organic compounds
(E)-6-(Furan-2-ylmethylidene)-6,7,8,9-tetrahydropyrido[2,1-b]quinazoline-11-thione
aInstitute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Durmon Yuli Str. 33, 100125 Tashkent, Uzbekistan, bS. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan, and cTurin Polytechnic University in Tashkent, Kichik Khalka Yuli Str. 17, Tashkent 100095, Uzbekistan
*Correspondence e-mail: a_tojiboev@yahoo.com
A quinazolinthione, C17H14N2OS, was synthesized by the condensation reaction of 6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-thione with furfural. The molecule crystallizes in the monoclinic system (Cc space group) and has an E configuration with respect to the exocyclic C=C bond. In the crystal, molecules are linked through C—H⋯π(furan) interactions, forming zigzag chains propagating along the [001] direction.
Keywords: crystal structure; quinazolinthione; E-configuration.
CCDC reference: 1989156
Structure description
Quinazoline derivatives are biologically active ; Elmuradov & Shakhidoyatov, 2006), used as drugs, such as cardiovascular agents (Volzhina & Yakhontov, 1982), herbicides (Chupp, 1974; Dayan, 2019), fungicides (Vicentini et al., 2002; Sun et al., 2011), etc. Among them, quinazoline and its homologues exhibit plural reactivity while maintaining several functional groups. The study of their reaction properties is of theoretical interest (Shakhidoyatov & Elmuradov, 2014). Alkylation and condensation reactions have been previously studied to produce tricyclic derivatives of quinazolinthione (Nasrullayev et al., 2012; Nasrullaev et al., 2015, 2016, 2017). In the present work, we report the of a new quinazolinthione derivative.
(Shakhidoyatov, 1988The title compound (Fig. 1), consist of 6,7,8,9-tetrahydropyrido[2,1-b]quinazoline and furan-2-ylmethylene groups linked through the C6=C12 double bond [1.348 (5) Å]. The molecule adopts an E configuration relative to this bond. The quinazoline moiety is almost planar with anr.m.s. deviation of 0.0234 Å. Atoms C7 and C8 deviate from the plane through atoms C6, C5A, N10, C9 (r.m.s. deviation of 0.0053 Å) of the six-membered tetramethylene ring by 0.418 (8) and 0.912 (9) Å, respectively. These values are similar to those found for related compounds, for example 6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-thione and 6,7,8,9,10,12-hexahydroazepino[2,1-b]quinazolin-12-thione (Nasrullayev et al., 2016).
In the crystal, molecules are linked by C—H⋯π(furan) interactions between molecules related by the c glide plane of Cc, forming zigzag chains propagating along the [001] direction (Table 1, Fig. 2).
Synthesis and crystallization
6,7,8,9-Tetrahydro-11H-pyrido[2,1-b]quinazolin-11-thione (1 mmol) was dissolved in 2–3 ml of glacial acetic acid and furfural (1 mmol) was added. The reaction mixture was refluxed for 5.5 h and cooled. Distilled water (10 ml) was added to the reaction mixture and the precipitate that formed was filtered off, washed with distilled water and dried. After recrystallization from cyclohexane solution, the title compound was recovered in good yield (68%), m.p. 170°C, Rf = 0.88. 1H NMR, δ, p.p.m., J (Hz): 8.28 (1H, d, J = 8.2, H-1), 7.5 (1H, t, J = 8.2, H-2), 7.39 (1H, d, J = 1.7, H-5′), 7.30 (1H, t, J = 1.7, =CH), 7.23–7.29 (2H, m, H-3,4), 6.68 (1H, d, J = 3.4, H-3′), 6.3 (1H, dd, J = 3.4, J = 1.7, H-4′), 4.36 (2H, t, J = 5.5, δ-CH2), 2.78 (2H, dt, J = 6.8, J = 1.7, β-CH2), 1.85 (2H, m, γ-CH2). IR spectrum: ν, cm−1: 1569 (C=N), 1469 (C—N), 1272 (C=S). Light-orange prismatic single crystals suitable for X-ray were obtained by were grown from acetone by slow evaporation of the solvent.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1989156
https://doi.org/10.1107/S2414314620003569/bh4051sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620003569/bh4051Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620003569/bh4051Isup3.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C17H14N2OS | Dx = 1.419 Mg m−3 |
Mr = 294.36 | Melting point: 443 K |
Monoclinic, Cc | Cu Kα radiation, λ = 1.54184 Å |
a = 9.4340 (19) Å | Cell parameters from 1371 reflections |
b = 17.134 (4) Å | θ = 5.2–75.6° |
c = 8.8260 (18) Å | µ = 2.08 mm−1 |
β = 105.01 (4)° | T = 295 K |
V = 1378.0 (6) Å3 | Prism, light-orange |
Z = 4 | 0.50 × 0.20 × 0.20 mm |
F(000) = 616 |
Oxford Diffraction Xcalibur, Ruby diffractometer | 1969 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1717 reflections with I > 2σ(I) |
Detector resolution: 10.2576 pixels mm-1 | Rint = 0.028 |
ω scans | θmax = 75.7°, θmin = 5.2° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −11→11 |
Tmin = 0.371, Tmax = 1.000 | k = −21→20 |
2724 measured reflections | l = −10→8 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0857P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.123 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.22 e Å−3 |
1969 reflections | Δρmin = −0.25 e Å−3 |
190 parameters | Absolute structure: Flack x determined using 451 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.12 (3) |
Refinement. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(carrier C). |
x | y | z | Uiso*/Ueq | ||
S | 0.84058 (15) | 0.72703 (6) | 0.43163 (16) | 0.0570 (4) | |
O | 0.3377 (3) | 0.35652 (18) | 0.0790 (4) | 0.0470 (7) | |
N5 | 0.7682 (4) | 0.46996 (18) | 0.4826 (4) | 0.0375 (7) | |
C5A | 0.6819 (4) | 0.5126 (2) | 0.3748 (4) | 0.0335 (8) | |
N10 | 0.6960 (4) | 0.59229 (18) | 0.3632 (4) | 0.0361 (7) | |
C11 | 0.8105 (4) | 0.6337 (2) | 0.4601 (5) | 0.0371 (9) | |
C11A | 0.9040 (4) | 0.5873 (2) | 0.5853 (5) | 0.0348 (8) | |
C1 | 1.0187 (5) | 0.6216 (2) | 0.7004 (6) | 0.0458 (10) | |
H1A | 1.0354 | 0.6750 | 0.6982 | 0.055* | |
C2 | 1.1058 (5) | 0.5765 (3) | 0.8156 (6) | 0.0523 (11) | |
H2A | 1.1800 | 0.5998 | 0.8926 | 0.063* | |
C3 | 1.0842 (5) | 0.4955 (3) | 0.8188 (6) | 0.0474 (10) | |
H3A | 1.1453 | 0.4652 | 0.8963 | 0.057* | |
C4 | 0.9728 (4) | 0.4610 (2) | 0.7072 (5) | 0.0417 (9) | |
H4A | 0.9585 | 0.4073 | 0.7095 | 0.050* | |
C4A | 0.8803 (4) | 0.5065 (2) | 0.5895 (5) | 0.0352 (8) | |
C6 | 0.5610 (4) | 0.4721 (2) | 0.2591 (5) | 0.0347 (8) | |
C7 | 0.4301 (5) | 0.5176 (2) | 0.1681 (5) | 0.0429 (10) | |
H7A | 0.3412 | 0.4939 | 0.1828 | 0.051* | |
H7B | 0.4261 | 0.5153 | 0.0573 | 0.051* | |
C8 | 0.4371 (5) | 0.6018 (2) | 0.2199 (6) | 0.0478 (11) | |
H8A | 0.3663 | 0.6321 | 0.1432 | 0.057* | |
H8B | 0.4115 | 0.6053 | 0.3193 | 0.057* | |
C9 | 0.5873 (5) | 0.6349 (2) | 0.2377 (6) | 0.0493 (11) | |
H9A | 0.6143 | 0.6303 | 0.1392 | 0.059* | |
H9B | 0.5876 | 0.6898 | 0.2643 | 0.059* | |
C12 | 0.5812 (4) | 0.3956 (2) | 0.2360 (5) | 0.0376 (9) | |
H12A | 0.6717 | 0.3757 | 0.2907 | 0.045* | |
C13 | 0.4845 (5) | 0.3402 (2) | 0.1402 (5) | 0.0391 (9) | |
C14 | 0.5114 (6) | 0.2665 (2) | 0.0973 (6) | 0.0481 (11) | |
H14A | 0.6018 | 0.2413 | 0.1226 | 0.058* | |
C15 | 0.3780 (6) | 0.2352 (3) | 0.0079 (6) | 0.0539 (12) | |
H15A | 0.3628 | 0.1856 | −0.0360 | 0.065* | |
C16 | 0.2774 (6) | 0.2914 (3) | −0.0014 (6) | 0.0536 (12) | |
H16A | 0.1791 | 0.2867 | −0.0556 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0620 (7) | 0.0336 (5) | 0.0682 (8) | −0.0066 (5) | 0.0039 (6) | 0.0005 (5) |
O | 0.0388 (14) | 0.0429 (16) | 0.0531 (19) | −0.0076 (12) | 0.0006 (14) | −0.0058 (14) |
N5 | 0.0360 (15) | 0.0295 (15) | 0.0408 (19) | −0.0022 (13) | −0.0013 (14) | 0.0014 (13) |
C5A | 0.0355 (18) | 0.0289 (17) | 0.033 (2) | 0.0003 (15) | 0.0039 (16) | 0.0005 (15) |
N10 | 0.0420 (17) | 0.0263 (15) | 0.0349 (18) | 0.0003 (13) | 0.0007 (15) | −0.0001 (13) |
C11 | 0.038 (2) | 0.0310 (17) | 0.041 (2) | 0.0002 (15) | 0.0078 (17) | −0.0006 (15) |
C11A | 0.0349 (17) | 0.0320 (17) | 0.036 (2) | −0.0028 (15) | 0.0058 (17) | −0.0019 (15) |
C1 | 0.044 (2) | 0.040 (2) | 0.048 (3) | −0.0052 (17) | 0.002 (2) | −0.0046 (18) |
C2 | 0.041 (2) | 0.060 (3) | 0.048 (3) | −0.011 (2) | −0.004 (2) | −0.009 (2) |
C3 | 0.038 (2) | 0.056 (3) | 0.043 (2) | 0.0028 (18) | 0.0003 (19) | 0.005 (2) |
C4 | 0.038 (2) | 0.0384 (19) | 0.044 (3) | −0.0003 (16) | 0.0030 (19) | 0.0025 (17) |
C4A | 0.0320 (17) | 0.0336 (17) | 0.037 (2) | −0.0013 (14) | 0.0040 (17) | 0.0006 (15) |
C6 | 0.0319 (17) | 0.0336 (18) | 0.035 (2) | −0.0034 (15) | 0.0017 (16) | −0.0014 (14) |
C7 | 0.0366 (19) | 0.041 (2) | 0.044 (2) | −0.0005 (16) | −0.0024 (18) | −0.0082 (17) |
C8 | 0.047 (2) | 0.037 (2) | 0.051 (3) | 0.0117 (17) | −0.003 (2) | −0.0025 (18) |
C9 | 0.057 (3) | 0.035 (2) | 0.046 (3) | 0.0042 (19) | −0.005 (2) | 0.0103 (18) |
C12 | 0.0372 (18) | 0.0307 (18) | 0.040 (2) | −0.0014 (15) | 0.0001 (17) | 0.0028 (16) |
C13 | 0.042 (2) | 0.037 (2) | 0.035 (2) | −0.0020 (16) | 0.0048 (18) | −0.0004 (16) |
C14 | 0.054 (2) | 0.033 (2) | 0.051 (3) | −0.0027 (18) | 0.003 (2) | −0.0029 (18) |
C15 | 0.067 (3) | 0.035 (2) | 0.054 (3) | −0.014 (2) | 0.004 (2) | −0.0083 (19) |
C16 | 0.050 (2) | 0.053 (3) | 0.051 (3) | −0.019 (2) | 0.001 (2) | −0.010 (2) |
S—C11 | 1.655 (4) | C4—H4A | 0.9300 |
O—C16 | 1.365 (5) | C6—C12 | 1.348 (5) |
O—C13 | 1.378 (5) | C6—C7 | 1.504 (5) |
N5—C5A | 1.304 (5) | C7—C8 | 1.510 (5) |
N5—C4A | 1.373 (5) | C7—H7A | 0.9700 |
C5A—N10 | 1.379 (4) | C7—H7B | 0.9700 |
C5A—C6 | 1.491 (5) | C8—C9 | 1.497 (7) |
N10—C11 | 1.387 (5) | C8—H8A | 0.9700 |
N10—C9 | 1.491 (5) | C8—H8B | 0.9700 |
C11—C11A | 1.458 (6) | C9—H9A | 0.9700 |
C11A—C4A | 1.405 (5) | C9—H9B | 0.9700 |
C11A—C1 | 1.406 (6) | C12—C13 | 1.431 (6) |
C1—C2 | 1.368 (7) | C12—H12A | 0.9300 |
C1—H1A | 0.9300 | C13—C14 | 1.361 (6) |
C2—C3 | 1.404 (7) | C14—C15 | 1.407 (7) |
C2—H2A | 0.9300 | C14—H14A | 0.9300 |
C3—C4 | 1.374 (6) | C15—C16 | 1.340 (7) |
C3—H3A | 0.9300 | C15—H15A | 0.9300 |
C4—C4A | 1.407 (5) | C16—H16A | 0.9300 |
C16—O—C13 | 106.2 (4) | C6—C7—H7A | 109.3 |
C5A—N5—C4A | 118.1 (3) | C8—C7—H7A | 109.3 |
N5—C5A—N10 | 123.7 (3) | C6—C7—H7B | 109.3 |
N5—C5A—C6 | 117.5 (3) | C8—C7—H7B | 109.3 |
N10—C5A—C6 | 118.8 (3) | H7A—C7—H7B | 108.0 |
C5A—N10—C11 | 122.4 (3) | C9—C8—C7 | 111.1 (4) |
C5A—N10—C9 | 118.7 (3) | C9—C8—H8A | 109.4 |
C11—N10—C9 | 118.9 (3) | C7—C8—H8A | 109.4 |
N10—C11—C11A | 114.2 (3) | C9—C8—H8B | 109.4 |
N10—C11—S | 122.5 (3) | C7—C8—H8B | 109.4 |
C11A—C11—S | 123.2 (3) | H8A—C8—H8B | 108.0 |
C4A—C11A—C1 | 119.3 (4) | N10—C9—C8 | 110.0 (4) |
C4A—C11A—C11 | 119.2 (3) | N10—C9—H9A | 109.7 |
C1—C11A—C11 | 121.4 (4) | C8—C9—H9A | 109.7 |
C2—C1—C11A | 120.2 (4) | N10—C9—H9B | 109.7 |
C2—C1—H1A | 119.9 | C8—C9—H9B | 109.7 |
C11A—C1—H1A | 119.9 | H9A—C9—H9B | 108.2 |
C1—C2—C3 | 120.7 (4) | C6—C12—C13 | 129.8 (4) |
C1—C2—H2A | 119.7 | C6—C12—H12A | 115.1 |
C3—C2—H2A | 119.7 | C13—C12—H12A | 115.1 |
C4—C3—C2 | 120.0 (4) | C14—C13—O | 108.7 (4) |
C4—C3—H3A | 120.0 | C14—C13—C12 | 130.0 (4) |
C2—C3—H3A | 120.0 | O—C13—C12 | 121.3 (4) |
C3—C4—C4A | 120.2 (4) | C13—C14—C15 | 107.8 (4) |
C3—C4—H4A | 119.9 | C13—C14—H14A | 126.1 |
C4A—C4—H4A | 119.9 | C15—C14—H14A | 126.1 |
N5—C4A—C11A | 122.1 (3) | C16—C15—C14 | 106.1 (4) |
N5—C4A—C4 | 118.3 (3) | C16—C15—H15A | 127.0 |
C11A—C4A—C4 | 119.6 (4) | C14—C15—H15A | 127.0 |
C12—C6—C5A | 116.3 (3) | C15—C16—O | 111.2 (4) |
C12—C6—C7 | 123.5 (3) | C15—C16—H16A | 124.4 |
C5A—C6—C7 | 120.1 (3) | O—C16—H16A | 124.4 |
C6—C7—C8 | 111.6 (3) |
Cg is the centroid of the furan ring (O/C2–C16). |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···Cgi | 0.97 | 2.76 | 3.596 (5) | 145 |
Symmetry code: (i) x, −y+1, z+1/2. |
Acknowledgements
The authors acknowledge the Institute of Bioorganic Chemistry of Academy of Sciences of Uzbekistan for the use of the Oxford Diffraction Xcalibur Ruby diffractometer.
Funding information
These investigations were supported by research projects VA-FA-F-7–006 of the Academy of Sciences of the Republic of Uzbekistan.
References
Chupp, J. P. (1974). US Patent 3,812,121, Tetrahydrothioquinazolinones. Google Scholar
Dayan, F. E. (2019). Plants, 8, 341. Web of Science CrossRef Google Scholar
Elmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2006). The Chemical and Biological Activity of Synthetic and Natural Compounds: Nitrogen Containing Heterocycles, edited by V. G. Kartsev, Vol. 2, p. 84. Moscow: International Charitable Scientific Partnership Foundation (ICSPF). Google Scholar
Nasrullaev, A. O., Elmuradov, B. Zh., Turgunov, K. K. & Shakhidoyatov, Kh. M. (2015). Uzb. Khim. Zh. 3, 7–11. Google Scholar
Nasrullaev, A. O., Islamova, Zh. I., Élmuradov, B. Zh., Bektemirov, A. M., Osipova, S. O., Khushbaktova, Z. A., Syrov, V. N. & Shakhidoyatov, Kh. M. (2017). Pharm. Chem. J. 51, 355–360. Web of Science CrossRef CAS Google Scholar
Nasrullayev, A. O., Elmuradov, B. Z., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2012). Acta Cryst. E68, o1746. CSD CrossRef IUCr Journals Google Scholar
Nasrullayev, A. O., Turgunov, K. K., Zhurayev, B. B., Kadyrov, A. A. & Elmuradov, B. Z. (2016). J. Basic Appl. Res. 2, 552–555. Google Scholar
Oxford Diffraction (2009). CrysAlis PRO, Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shakhidoyatov, Kh. M. (1988). Quinazolin-4-ones and their biological activity, pp. 99–104. Tashkent: Fan. Google Scholar
Shakhidoyatov, Kh. M. & Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781–800. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sun, L., Wu, J., Zhang, L., Luo, M. & Sun, D. (2011). Molecules, 16, 5618–5628. Web of Science CrossRef CAS Google Scholar
Vicentini, Ch. B., Forlani, G., Manfrini, M., Romagnoli, C. & Mares, D. (2002). J. Agric. Food Chem. 50, 4839–4845. Web of Science CrossRef PubMed CAS Google Scholar
Volzhina, O. N. & Yakhontov, L. N. (1982). Pharm. Chem. J. 16, 734–741. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.