organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-2-phenyl-1H-pyrazol-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Abilene Christian University, Abilene, Texas 79699-8132, USA
*Correspondence e-mail: powellg@acu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 January 2020; accepted 28 January 2020; online 11 February 2020)

The title compound, C20H18N4O2, known as bis­pyrazolone, was crystallized from dimethyl sulfoxide. The structure has ortho­rhom­bic (Pbca) symmetry at 150 K, and displays both intra- and inter­molecular hydrogen bonding through C—H⋯O and N—H⋯O contacts, respectively. None of the phenyl and pyrazolone rings in the mol­ecule are coplanar. The dihedral angle between the pyrazolone rings is 66.18 (5)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolo­nes have been studied as anti­pyretics and analgesics (Brune, 1997[Brune, K. (1997). Acute Pain, 1, 33-40.]; Badawey & El–Ashmawey, 1998[Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349-361.]; Gürsoy et al., 2000[Gürsoy, A., Demirayak, S., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]), as anxiolytics (Geronikaki et al., 2004[Geronikaki, A., Babaev, E., Dearden, J., Dehaen, W., Filimonov, D., Galaeva, I., Krajneva, V., Lagunin, A., Macaev, F., Molodavkin, G., Poroikov, V., Pogrebnoi, S., Saloutin, V., Stepanchikova, A., Stingaci, E., Tkach, N., Vlad, L. & Voronina, T. (2004). Bioorg. Med. Chem. 12, 6559-6568.]), and as anti­hyperglycemic agents (Kees et al., 1996[Kees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCaleb, M. L. (1996). J. Med. Chem. 39, 3920-3928.]). These compound types have also been found to have anti­oxidant and neuroprotective activities, and have been used to treat amyotrophic lateral sclerosis (ALS) and ischemia (Watanabe et al., 2004[Watanabe, T., Tanaka, M., Watanabe, K., Takamatsu, Y. & Tobe, A. (2004). Yakugaku Zasshi, 124, 99-111.]; Yoshida et al., 2006[Yoshida, H., Yanai, H., Namiki, Y., Fukatsu-Sasaki, K., Furutani, N. & Tada, N. (2006). CNS Drug Rev. 12, 9-20.]; Yuan et al., 2008[Yuan, W. J., Yasuhara, T., Shingo, T., Muraoka, K., Agari, T., Kameda, M., Uozumi, T., Tajiri, N., Morimoto, T., Jing, M., Baba, T., Wang, F., Leung, H., Matsui, T., Miyoshi, Y. & Date, I. (2008). BMC Neurosci. 9, 75.]). Pyrazolo­nes have also been looked at as potential HIV-1 integrase inhibitors (Hadi, et al., 2010[Hadi, V., Koh, Y.-H., Sanchez, T. W., Barrios, D., Neamati, N. & Jung, K. W. (2010). Bioorg. Med. Chem. Lett. 20, 6854-6857.]). In addition to the multitude of possibilities in medicinal chemistry, pyrazolone research has led to prospective anti­microbial compounds (Chande et al., 2007[Chande, M. S., Barve, P. A. & Suryanarayan, V. J. (2007). Heterocycl. Chem. 44, 49-53.]) and corrosion inhibitors (Elmorsi & Hassanein, 1999[Elmorsi, M. A. & Hassanein, A. M. (1999). Corros. Sci. 41, 2337-2352.]). The title compound, bis­pyrazolone, is primarily used as part of a pyridine-pyrazolone reagent for the detection of amine compounds. This method can qu­antify levels of cyanide (Epstein, 1947[Epstein, J. (1947). Anal. Chem. 19, 272-274.]), ammonia and cyanate (Kruse & Mellon, 1952[Kruse, J. M. & Mellon, M. G. (1952). Sewage Ind. Waste. 24, 1254-1259.]), and urea (Sharma et al., 2013[Sharma, V., Khurana, J. M. & Muralidhar, K. (2013). Proc. Indian Natl. Sci. Acad. 79, 51-56.]). It may also be used to determine the percentage of nitro­gen in steel samples (Lear & Mellon, 1957[Lear, J. B. & Mellon, M. G. (1957). Anal. Chem. 29, 293-295.]). Bispyrazolone and similar derivatives have also been examined as color developers (Bavley, 1946[Bavley, A. (1946). U. S. Patent 2411951.]) and as lubricating oil thickeners (McGrath and Pellegrini, 1961[McGrath, J. J. & Pellegrini, J. P. (1961). US Patent 2983683.]) for high-temperature greases.

In the crystal structure of the title compound, the mol­ecules are non-planar (Fig. 1[link]). The dihedral angle between the two pyrazolone rings is 66.18 (5)°, while that between the phenyl rings is 39.44 (6)°. The ring systems in the halves of the mol­ecules have significantly different degrees of rotation with respect to one another. The dihedral angle between the C9–C14 phenyl ring and the N1/N2/C1–C3 pyrazolone ring is 34.29 (6)° while that between the C15–C20 phenyl ring and the N3/N4/C5–C7 pyrazolone ring is 13.75 (7)°. The latter is a consequence of intra­molecular C—H⋯O hydrogen bonding between the C20—H20 group on the phenyl ring and the O2 atom of the pyrazolone ring (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 (2) 1.85 (2) 2.7313 (14) 175.1 (18)
N4—H4⋯O1ii 0.93 (2) 1.81 (2) 2.7321 (15) 169.3 (18)
C20—H20⋯O2 0.95 (2) 2.23 (2) 2.8988 (17) 126.5 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the intra­molecular (blue dotted lines) and inter­molecular (red dotted lines) hydrogen bond inter­actions. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (iii) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z.]

In the crystal, the mol­ecules pack in a manner that maximizes inter­molecular hydrogen bonding. Both oxygen atoms and both N—H groups of each bis­pyrazolone mol­ecule are involved in forming four hydrogen bonds with three neighboring mol­ecules (Table 1[link], Fig. 2[link]). The inter­molecular hydrogen bond axes lie approximately in the bc plane of the unit cell. Thus hydrogen-bonded sheets of the mol­ecules stack perpendicular to the a axis (Fig. 3[link]).

[Figure 3]
Figure 3
Packing of the mol­ecules viewed approximately along the a axis with hydrogen bonds shown as dotted lines.

Synthesis and crystallization

A sample of the title compound was used as received from Sigma–Aldrich, and dissolved in hot di­methyl­sulfoxide. Colorless crystals were obtained by slow cooling of this solution to 298 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H18N4O2
Mr 346.38
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 8.7438 (1), 18.7561 (2), 20.8005 (2)
V3) 3411.27 (6)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.27 × 0.21 × 0.03
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Cu, AtlasS2 CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.874, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16964, 3336, 3020
Rint 0.028
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.04
No. of reflections 3336
No. of parameters 307
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-Methyl-4-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C20H18N4O2Dx = 1.349 Mg m3
Mr = 346.38Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 9599 reflections
a = 8.7438 (1) Åθ = 4.7–72.3°
b = 18.7561 (2) ŵ = 0.73 mm1
c = 20.8005 (2) ÅT = 150 K
V = 3411.27 (6) Å3Plate, clear colourless
Z = 80.27 × 0.21 × 0.03 mm
F(000) = 1456
Data collection top
Rigaku Oxford Diffraction SuperNova, Cu, AtlasS2 CCD
diffractometer
3336 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3020 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 5.2387 pixels mm-1θmax = 72.6°, θmin = 4.3°
ω scansh = 710
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
k = 2223
Tmin = 0.874, Tmax = 1.000l = 2524
16964 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0692P)2 + 1.0751P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3336 reflectionsΔρmax = 0.26 e Å3
307 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms bound to N2 and N4 were located in a difference map and refined. All hydrogen atoms were located in a difference map and were refined isotropically without constraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17850 (10)0.59409 (5)0.52406 (4)0.0228 (2)
O20.41464 (11)0.62429 (5)0.38211 (4)0.0254 (2)
N10.33303 (11)0.51616 (5)0.58208 (5)0.0197 (2)
N20.48738 (12)0.51224 (6)0.59817 (5)0.0203 (2)
H20.525 (2)0.4688 (11)0.6043 (9)0.040 (5)*
N30.49474 (13)0.74084 (6)0.40463 (5)0.0228 (2)
N40.53811 (15)0.77703 (6)0.45972 (6)0.0283 (3)
H40.587 (2)0.8209 (12)0.4598 (9)0.043 (5)*
C10.30864 (14)0.57394 (6)0.54173 (6)0.0189 (3)
C20.45779 (14)0.60260 (6)0.52877 (6)0.0200 (3)
C30.56144 (15)0.56250 (6)0.56271 (6)0.0205 (3)
C40.73088 (16)0.56807 (8)0.56622 (7)0.0280 (3)
H4A0.760 (2)0.5841 (11)0.6082 (10)0.047 (5)*
H4B0.769 (2)0.6027 (12)0.5330 (10)0.048 (5)*
H4C0.781 (2)0.5205 (13)0.5591 (11)0.057 (6)*
C50.46008 (14)0.67053 (6)0.42150 (6)0.0206 (3)
C60.48650 (14)0.66557 (6)0.48898 (6)0.0210 (3)
C70.53634 (16)0.73124 (7)0.50942 (7)0.0252 (3)
C80.5806 (2)0.75544 (8)0.57491 (7)0.0378 (4)
H8A0.615 (3)0.7180 (16)0.6015 (14)0.088 (9)*
H8B0.657 (3)0.7932 (13)0.5731 (11)0.060 (6)*
H8C0.490 (3)0.7748 (16)0.5982 (14)0.086 (9)*
C90.22459 (14)0.47963 (6)0.62063 (6)0.0203 (3)
C100.26090 (16)0.46291 (7)0.68395 (7)0.0249 (3)
H100.3582 (19)0.4766 (9)0.7016 (8)0.028 (4)*
C110.15554 (16)0.42644 (7)0.72142 (7)0.0282 (3)
H110.1800 (19)0.4165 (9)0.7650 (9)0.030 (4)*
C120.01470 (16)0.40714 (7)0.69603 (7)0.0280 (3)
H120.060 (2)0.3814 (9)0.7228 (9)0.033 (4)*
C130.02218 (15)0.42573 (7)0.63351 (7)0.0264 (3)
H130.122 (2)0.4129 (9)0.6151 (8)0.031 (4)*
C140.08272 (15)0.46155 (7)0.59499 (7)0.0234 (3)
H140.0610 (18)0.4727 (9)0.5502 (8)0.025 (4)*
C150.47280 (15)0.77740 (7)0.34550 (6)0.0232 (3)
C160.52997 (19)0.84583 (8)0.33728 (8)0.0349 (4)
H160.585 (2)0.8683 (12)0.3736 (11)0.056 (6)*
C170.5073 (2)0.88090 (8)0.27926 (8)0.0388 (4)
H170.552 (2)0.9301 (11)0.2736 (10)0.046 (5)*
C180.4295 (2)0.84888 (8)0.22973 (7)0.0368 (4)
H180.417 (2)0.8738 (10)0.1885 (9)0.040 (5)*
C190.3694 (2)0.78142 (9)0.23859 (8)0.0440 (4)
H190.313 (2)0.7578 (12)0.2045 (11)0.054 (6)*
C200.3906 (2)0.74557 (8)0.29632 (7)0.0367 (4)
H200.352 (2)0.6986 (12)0.3029 (10)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (5)0.0187 (4)0.0256 (5)0.0027 (3)0.0025 (4)0.0029 (3)
O20.0357 (5)0.0157 (4)0.0249 (5)0.0017 (3)0.0066 (4)0.0006 (3)
N10.0195 (5)0.0171 (5)0.0225 (5)0.0002 (4)0.0011 (4)0.0039 (4)
N20.0209 (5)0.0164 (5)0.0236 (6)0.0011 (4)0.0016 (4)0.0029 (4)
N30.0324 (6)0.0162 (5)0.0197 (5)0.0033 (4)0.0008 (4)0.0012 (4)
N40.0449 (7)0.0185 (5)0.0213 (6)0.0102 (5)0.0016 (5)0.0012 (4)
C10.0256 (6)0.0143 (5)0.0167 (6)0.0014 (4)0.0002 (5)0.0000 (4)
C20.0255 (6)0.0156 (6)0.0190 (6)0.0012 (4)0.0001 (5)0.0005 (5)
C30.0248 (6)0.0167 (5)0.0200 (6)0.0008 (5)0.0007 (5)0.0007 (5)
C40.0241 (7)0.0275 (7)0.0324 (8)0.0017 (5)0.0014 (6)0.0024 (6)
C50.0231 (6)0.0147 (5)0.0241 (6)0.0002 (4)0.0000 (5)0.0022 (5)
C60.0246 (6)0.0166 (6)0.0219 (6)0.0014 (5)0.0006 (5)0.0018 (5)
C70.0339 (7)0.0193 (6)0.0224 (7)0.0040 (5)0.0005 (5)0.0014 (5)
C80.0647 (11)0.0249 (7)0.0238 (7)0.0129 (7)0.0052 (7)0.0002 (6)
C90.0236 (6)0.0141 (5)0.0233 (6)0.0005 (4)0.0021 (5)0.0019 (4)
C100.0266 (6)0.0227 (6)0.0255 (7)0.0013 (5)0.0012 (5)0.0033 (5)
C110.0332 (7)0.0262 (6)0.0253 (7)0.0020 (5)0.0031 (6)0.0079 (5)
C120.0275 (7)0.0216 (6)0.0350 (8)0.0008 (5)0.0096 (6)0.0051 (5)
C130.0229 (6)0.0206 (6)0.0357 (8)0.0004 (5)0.0013 (6)0.0010 (5)
C140.0245 (6)0.0198 (6)0.0258 (7)0.0009 (5)0.0009 (5)0.0012 (5)
C150.0285 (6)0.0192 (6)0.0218 (6)0.0020 (5)0.0035 (5)0.0035 (5)
C160.0443 (8)0.0274 (7)0.0330 (8)0.0110 (6)0.0079 (7)0.0083 (6)
C170.0509 (9)0.0276 (7)0.0381 (9)0.0095 (6)0.0046 (7)0.0127 (6)
C180.0549 (9)0.0295 (7)0.0261 (7)0.0019 (7)0.0006 (7)0.0088 (6)
C190.0753 (12)0.0302 (7)0.0265 (8)0.0055 (8)0.0128 (8)0.0028 (6)
C200.0616 (10)0.0210 (7)0.0274 (8)0.0076 (7)0.0076 (7)0.0029 (6)
Geometric parameters (Å, º) top
O1—C11.2540 (15)C8—H8C1.00 (3)
O2—C51.2577 (16)C9—C101.3908 (18)
N1—N21.3924 (15)C9—C141.3922 (18)
N1—C11.3873 (15)C10—H100.962 (17)
N1—C91.4182 (16)C10—C111.3870 (19)
N2—H20.89 (2)C11—H110.950 (18)
N2—C31.3608 (16)C11—C121.388 (2)
N3—N41.3848 (15)C12—H120.986 (18)
N3—C51.3979 (15)C12—C131.384 (2)
N3—C151.4211 (16)C13—H130.982 (18)
N4—H40.93 (2)C13—C141.3908 (19)
N4—C71.3442 (17)C14—H140.973 (17)
C1—C21.4361 (17)C15—C161.3880 (19)
C2—C31.3732 (18)C15—C201.385 (2)
C2—C61.4638 (17)C16—H160.99 (2)
C3—C41.4870 (18)C16—C171.389 (2)
C4—H4A0.96 (2)C17—H171.01 (2)
C4—H4B1.01 (2)C17—C181.373 (2)
C4—H4C1.00 (2)C18—H180.984 (19)
C5—C61.4255 (18)C18—C191.382 (2)
C6—C71.3739 (18)C19—H190.97 (2)
C7—C81.487 (2)C19—C201.389 (2)
C8—H8A0.94 (3)C20—H200.95 (2)
C8—H8B0.98 (2)
N2—N1—C9119.13 (10)H8A—C8—H8B110 (2)
C1—N1—N2109.61 (10)H8A—C8—H8C104 (2)
C1—N1—C9128.07 (10)H8B—C8—H8C108 (2)
N1—N2—H2116.1 (12)C10—C9—N1119.46 (11)
C3—N2—N1107.13 (10)C10—C9—C14120.74 (12)
C3—N2—H2122.7 (12)C14—C9—N1119.80 (12)
N4—N3—C5108.30 (10)C9—C10—H10120.3 (10)
N4—N3—C15121.11 (10)C11—C10—C9119.46 (13)
C5—N3—C15130.03 (11)C11—C10—H10120.3 (10)
N3—N4—H4124.2 (12)C10—C11—H11118.9 (10)
C7—N4—N3108.67 (11)C10—C11—C12120.27 (13)
C7—N4—H4124.8 (12)C12—C11—H11120.8 (10)
O1—C1—N1123.52 (11)C11—C12—H12120.1 (10)
O1—C1—C2131.01 (11)C13—C12—C11119.90 (13)
N1—C1—C2105.45 (10)C13—C12—H12120.0 (10)
C1—C2—C6124.33 (11)C12—C13—H13120.7 (10)
C3—C2—C1107.32 (11)C12—C13—C14120.61 (13)
C3—C2—C6128.27 (12)C14—C13—H13118.7 (10)
N2—C3—C2110.12 (11)C9—C14—H14119.2 (10)
N2—C3—C4119.75 (11)C13—C14—C9118.99 (12)
C2—C3—C4130.11 (12)C13—C14—H14121.7 (10)
C3—C4—H4A109.2 (12)C16—C15—N3120.27 (13)
C3—C4—H4B110.2 (12)C20—C15—N3120.08 (12)
C3—C4—H4C111.4 (13)C20—C15—C16119.63 (13)
H4A—C4—H4B109.6 (17)C15—C16—H16118.3 (13)
H4A—C4—H4C107.4 (18)C15—C16—C17119.58 (14)
H4B—C4—H4C109.1 (17)C17—C16—H16122.1 (13)
O2—C5—N3123.75 (12)C16—C17—H17118.7 (11)
O2—C5—C6130.37 (11)C18—C17—C16121.05 (14)
N3—C5—C6105.88 (10)C18—C17—H17120.2 (11)
C5—C6—C2125.56 (11)C17—C18—H18120.2 (11)
C7—C6—C2127.07 (12)C17—C18—C19119.25 (14)
C7—C6—C5107.31 (11)C19—C18—H18120.6 (11)
N4—C7—C6109.78 (12)C18—C19—H19120.9 (13)
N4—C7—C8120.43 (12)C18—C19—C20120.51 (15)
C6—C7—C8129.77 (12)C20—C19—H19118.6 (13)
C7—C8—H8A113.1 (18)C15—C20—C19119.94 (14)
C7—C8—H8B111.4 (14)C15—C20—H20118.5 (13)
C7—C8—H8C110.3 (16)C19—C20—H20121.5 (13)
O1—C1—C2—C3176.71 (13)C1—C2—C6—C7110.02 (16)
O1—C1—C2—C60.3 (2)C2—C6—C7—N4175.33 (13)
O2—C5—C6—C23.0 (2)C2—C6—C7—C83.0 (3)
O2—C5—C6—C7179.71 (14)C3—C2—C6—C5116.89 (15)
N1—N2—C3—C25.32 (14)C3—C2—C6—C766.4 (2)
N1—N2—C3—C4175.97 (11)C5—N3—N4—C71.98 (15)
N1—C1—C2—C31.56 (14)C5—N3—C15—C16173.56 (14)
N1—C1—C2—C6178.61 (11)C5—N3—C15—C208.1 (2)
N1—C9—C10—C11179.24 (12)C5—C6—C7—N41.88 (16)
N1—C9—C14—C13180.00 (11)C5—C6—C7—C8179.78 (16)
N2—N1—C1—O1173.60 (11)C6—C2—C3—N2174.55 (12)
N2—N1—C1—C24.83 (13)C6—C2—C3—C44.0 (2)
N2—N1—C9—C1023.01 (16)C9—N1—N2—C3167.76 (11)
N2—N1—C9—C14157.62 (11)C9—N1—C1—O114.3 (2)
N3—N4—C7—C62.41 (16)C9—N1—C1—C2164.12 (12)
N3—N4—C7—C8179.07 (14)C9—C10—C11—C120.3 (2)
N3—C5—C6—C2176.64 (12)C10—C9—C14—C130.64 (19)
N3—C5—C6—C70.62 (14)C10—C11—C12—C131.4 (2)
N3—C15—C16—C17179.85 (14)C11—C12—C13—C142.2 (2)
N3—C15—C20—C19179.98 (15)C12—C13—C14—C91.17 (19)
N4—N3—C5—O2178.89 (12)C14—C9—C10—C111.40 (19)
N4—N3—C5—C60.81 (14)C15—N3—N4—C7174.20 (12)
N4—N3—C15—C1616.11 (19)C15—N3—C5—O27.6 (2)
N4—N3—C15—C20162.19 (14)C15—N3—C5—C6172.10 (12)
C1—N1—N2—C36.34 (13)C15—C16—C17—C180.2 (3)
C1—N1—C9—C10134.57 (13)C16—C15—C20—C191.7 (3)
C1—N1—C9—C1444.80 (18)C16—C17—C18—C191.8 (3)
C1—C2—C3—N22.35 (14)C17—C18—C19—C201.6 (3)
C1—C2—C3—C4179.11 (13)C18—C19—C20—C150.1 (3)
C1—C2—C6—C566.70 (18)C20—C15—C16—C171.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (2)1.85 (2)2.7313 (14)175.1 (18)
N4—H4···O1ii0.93 (2)1.81 (2)2.7321 (15)169.3 (18)
C20—H20···O20.95 (2)2.23 (2)2.8988 (17)126.5 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1.
 

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021).

References

First citationBadawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361.  Web of Science CrossRef CAS Google Scholar
First citationBavley, A. (1946). U. S. Patent 2411951.  Google Scholar
First citationBrune, K. (1997). Acute Pain, 1, 33–40.  CrossRef CAS Google Scholar
First citationChande, M. S., Barve, P. A. & Suryanarayan, V. J. (2007). Heterocycl. Chem. 44, 49–53.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElmorsi, M. A. & Hassanein, A. M. (1999). Corros. Sci. 41, 2337–2352.  Web of Science CrossRef CAS Google Scholar
First citationEpstein, J. (1947). Anal. Chem. 19, 272–274.  CrossRef CAS Web of Science Google Scholar
First citationGeronikaki, A., Babaev, E., Dearden, J., Dehaen, W., Filimonov, D., Galaeva, I., Krajneva, V., Lagunin, A., Macaev, F., Molodavkin, G., Poroikov, V., Pogrebnoi, S., Saloutin, V., Stepanchikova, A., Stingaci, E., Tkach, N., Vlad, L. & Voronina, T. (2004). Bioorg. Med. Chem. 12, 6559–6568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGürsoy, A., Demirayak, S., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science PubMed Google Scholar
First citationHadi, V., Koh, Y.-H., Sanchez, T. W., Barrios, D., Neamati, N. & Jung, K. W. (2010). Bioorg. Med. Chem. Lett. 20, 6854–6857.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCaleb, M. L. (1996). J. Med. Chem. 39, 3920–3928.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKruse, J. M. & Mellon, M. G. (1952). Sewage Ind. Waste. 24, 1254–1259.  CAS Google Scholar
First citationLear, J. B. & Mellon, M. G. (1957). Anal. Chem. 29, 293–295.  CrossRef CAS Web of Science Google Scholar
First citationMcGrath, J. J. & Pellegrini, J. P. (1961). US Patent 2983683.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSharma, V., Khurana, J. M. & Muralidhar, K. (2013). Proc. Indian Natl. Sci. Acad. 79, 51–56.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatanabe, T., Tanaka, M., Watanabe, K., Takamatsu, Y. & Tobe, A. (2004). Yakugaku Zasshi, 124, 99–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshida, H., Yanai, H., Namiki, Y., Fukatsu-Sasaki, K., Furutani, N. & Tada, N. (2006). CNS Drug Rev. 12, 9–20.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYuan, W. J., Yasuhara, T., Shingo, T., Muraoka, K., Agari, T., Kameda, M., Uozumi, T., Tajiri, N., Morimoto, T., Jing, M., Baba, T., Wang, F., Leung, H., Matsui, T., Miyoshi, Y. & Date, I. (2008). BMC Neurosci. 9, 75.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds