organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-6-(Furan-2-yl­methyl­­idene)-6,7,8,9-tetra­hydro­pyrido[2,1-b]quinazoline-11-thione

CROSSMARK_Color_square_no_text.svg

aInstitute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Durmon Yuli Str. 33, 100125 Tashkent, Uzbekistan, bS. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan, and cTurin Polytechnic University in Tashkent, Kichik Khalka Yuli Str. 17, Tashkent 100095, Uzbekistan
*Correspondence e-mail: a_tojiboev@yahoo.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 5 February 2020; accepted 9 March 2020; online 13 March 2020)

A quinazolinthione, C17H14N2OS, was synthesized by the condensation reaction of 6,7,8,9-tetra­hydro-11H-pyrido[2,1-b]quinazolin-11-thione with furfural. The mol­ecule crystallizes in the monoclinic system (Cc space group) and has an E configuration with respect to the exocyclic C=C bond. In the crystal, mol­ecules are linked through C—H⋯π(furan) inter­actions, forming zigzag chains propagating along the [001] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinazoline derivatives are biologically active heterocyclic compounds (Shakhidoyatov, 1988[Shakhidoyatov, Kh. M. (1988). Quinazolin-4-ones and their biological activity, pp. 99-104. Tashkent: Fan.]; Elmuradov & Shakhidoyatov, 2006[Elmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2006). The Chemical and Biological Activity of Synthetic and Natural Compounds: Nitrogen Containing Heterocycles, edited by V. G. Kartsev, Vol. 2, p. 84. Moscow: International Charitable Scientific Partnership Foundation (ICSPF).]), used as drugs, such as cardiovascular agents (Volzhina & Yakhontov, 1982[Volzhina, O. N. & Yakhontov, L. N. (1982). Pharm. Chem. J. 16, 734-741.]), herbicides (Chupp, 1974[Chupp, J. P. (1974). US Patent 3,812,121, Tetrahydrothioquinazolinones.]; Dayan, 2019[Dayan, F. E. (2019). Plants, 8, 341.]), fungicides (Vicentini et al., 2002[Vicentini, Ch. B., Forlani, G., Manfrini, M., Romagnoli, C. & Mares, D. (2002). J. Agric. Food Chem. 50, 4839-4845.]; Sun et al., 2011[Sun, L., Wu, J., Zhang, L., Luo, M. & Sun, D. (2011). Molecules, 16, 5618-5628.]), etc. Among them, quinazoline and its homologues exhibit plural reactivity while maintaining several functional groups. The study of their reaction properties is of theoretical inter­est (Shakhidoyatov & Elmuradov, 2014[Shakhidoyatov, Kh. M. & Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781-800.]). Alkyl­ation and condensation reactions have been previously studied to produce tricyclic derivatives of quinazolinthione (Nasrullayev et al., 2012[Nasrullayev, A. O., Elmuradov, B. Z., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2012). Acta Cryst. E68, o1746.]; Nasrullaev et al., 2015[Nasrullaev, A. O., Elmuradov, B. Zh., Turgunov, K. K. & Shakhidoyatov, Kh. M. (2015). Uzb. Khim. Zh. 3, 7-11.], 2016[Nasrullayev, A. O., Turgunov, K. K., Zhurayev, B. B., Kadyrov, A. A. & Elmuradov, B. Z. (2016). J. Basic Appl. Res. 2, 552-555.], 2017[Nasrullaev, A. O., Islamova, Zh. I., Élmuradov, B. Zh., Bektemirov, A. M., Osipova, S. O., Khushbaktova, Z. A., Syrov, V. N. & Shakhidoyatov, Kh. M. (2017). Pharm. Chem. J. 51, 355-360.]). In the present work, we report the crystal structure of a new quinazolinthione derivative.

The title compound (Fig. 1[link]), consist of 6,7,8,9-tetra­hydro­pyrido[2,1-b]quinazoline and furan-2-yl­methyl­ene groups linked through the C6=C12 double bond [1.348 (5) Å]. The mol­ecule adopts an E configuration relative to this bond. The quinazoline moiety is almost planar with anr.m.s. deviation of 0.0234 Å. Atoms C7 and C8 deviate from the plane through atoms C6, C5A, N10, C9 (r.m.s. deviation of 0.0053 Å) of the six-membered tetra­methyl­ene ring by 0.418 (8) and 0.912 (9) Å, respectively. These values are similar to those found for related compounds, for example 6,7,8,9-tetra­hydro-11H-pyrido[2,1-b]quinazolin-11-thione and 6,7,8,9,10,12-hexa­hydro­azepino[2,1-b]quinazolin-12-thione (Nasrullayev et al., 2016[Nasrullayev, A. O., Turgunov, K. K., Zhurayev, B. B., Kadyrov, A. A. & Elmuradov, B. Z. (2016). J. Basic Appl. Res. 2, 552-555.]).

[Figure 1]
Figure 1
The mol­ecular structure of title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C—H⋯π(furan) inter­actions between mol­ecules related by the c glide plane of space group Cc, forming zigzag chains propagating along the [001] direction (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the furan ring (O/C2–C16).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCgi 0.97 2.76 3.596 (5) 145
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Chain of mol­ecules of the title compound linked by C—H⋯π inter­actions. For clarity, H atoms not involved in these inter­actions have been omitted, and only atom H8B has been included.

Synthesis and crystallization

6,7,8,9-Tetra­hydro-11H-pyrido[2,1-b]quinazolin-11-thione (1 mmol) was dissolved in 2–3 ml of glacial acetic acid and furfural (1 mmol) was added. The reaction mixture was refluxed for 5.5 h and cooled. Distilled water (10 ml) was added to the reaction mixture and the precipitate that formed was filtered off, washed with distilled water and dried. After recrystallization from cyclo­hexa­ne solution, the title compound was recovered in good yield (68%), m.p. 170°C, Rf = 0.88. 1H NMR, δ, p.p.m., J (Hz): 8.28 (1H, d, J = 8.2, H-1), 7.5 (1H, t, J = 8.2, H-2), 7.39 (1H, d, J = 1.7, H-5′), 7.30 (1H, t, J = 1.7, =CH), 7.23–7.29 (2H, m, H-3,4), 6.68 (1H, d, J = 3.4, H-3′), 6.3 (1H, dd, J = 3.4, J = 1.7, H-4′), 4.36 (2H, t, J = 5.5, δ-CH2), 2.78 (2H, dt, J = 6.8, J = 1.7, β-CH2), 1.85 (2H, m, γ-CH2). IR spectrum: ν, cm−1: 1569 (C=N), 1469 (C—N), 1272 (C=S). Light-orange prismatic single crystals suitable for X-ray diffraction analysis were obtained by were grown from acetone by slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H14N2OS
Mr 294.36
Crystal system, space group Monoclinic, Cc
Temperature (K) 295
a, b, c (Å) 9.4340 (19), 17.134 (4), 8.8260 (18)
β (°) 105.01 (4)
V3) 1378.0 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.08
Crystal size (mm) 0.50 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.371, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2724, 1969, 1717
Rint 0.028
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.04
No. of reflections 1969
No. of parameters 190
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.25
Absolute structure Flack x determined using 451 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.12 (3)
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-6-(Furan-2-ylmethylidene)-6,7,8,9-tetrahydropyrido[2,1-b]quinazoline-11-thione top
Crystal data top
C17H14N2OSDx = 1.419 Mg m3
Mr = 294.36Melting point: 443 K
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
a = 9.4340 (19) ÅCell parameters from 1371 reflections
b = 17.134 (4) Åθ = 5.2–75.6°
c = 8.8260 (18) ŵ = 2.08 mm1
β = 105.01 (4)°T = 295 K
V = 1378.0 (6) Å3Prism, light-orange
Z = 40.50 × 0.20 × 0.20 mm
F(000) = 616
Data collection top
Oxford Diffraction Xcalibur, Ruby
diffractometer
1969 independent reflections
Radiation source: Enhance (Cu) X-ray Source1717 reflections with I > 2σ(I)
Detector resolution: 10.2576 pixels mm-1Rint = 0.028
ω scansθmax = 75.7°, θmin = 5.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.371, Tmax = 1.000k = 2120
2724 measured reflectionsl = 108
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.22 e Å3
1969 reflectionsΔρmin = 0.25 e Å3
190 parametersAbsolute structure: Flack x determined using 451 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.12 (3)
Special details top

Refinement. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(carrier C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.84058 (15)0.72703 (6)0.43163 (16)0.0570 (4)
O0.3377 (3)0.35652 (18)0.0790 (4)0.0470 (7)
N50.7682 (4)0.46996 (18)0.4826 (4)0.0375 (7)
C5A0.6819 (4)0.5126 (2)0.3748 (4)0.0335 (8)
N100.6960 (4)0.59229 (18)0.3632 (4)0.0361 (7)
C110.8105 (4)0.6337 (2)0.4601 (5)0.0371 (9)
C11A0.9040 (4)0.5873 (2)0.5853 (5)0.0348 (8)
C11.0187 (5)0.6216 (2)0.7004 (6)0.0458 (10)
H1A1.03540.67500.69820.055*
C21.1058 (5)0.5765 (3)0.8156 (6)0.0523 (11)
H2A1.18000.59980.89260.063*
C31.0842 (5)0.4955 (3)0.8188 (6)0.0474 (10)
H3A1.14530.46520.89630.057*
C40.9728 (4)0.4610 (2)0.7072 (5)0.0417 (9)
H4A0.95850.40730.70950.050*
C4A0.8803 (4)0.5065 (2)0.5895 (5)0.0352 (8)
C60.5610 (4)0.4721 (2)0.2591 (5)0.0347 (8)
C70.4301 (5)0.5176 (2)0.1681 (5)0.0429 (10)
H7A0.34120.49390.18280.051*
H7B0.42610.51530.05730.051*
C80.4371 (5)0.6018 (2)0.2199 (6)0.0478 (11)
H8A0.36630.63210.14320.057*
H8B0.41150.60530.31930.057*
C90.5873 (5)0.6349 (2)0.2377 (6)0.0493 (11)
H9A0.61430.63030.13920.059*
H9B0.58760.68980.26430.059*
C120.5812 (4)0.3956 (2)0.2360 (5)0.0376 (9)
H12A0.67170.37570.29070.045*
C130.4845 (5)0.3402 (2)0.1402 (5)0.0391 (9)
C140.5114 (6)0.2665 (2)0.0973 (6)0.0481 (11)
H14A0.60180.24130.12260.058*
C150.3780 (6)0.2352 (3)0.0079 (6)0.0539 (12)
H15A0.36280.18560.03600.065*
C160.2774 (6)0.2914 (3)0.0014 (6)0.0536 (12)
H16A0.17910.28670.05560.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0620 (7)0.0336 (5)0.0682 (8)0.0066 (5)0.0039 (6)0.0005 (5)
O0.0388 (14)0.0429 (16)0.0531 (19)0.0076 (12)0.0006 (14)0.0058 (14)
N50.0360 (15)0.0295 (15)0.0408 (19)0.0022 (13)0.0013 (14)0.0014 (13)
C5A0.0355 (18)0.0289 (17)0.033 (2)0.0003 (15)0.0039 (16)0.0005 (15)
N100.0420 (17)0.0263 (15)0.0349 (18)0.0003 (13)0.0007 (15)0.0001 (13)
C110.038 (2)0.0310 (17)0.041 (2)0.0002 (15)0.0078 (17)0.0006 (15)
C11A0.0349 (17)0.0320 (17)0.036 (2)0.0028 (15)0.0058 (17)0.0019 (15)
C10.044 (2)0.040 (2)0.048 (3)0.0052 (17)0.002 (2)0.0046 (18)
C20.041 (2)0.060 (3)0.048 (3)0.011 (2)0.004 (2)0.009 (2)
C30.038 (2)0.056 (3)0.043 (2)0.0028 (18)0.0003 (19)0.005 (2)
C40.038 (2)0.0384 (19)0.044 (3)0.0003 (16)0.0030 (19)0.0025 (17)
C4A0.0320 (17)0.0336 (17)0.037 (2)0.0013 (14)0.0040 (17)0.0006 (15)
C60.0319 (17)0.0336 (18)0.035 (2)0.0034 (15)0.0017 (16)0.0014 (14)
C70.0366 (19)0.041 (2)0.044 (2)0.0005 (16)0.0024 (18)0.0082 (17)
C80.047 (2)0.037 (2)0.051 (3)0.0117 (17)0.003 (2)0.0025 (18)
C90.057 (3)0.035 (2)0.046 (3)0.0042 (19)0.005 (2)0.0103 (18)
C120.0372 (18)0.0307 (18)0.040 (2)0.0014 (15)0.0001 (17)0.0028 (16)
C130.042 (2)0.037 (2)0.035 (2)0.0020 (16)0.0048 (18)0.0004 (16)
C140.054 (2)0.033 (2)0.051 (3)0.0027 (18)0.003 (2)0.0029 (18)
C150.067 (3)0.035 (2)0.054 (3)0.014 (2)0.004 (2)0.0083 (19)
C160.050 (2)0.053 (3)0.051 (3)0.019 (2)0.001 (2)0.010 (2)
Geometric parameters (Å, º) top
S—C111.655 (4)C4—H4A0.9300
O—C161.365 (5)C6—C121.348 (5)
O—C131.378 (5)C6—C71.504 (5)
N5—C5A1.304 (5)C7—C81.510 (5)
N5—C4A1.373 (5)C7—H7A0.9700
C5A—N101.379 (4)C7—H7B0.9700
C5A—C61.491 (5)C8—C91.497 (7)
N10—C111.387 (5)C8—H8A0.9700
N10—C91.491 (5)C8—H8B0.9700
C11—C11A1.458 (6)C9—H9A0.9700
C11A—C4A1.405 (5)C9—H9B0.9700
C11A—C11.406 (6)C12—C131.431 (6)
C1—C21.368 (7)C12—H12A0.9300
C1—H1A0.9300C13—C141.361 (6)
C2—C31.404 (7)C14—C151.407 (7)
C2—H2A0.9300C14—H14A0.9300
C3—C41.374 (6)C15—C161.340 (7)
C3—H3A0.9300C15—H15A0.9300
C4—C4A1.407 (5)C16—H16A0.9300
C16—O—C13106.2 (4)C6—C7—H7A109.3
C5A—N5—C4A118.1 (3)C8—C7—H7A109.3
N5—C5A—N10123.7 (3)C6—C7—H7B109.3
N5—C5A—C6117.5 (3)C8—C7—H7B109.3
N10—C5A—C6118.8 (3)H7A—C7—H7B108.0
C5A—N10—C11122.4 (3)C9—C8—C7111.1 (4)
C5A—N10—C9118.7 (3)C9—C8—H8A109.4
C11—N10—C9118.9 (3)C7—C8—H8A109.4
N10—C11—C11A114.2 (3)C9—C8—H8B109.4
N10—C11—S122.5 (3)C7—C8—H8B109.4
C11A—C11—S123.2 (3)H8A—C8—H8B108.0
C4A—C11A—C1119.3 (4)N10—C9—C8110.0 (4)
C4A—C11A—C11119.2 (3)N10—C9—H9A109.7
C1—C11A—C11121.4 (4)C8—C9—H9A109.7
C2—C1—C11A120.2 (4)N10—C9—H9B109.7
C2—C1—H1A119.9C8—C9—H9B109.7
C11A—C1—H1A119.9H9A—C9—H9B108.2
C1—C2—C3120.7 (4)C6—C12—C13129.8 (4)
C1—C2—H2A119.7C6—C12—H12A115.1
C3—C2—H2A119.7C13—C12—H12A115.1
C4—C3—C2120.0 (4)C14—C13—O108.7 (4)
C4—C3—H3A120.0C14—C13—C12130.0 (4)
C2—C3—H3A120.0O—C13—C12121.3 (4)
C3—C4—C4A120.2 (4)C13—C14—C15107.8 (4)
C3—C4—H4A119.9C13—C14—H14A126.1
C4A—C4—H4A119.9C15—C14—H14A126.1
N5—C4A—C11A122.1 (3)C16—C15—C14106.1 (4)
N5—C4A—C4118.3 (3)C16—C15—H15A127.0
C11A—C4A—C4119.6 (4)C14—C15—H15A127.0
C12—C6—C5A116.3 (3)C15—C16—O111.2 (4)
C12—C6—C7123.5 (3)C15—C16—H16A124.4
C5A—C6—C7120.1 (3)O—C16—H16A124.4
C6—C7—C8111.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the furan ring (O/C2–C16).
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.972.763.596 (5)145
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

The authors acknowledge the Institute of Bioorganic Chemistry of Academy of Sciences of Uzbekistan for the use of the Oxford Diffraction Xcalibur Ruby diffractometer.

Funding information

These investigations were supported by research projects VA-FA-F-7–006 of the Academy of Sciences of the Republic of Uzbekistan.

References

First citationChupp, J. P. (1974). US Patent 3,812,121, Tetrahydrothioquinazolinones.  Google Scholar
First citationDayan, F. E. (2019). Plants, 8, 341.  Web of Science CrossRef Google Scholar
First citationElmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2006). The Chemical and Biological Activity of Synthetic and Natural Compounds: Nitrogen Containing Heterocycles, edited by V. G. Kartsev, Vol. 2, p. 84. Moscow: International Charitable Scientific Partnership Foundation (ICSPF).  Google Scholar
First citationNasrullaev, A. O., Elmuradov, B. Zh., Turgunov, K. K. & Shakhidoyatov, Kh. M. (2015). Uzb. Khim. Zh. 3, 7–11.  Google Scholar
First citationNasrullaev, A. O., Islamova, Zh. I., Élmuradov, B. Zh., Bektemirov, A. M., Osipova, S. O., Khushbaktova, Z. A., Syrov, V. N. & Shakhidoyatov, Kh. M. (2017). Pharm. Chem. J. 51, 355–360.  Web of Science CrossRef CAS Google Scholar
First citationNasrullayev, A. O., Elmuradov, B. Z., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2012). Acta Cryst. E68, o1746.  CSD CrossRef IUCr Journals Google Scholar
First citationNasrullayev, A. O., Turgunov, K. K., Zhurayev, B. B., Kadyrov, A. A. & Elmuradov, B. Z. (2016). J. Basic Appl. Res. 2, 552–555.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShakhidoyatov, Kh. M. (1988). Quinazolin-4-ones and their biological activity, pp. 99–104. Tashkent: Fan.  Google Scholar
First citationShakhidoyatov, Kh. M. & Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781–800.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, L., Wu, J., Zhang, L., Luo, M. & Sun, D. (2011). Molecules, 16, 5618–5628.  Web of Science CrossRef CAS Google Scholar
First citationVicentini, Ch. B., Forlani, G., Manfrini, M., Romagnoli, C. & Mares, D. (2002). J. Agric. Food Chem. 50, 4839–4845.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVolzhina, O. N. & Yakhontov, L. N. (1982). Pharm. Chem. J. 16, 734–741.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds