 293 K |
Z = 2 | Needle, colourless |
F(000) = 536 | 0.77 × 0.17 × 0.10 mm |
Agilent Xcalibur, Atlas, Gemini diffractometer | 2938 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1903 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 10.5564 pixels mm-1 | θmax = 27.1°, θmin = 3.5° |
ω scans | h = −21→21 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2012) | k = −20→20 |
Tmin = 0.975, Tmax = 0.995 | l = −6→6 |
8328 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0376P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2938 reflections | Δρmax = 0.14 e Å−3 |
196 parameters | Δρmin = −0.14 e Å−3 |
11 restraints | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.011 (2) |
Primary atom site location: dual |
Refinement. All C-bonded H atoms were placed in calculated positions and refined as riding atoms, while H atoms bonded to N (H2, H3, H4) and O sites (H1, H2A, H2B) were found in difference maps, and refined with free coordinates and occupancy fixed to 1/2. Corresponding bond lengths were restrained to O—H = 0.85 (2) and N—H = 0.90 (2) Å. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.500000 | 0.7530 (2) | 0.4852 (7) | 0.0411 (8) | |
N2 | 0.43371 (14) | 0.56374 (16) | 0.6509 (6) | 0.0483 (6) | |
H2 | 0.3840 (19) | 0.578 (4) | 0.616 (15) | 0.058* | 0.5 |
N3 | 0.63616 (15) | 0.85800 (15) | 0.2727 (6) | 0.0481 (7) | |
H3 | 0.593 (3) | 0.886 (3) | 0.231 (13) | 0.058* | 0.5 |
N4 | 0.71198 (16) | 0.76093 (15) | 0.4609 (6) | 0.0517 (7) | |
H4 | 0.725 (4) | 0.7189 (17) | 0.565 (8) | 0.062* | 0.5 |
C1 | 0.500000 | 0.6713 (3) | 0.3595 (8) | 0.0456 (11) | |
H1A | 0.546531 | 0.667019 | 0.240219 | 0.055* | 0.5 |
H1B | 0.453469 | 0.667019 | 0.240219 | 0.055* | 0.5 |
C2 | 0.500000 | 0.5995 (3) | 0.5526 (8) | 0.0441 (11) | |
C3 | 0.45864 (17) | 0.5001 (2) | 0.8202 (7) | 0.0467 (8) | |
C4 | 0.4157 (2) | 0.4429 (2) | 0.9728 (8) | 0.0620 (9) | |
H4A | 0.360238 | 0.442753 | 0.973673 | 0.074* | |
C5 | 0.4586 (2) | 0.3865 (2) | 1.1222 (9) | 0.0674 (10) | |
H5 | 0.431646 | 0.347357 | 1.226065 | 0.081* | |
C6 | 0.57325 (16) | 0.77133 (19) | 0.6402 (7) | 0.0461 (7) | |
H6A | 0.588978 | 0.723567 | 0.746291 | 0.055* | |
H6B | 0.562722 | 0.815084 | 0.771494 | 0.055* | |
C7 | 0.64012 (19) | 0.79584 (19) | 0.4532 (7) | 0.0471 (8) | |
C8 | 0.75915 (19) | 0.80341 (19) | 0.2720 (7) | 0.0495 (8) | |
C9 | 0.8387 (2) | 0.7945 (2) | 0.1972 (8) | 0.0657 (10) | |
H9 | 0.870759 | 0.754618 | 0.277911 | 0.079* | |
C10 | 0.8681 (2) | 0.8473 (3) | −0.0016 (9) | 0.0733 (11) | |
H10 | 0.920992 | 0.842674 | −0.057055 | 0.088* | |
C11 | 0.8205 (3) | 0.9071 (2) | −0.1211 (9) | 0.0712 (11) | |
H11 | 0.842493 | 0.941876 | −0.253804 | 0.085* | |
C12 | 0.7416 (2) | 0.9164 (2) | −0.0482 (8) | 0.0590 (9) | |
H12 | 0.709832 | 0.956296 | −0.129831 | 0.071* | |
C13 | 0.71147 (18) | 0.86342 (18) | 0.1529 (7) | 0.0470 (8) | |
C14 | 0.500000 | 1.0001 (4) | −0.0870 (13) | 0.0875 (19) | |
H14A | 0.477295 | 1.049629 | −0.015783 | 0.131* | 0.5 |
H14B | 0.468974 | 0.981180 | −0.242542 | 0.131* | 0.5 |
H14C | 0.553731 | 1.010105 | −0.146720 | 0.131* | 0.5 |
O1 | 0.500000 | 0.9415 (3) | 0.1199 (10) | 0.0815 (11) | |
H1 | 0.458 (3) | 0.923 (6) | 0.19 (2) | 0.122* | 0.5 |
C15 | 0.7479 (2) | 0.5979 (2) | 0.9575 (8) | 0.0747 (11) | |
H15A | 0.768010 | 0.543691 | 0.985412 | 0.112* | |
H15B | 0.702487 | 0.606585 | 1.075551 | 0.112* | |
H15C | 0.788684 | 0.636824 | 1.003105 | 0.112* | |
O2 | 0.72533 (13) | 0.60776 (15) | 0.6755 (6) | 0.0605 (7) | |
H2A | 0.676 (2) | 0.595 (5) | 0.68 (2) | 0.091* | 0.5 |
H2B | 0.727 (5) | 0.657 (2) | 0.611 (17) | 0.091* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.043 (2) | 0.043 (2) | 0.0379 (19) | 0.000 | 0.000 | −0.0032 (16) |
N2 | 0.0407 (14) | 0.0496 (16) | 0.0546 (14) | −0.0032 (13) | −0.0037 (15) | 0.0040 (14) |
N3 | 0.0464 (16) | 0.0483 (16) | 0.0496 (15) | −0.0033 (12) | −0.0017 (14) | 0.0020 (15) |
N4 | 0.0483 (16) | 0.0488 (16) | 0.0580 (16) | −0.0015 (14) | −0.0008 (15) | 0.0056 (14) |
C1 | 0.046 (2) | 0.050 (3) | 0.041 (2) | 0.000 | 0.000 | −0.004 (2) |
C2 | 0.047 (3) | 0.044 (3) | 0.041 (3) | 0.000 | 0.000 | −0.0046 (19) |
C3 | 0.0454 (17) | 0.0455 (18) | 0.0492 (16) | −0.0028 (14) | −0.0037 (15) | −0.0035 (15) |
C4 | 0.052 (2) | 0.062 (2) | 0.072 (2) | −0.0085 (18) | 0.001 (2) | 0.006 (2) |
C5 | 0.078 (2) | 0.053 (2) | 0.072 (2) | −0.0092 (17) | 0.004 (2) | 0.013 (2) |
C6 | 0.0480 (18) | 0.0465 (18) | 0.0436 (16) | −0.0053 (14) | −0.0038 (17) | −0.0014 (16) |
C7 | 0.050 (2) | 0.0470 (19) | 0.0445 (17) | −0.0089 (16) | −0.0031 (16) | −0.0069 (17) |
C8 | 0.052 (2) | 0.0430 (18) | 0.0535 (19) | −0.0070 (16) | −0.0004 (17) | −0.0004 (17) |
C9 | 0.048 (2) | 0.067 (2) | 0.082 (3) | −0.0003 (18) | 0.006 (2) | 0.001 (2) |
C10 | 0.056 (2) | 0.079 (3) | 0.085 (3) | −0.013 (2) | 0.017 (2) | −0.003 (2) |
C11 | 0.076 (3) | 0.065 (3) | 0.073 (3) | −0.016 (2) | 0.013 (2) | 0.002 (2) |
C12 | 0.065 (2) | 0.051 (2) | 0.061 (2) | −0.0083 (17) | 0.003 (2) | 0.0023 (19) |
C13 | 0.0523 (19) | 0.0416 (18) | 0.0472 (17) | −0.0087 (15) | −0.0005 (18) | −0.0047 (16) |
C14 | 0.088 (4) | 0.076 (4) | 0.099 (5) | 0.000 | 0.000 | 0.030 (4) |
O1 | 0.061 (2) | 0.085 (3) | 0.099 (3) | 0.000 | 0.000 | 0.039 (2) |
C15 | 0.084 (3) | 0.072 (3) | 0.068 (3) | −0.006 (2) | −0.009 (2) | 0.004 (2) |
O2 | 0.0478 (13) | 0.0639 (16) | 0.0698 (17) | 0.0046 (13) | 0.0019 (15) | 0.0169 (14) |
N1—C6i | 1.467 (3) | C6—H6B | 0.9700 |
N1—C6 | 1.467 (3) | C8—C9 | 1.390 (4) |
N1—C1 | 1.468 (5) | C8—C13 | 1.390 (4) |
N2—C2 | 1.342 (3) | C9—C10 | 1.377 (5) |
N2—C3 | 1.386 (4) | C9—H9 | 0.9300 |
N2—H2 | 0.88 (3) | C10—C11 | 1.388 (5) |
N3—C7 | 1.338 (4) | C10—H10 | 0.9300 |
N3—C13 | 1.391 (4) | C11—C12 | 1.378 (5) |
N3—H3 | 0.88 (3) | C11—H11 | 0.9300 |
N4—C7 | 1.335 (4) | C12—C13 | 1.391 (4) |
N4—C8 | 1.389 (4) | C12—H12 | 0.9300 |
N4—H4 | 0.88 (3) | C14—O1 | 1.379 (6) |
C1—C2 | 1.496 (6) | C14—H14A | 0.9600 |
C1—H1A | 0.9700 | C14—H14B | 0.9600 |
C1—H1B | 0.9700 | C14—H14C | 0.9600 |
C3—C3i | 1.388 (6) | O1—H1 | 0.84 (3) |
C3—C4 | 1.391 (4) | O1—H1i | 0.84 (3) |
C4—C5 | 1.373 (5) | C15—O2 | 1.412 (4) |
C4—H4A | 0.9300 | C15—H15A | 0.9600 |
C5—C5i | 1.388 (7) | C15—H15B | 0.9600 |
C5—H5 | 0.9300 | C15—H15C | 0.9600 |
C6—C7 | 1.491 (4) | O2—H2A | 0.86 (3) |
C6—H6A | 0.9700 | O2—H2B | 0.86 (3) |
C6i—N1—C6 | 113.8 (3) | N3—C7—C6 | 123.8 (3) |
C6i—N1—C1 | 113.3 (2) | N4—C8—C9 | 131.5 (3) |
C6—N1—C1 | 113.3 (2) | N4—C8—C13 | 107.1 (3) |
C2—N2—C3 | 106.5 (3) | C9—C8—C13 | 121.4 (3) |
C2—N2—H2 | 127 (4) | C10—C9—C8 | 117.1 (4) |
C3—N2—H2 | 127 (4) | C10—C9—H9 | 121.5 |
C7—N3—C13 | 105.7 (3) | C8—C9—H9 | 121.5 |
C7—N3—H3 | 126 (4) | C9—C10—C11 | 121.6 (4) |
C13—N3—H3 | 129 (4) | C9—C10—H10 | 119.2 |
C7—N4—C8 | 106.4 (3) | C11—C10—H10 | 119.2 |
C7—N4—H4 | 125 (4) | C12—C11—C10 | 121.7 (4) |
C8—N4—H4 | 128 (4) | C12—C11—H11 | 119.1 |
N1—C1—C2 | 117.6 (3) | C10—C11—H11 | 119.1 |
N1—C1—H1A | 107.9 | C11—C12—C13 | 117.1 (3) |
C2—C1—H1A | 107.9 | C11—C12—H12 | 121.4 |
N1—C1—H1B | 107.9 | C13—C12—H12 | 121.4 |
C2—C1—H1B | 107.9 | C8—C13—N3 | 108.0 (3) |
H1A—C1—H1B | 107.2 | C8—C13—C12 | 121.1 (3) |
N2—C2—N2i | 111.9 (4) | N3—C13—C12 | 130.9 (3) |
N2—C2—C1 | 124.06 (19) | O1—C14—H14A | 109.5 |
N2i—C2—C1 | 124.06 (19) | O1—C14—H14B | 109.5 |
N2—C3—C3i | 107.56 (15) | H14A—C14—H14B | 109.5 |
N2—C3—C4 | 131.2 (3) | O1—C14—H14C | 109.5 |
C3i—C3—C4 | 121.2 (2) | H14A—C14—H14C | 109.5 |
C5—C4—C3 | 117.1 (3) | H14B—C14—H14C | 109.5 |
C5—C4—H4A | 121.5 | C14—O1—H1 | 122 (7) |
C3—C4—H4A | 121.5 | C14—O1—H1i | 122 (7) |
C4—C5—C5i | 121.7 (2) | H1—O1—H1i | 116 (10) |
C4—C5—H5 | 119.2 | O2—C15—H15A | 109.5 |
C5i—C5—H5 | 119.2 | O2—C15—H15B | 109.5 |
N1—C6—C7 | 112.4 (3) | H15A—C15—H15B | 109.5 |
N1—C6—H6A | 109.1 | O2—C15—H15C | 109.5 |
C7—C6—H6A | 109.1 | H15A—C15—H15C | 109.5 |
N1—C6—H6B | 109.1 | H15B—C15—H15C | 109.5 |
C7—C6—H6B | 109.1 | C15—O2—H2A | 102 (7) |
H6A—C6—H6B | 107.8 | C15—O2—H2B | 116 (6) |
N4—C7—N3 | 112.9 (3) | H2A—O2—H2B | 106 (7) |
N4—C7—C6 | 123.2 (3) | ||
C6i—N1—C1—C2 | −65.7 (2) | N1—C6—C7—N4 | −127.8 (3) |
C6—N1—C1—C2 | 65.8 (2) | N1—C6—C7—N3 | 56.5 (4) |
C3—N2—C2—N2i | −0.9 (5) | C7—N4—C8—C9 | 179.1 (4) |
C3—N2—C2—C1 | 179.8 (3) | C7—N4—C8—C13 | −0.7 (3) |
N1—C1—C2—N2 | 89.6 (4) | N4—C8—C9—C10 | 179.8 (3) |
N1—C1—C2—N2i | −89.6 (4) | C13—C8—C9—C10 | −0.5 (5) |
C2—N2—C3—C3i | 0.5 (3) | C8—C9—C10—C11 | 0.4 (6) |
C2—N2—C3—C4 | −179.5 (3) | C9—C10—C11—C12 | −0.4 (6) |
N2—C3—C4—C5 | 179.9 (4) | C10—C11—C12—C13 | 0.5 (6) |
C3i—C3—C4—C5 | −0.2 (4) | N4—C8—C13—N3 | 0.9 (3) |
C3—C4—C5—C5i | 0.2 (4) | C9—C8—C13—N3 | −178.9 (3) |
C6i—N1—C6—C7 | −149.0 (2) | N4—C8—C13—C12 | −179.6 (3) |
C1—N1—C6—C7 | 79.7 (4) | C9—C8—C13—C12 | 0.6 (5) |
C8—N4—C7—N3 | 0.2 (4) | C7—N3—C13—C8 | −0.8 (3) |
C8—N4—C7—C6 | −176.0 (3) | C7—N3—C13—C12 | 179.8 (3) |
C13—N3—C7—N4 | 0.4 (3) | C11—C12—C13—C8 | −0.6 (5) |
C13—N3—C7—C6 | 176.5 (3) | C11—C12—C13—N3 | 178.8 (3) |
Symmetry code: (i) −x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N3i | 0.84 (3) | 1.95 (4) | 2.762 (3) | 164 (10) |
O2—H2A···N2i | 0.86 (3) | 1.91 (3) | 2.767 (3) | 174 (9) |
O2—H2B···N4 | 0.86 (3) | 1.87 (3) | 2.722 (4) | 171 (8) |
N2—H2···O2i | 0.88 (3) | 1.92 (3) | 2.767 (3) | 161 (7) |
N3—H3···O1 | 0.88 (3) | 1.88 (3) | 2.762 (3) | 176 (6) |
N4—H4···O2 | 0.88 (3) | 1.90 (3) | 2.722 (4) | 156 (3) |
Symmetry code: (i) −x+1, y, z. |
Acknowledgements
The authors thank Dr. Angel Mendoza (Instituto de Ciencias, BUAP, Mexico) for diffractometer time.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Cui, Y. (2011). Acta Cryst. E67, o625–o626. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kwak, B., Woong Cho, K., Pyo, M. & Soo Lah, M. (1999). Inorg. Chim. Acta, 290, 21–27. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nakata, K., Uddin, M. K., Ogawa, K. & Ichikawa, K. (1997). Chem. Lett. 26, 991–992. CSD CrossRef Web of Science Google Scholar
Rheingold, A. L. & Hammes, B. (2015). Private Communications (refcodes: 1438672 (CUXJIQ), 1438673 (CUXJOW), 1438675 (CUXKAJ) and 1438676 (CUXKEN)]. CCDC, Cambridge, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Su, C.-Y., Kang, B.-S., Wang, Q.-G. & Mak, T. C. W. (2000). J. Chem. Soc. Dalton Trans. pp. 1831–1833. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, X.-L., Zheng, S.-R., Liu, Y.-R., Zheng, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o533–o536. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.