inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Dicaesium tetra­magnesium penta­kis­(carbonate) deca­hydrate, Cs2Mg4(CO3)5·10H2O

aInstitute of Inorganic Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
*Correspondence e-mail: christine.rincke@chemie.tu-freiberg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 January 2020; accepted 5 February 2020; online 11 February 2020)

The title carbonate hydrate, Cs2Mg4(CO3)5·10H2O, was crystallized at room temperature out of aqueous solutions containing caesium bicarbonate and magnesium nitrate. Its monoclinic crystal structure (P21/n) consists of double chains of composition 1[Mg(H2O)2/1(CO3)3/3], isolated [Mg(H2O)(CO3)2]2– units, two crystallographically distinct Cs+ ions and a free water mol­ecule. The crystal under investigation was twinned by reticular pseudomerohedry.

3D view (loading...)
[Scheme 3D1]

Structure description

Up to now, only two magnesium salts containing hydrogenbiscarbonate anions [H(CO3)23–] were known, viz. KMgH(CO3)2·4H2O and RbMgH(CO3)2·4H2O. Both can be crystallized at room temperature by combination of an aqueous solution of the alkali metal bicarbonate and an aqueous solution of magnesium chloride or nitrate (Fernandes et al., 1988[Fernandes, N. G., Tellgren, R. & Olovsson, I. (1988). Acta Cryst. C44, 1168-1172.]; Dahm, 2000[Dahm, M. (2000). Dissertation, Universität Köln. Köln, Germany.]). The synthesis of the analogous caesium compound was not successful (Gloss, 1937[Gloss, G. (1937). Dissertation, Berlin, Germany.]). Tkachev et al. (1978[Tkachev, V. I., Popova, R. A., Rogachev, D. L. & Kobycheva, T. A. (1978). Issled. Fiz.-khim. Svoistv Soedinenii Redk. Elementov, 39-44.]) reported on the synthesis of CsMgH(CO3)2·0.5H2O, but details about the conditions of formation were missing. In our current investigations on that matter, the title compound was found instead of a hydrogenbiscarbonate.

Cs2Mg4(CO3)5·10H2O crystallizes in the space group P21/n and contains four slightly distorted [MgO6] octa­hedra (Fig. 1[link]). Each of the magnesium cations Mg1, Mg3 and Mg4 forms [Mg(H2O)2(CO3)3]4– units that are linked by bridging carbonate anions of the carbon atoms C1, C2 and C3 (Fig. 2[link]). Each carbonate anion bonds in a bidentate mode to one and in a monodentate to the other cations (Figs. 1[link], 2[link]). In each octa­hedron, the water mol­ecules are located in the trans-positions and have no bridging character. In this way, double chains of composition 1[Mg(H2O)2/1(CO3)3/3] are formed, extending parallel to the [[\overline{1}]01] direction (Fig. 3[link]). Between these double chains, isolated [Mg(H2O)3(CO3)2]2– units involving the Mg2 cation are located (Fig. 4[link]). The Mg2 cation is also octa­hedrally coordinated, in this case by three water mol­ecules and two carbonate anions (C4, C5) in a monodentate and a bidentate fashion, respectively (Fig. 1[link]). The 1[Mg(H2O)2/1(CO3)3/3] double chains and the isolated [Mg(H2O)3(CO3)2]2– units form alternating sheets parallel to (010) (Fig. 4[link]).

[Figure 1]
Figure 1
The expanded asymmetric unit of Cs2Mg4(CO3)5·10H2O showing the coordination polyhedra around the four Mg sites. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (ii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (v) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (x) x + 1, y, z − 1.]
[Figure 2]
Figure 2
Double chain built up from octa­hedra around Mg1, Mg3 and Mg4 and carbonate units. [Symmetry codes: (ii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (v) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (x) x + 1, y, z − 1.]
[Figure 3]
Figure 3
The crystal structure of Cs2Mg4(CO3)5·10H2O in a view along the b axis.
[Figure 4]
Figure 4
The crystal structure of Cs2Mg4(CO3)5·10H2O in a view along the a axis.

The C—O bonds of the carbonate units range from 1.252 (12) to 1.316 (11) Å and the O—C—O angles from 114.8 (8) to 124.4 (8)°. In comparison with other crystal structures containing carbonate units and deposited in the Inorganic Structure Database (ICSD; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]), these deviations of the bond lengths and angles from ideal values of a equilateral triangle are not unusual (Cirpus, 1997[Cirpus, V. (1997). Dissertation, Universität Köln. Köln, Germany.]). As a result, the symmetry of the carbonate anions deviates significantly from ideal D3h; however, the sum of all O—C—O angles remains 360° and planarity is kept, which is typical for all carbonate structures (Zemann, 1981[Zemann, J. (1981). Fortschr. Mineral. 59, 95-116.]; Cirpus, 1997[Cirpus, V. (1997). Dissertation, Universität Köln. Köln, Germany.]).

The two caesium cations inter­connect two adjacent double chains and four (Cs1) and three (Cs2) [Mg2(H2O)3(CO3)2]2– units, respectively, thereby generating a three-dimensional framework. The coordination numbers of the caesium cations are [6 + 12] for Cs1 and [7 + 6] for Cs2, whereby the first numeral indicates the number of the coordinating O atoms with a distance between 3.06 to 3.44 Å and the second number the number of O atoms with a distance between 3.44 and 4.12 Å. The Cs1 cation is coordinated by ten water mol­ecules and four carbonate units (Fig. 5[link]), the Cs2 cation by five water mol­ecules and eight carbonate units (Fig. 6[link]). The [Cs1O18] polyhedron is connected with another [Cs1O18] polyhedron by face-sharing through O8W, O8Wiii, O10W and O10Wiii and is also linked by sharing corners to four [Cs2O13] polyhedra through O2Wiv, O11i, O6Wii and O22. Likewise, a [Cs2O13] polyhedron is linked by face-sharing through O42vii, O42viii, O53vii and O53viii with another [Cs2O13] polyhedron and by edge-sharing with two [Cs2O13] polyhedra through O9W and O9Wvii (Fig. 7[link]).

[Figure 5]
Figure 5
Coordination sphere of the Cs1 cation, with all atoms drawn as spheres of arbitrary radii (oxygen atoms not coordinating to Cs with half of the size of other O atoms). [Symmetry codes: (i) x − 1, y, z; (ii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (iii) −x + 2, −y + 1, −z; (iv) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (v) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (vi) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 6]
Figure 6
Coordination sphere of the Cs2 cation, with all atoms drawn as spheres of arbitrary radii (oxygen atoms not coordinating to Cs with half of the size of other O atoms). [Symmetry codes: (vii) −x + 2, −y + 1, −z + 1; (viii) x + 1, y, z; (ix) −x + 3, −y + 1, -z.]
[Figure 7]
Figure 7
Linkage of Cs cations by O atoms, with all atoms drawn as spheres of arbitrary radii (other atoms are left out for clarity). [Symmetry codes: (i) x − 1, y, z; (ii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (iii) −x + 2, −y + 1, −z; (iv) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (vii) −x + 2, −y + 1, −z + 1; (viii) x + 1, y, z; (ix) −x + 3, −y + 1, −z; (xi) −x + 3, −y + 1, −z + 1; (xvi) −x + [{5\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (xviii) −x + [{5\over 2}], y − [{1\over 2}], −z + [{1\over 2}].]

Additional stability in the crystal structure is accomplished by hydrogen bonds between the water mol­ecules of the double chains, the [Mg2(H2O)3(CO3)2]2– units and the free water mol­ecule (H25A—O25—H25B) (Fig. 8[link], Table 1[link]). The shortest hydrogen bonds are built between O4W—H4B⋯O51i, O10W—H10B⋯O22, O4W—H4A⋯O43ii and O6W—H6B⋯O52vi with H⋯O distances < 2.00 Å (Table 1[link]). The bond length correlates with the strength of the hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]), and in the present case the strength of the hydrogen bonding is considered to be moderate.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O51 0.82 (5) 1.85 (6) 2.658 (10) 172 (12)
O1W—H1B⋯O43i 0.83 (5) 1.89 (6) 2.686 (11) 162 (12)
O2W—H2A⋯O52ii 0.80 (5) 2.01 (6) 2.783 (11) 160 (12)
O2W—H2B⋯O42iii 0.81 (5) 1.93 (6) 2.734 (12) 170 (13)
O3W—H3A⋯O52iv 0.82 (5) 2.23 (6) 2.993 (12) 157 (11)
O3W—H3B⋯O41v 0.82 (5) 1.92 (6) 2.737 (11) 175 (12)
O4W—H4A⋯O43vi 0.82 (5) 1.93 (6) 2.724 (11) 162 (13)
O4W—H4B⋯O51ii 0.82 (5) 1.84 (6) 2.661 (9) 174 (14)
O5W—H5A⋯O52vii 0.82 (5) 2.04 (6) 2.853 (10) 169 (13)
O5W—H5B⋯O41viii 0.80 (5) 2.05 (6) 2.831 (10) 164 (13)
O6W—H6A⋯O43v 0.84 (5) 2.21 (6) 3.021 (13) 165 (13)
O6W—H6B⋯O52ix 0.81 (5) 1.98 (6) 2.783 (10) 174 (13)
O7W—H7B⋯O23x 0.83 (5) 2.07 (7) 2.843 (10) 155 (13)
O8W—H8A⋯O10W 0.82 (5) 2.02 (6) 2.815 (10) 165 (13)
O8W—H8B⋯O10Wv 0.82 (5) 2.02 (7) 2.815 (10) 164 (15)
O9W—H9A⋯O31 0.82 (5) 2.09 (7) 2.869 (10) 161 (13)
O9W—H9B⋯O32iii 0.82 (5) 1.87 (7) 2.673 (10) 170 (13)
O10W—H10A⋯O13viii 0.81 (5) 2.01 (6) 2.798 (9) 162 (13)
O10W—H10B⋯O22 0.90 (13) 1.84 (13) 2.730 (10) 169 (12)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+2, -y+1, -z; (vi) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) -x+3, -y+1, -z; (ix) x+1, y, z-1; (x) x-1, y, z.
[Figure 8]
Figure 8
Inter­connection of double chains (at the corners), the [Mg2(H2O)3(CO3)2]2– units (in the middle) and the free water mol­ecule via hydrogen bonds in the crystal structure of Cs2Mg4(CO3)5·10H2O. Hydrogen bonds are represented by dashed lines; Cs atoms are omitted for clarity.

For the crystal structures of other alkali metal magnesium carbonates and hydrogen bis­(carbonates), see: KMgH(CO3)2·4H2O (Fernandes et al., 1988[Fernandes, N. G., Tellgren, R. & Olovsson, I. (1988). Acta Cryst. C44, 1168-1172.]), RbMgH(CO3)2·4H2O (Dahm, 2000[Dahm, M. (2000). Dissertation, Universität Köln. Köln, Germany.]), K2Mg(CO3)2·4H2O (Bucat et al., 1977[Bucat, R. B., Patrick, J. M., White, A. H. & Willis, A. C. (1977). Aust. J. Chem. 30, 1379-1382.]), Rb2Mg(CO3)2·4H2O (Zheng & Adam, 1994[Zheng, Y. Q. & Adam, A. (1994). Z. Naturforsch. Teil B, 49, 1368-1372.]), Cs2Mg(CO3)2·4H2O (Zheng & Adam, 1999[Zheng, Y.-Q. & Adam, A. (1999). Chem. Res. Chin. Univ. 15, 211-21.]).

Synthesis and crystallization

The synthesis was derived from the information for crystallization of KMgH(CO3)2·4H2O as reported by Fernandes et al. (1988[Fernandes, N. G., Tellgren, R. & Olovsson, I. (1988). Acta Cryst. C44, 1168-1172.]). CO2 was bubbled through a solution of Cs2CO3 (9.043 g, Merck, > 99.5%) and water (22.120 g) for three h. Afterwards, a solution of Mg(NO3)2·6H2O (1.041 g, Merck, p.a.) and water (2.643 g) was added and stored in a sealed bottle for 2 d. A crystalline solid was formed and filtered off. The characterization with powder X-ray diffraction showed that the product was a mixture of MgCO3·3H2O and the title compound.

After filtration the remaining solution was stored in a sealed bottle for 14 d at room temperature. During this period further acicular crystals (200 x 20 µm) were formed. The product was washed with ethanol and characterized by powder X-ray diffraction, thermal analysis, FT–IR spectroscopy and SEM (see: supporting information). Some crystals were kept in the mother solution in a sealed vessel for one month. Afterwards a suitable crystal for the single-crystal determination was selected.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. If twinning is not accounted for, the reflections can be indexed by a large ortho­rhom­bic cell, but the subsequent refinement did not result in an useful structure model. Close inspection of the diffraction pattern revealed the presence of two monoclinic cells (P21/n) with lattice parameters of a = 9.1617 (9), b = 19.233 (3), c = 13.0065 (13) Å, β = 91.136 (8)°. Therefore the crystal under investigation exhibited twinning by reticular pseudomerohedry; the matrix that relates the individual diffraction pattern was determined as (−[1\over3] 0 −[2\over3], 0 −1 0, −[4\over3] 0 [1\over3]). The reflections of both domains were integrated concurrently, leading to the following numbers. Reflections belonging to domain 1: 16785; reflections belonging to domain 2: 26839; overlaid reflections: 10073; major twin component fraction: 56%.

Table 2
Experimental details

Crystal data
Chemical formula Cs2Mg4(CO3)5·10H2O
Mr 843.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 9.1617 (9), 19.233 (3), 13.0065 (13)
β (°) 91.136 (8)
V3) 2291.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.41
Crystal size (mm) 0.6 × 0.45 × 0.25
 
Data collection
Diffractometer STOE IPDS 2T
Absorption correction Integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing. Copenhagen: Munksgaard.])
Tmin, Tmax 0.151, 0.439
No. of measured, independent and observed [I > 2σ(I)] reflections 37526, 37526, 31786
Rint 0.086
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.274, 1.22
No. of reflections 37526
No. of parameters 386
No. of restraints 19
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 3.48, −2.86
Computer programs: X-AREA and X-RED (Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA and X-RED. Darmstadt, German: Stoe & Cie.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2017[Brandenburg, K. (2017). DIAMOND. Bonn, Germany: Crystal Impact GbR.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structure solution permitted the assignment of all heavy atoms and the subsequent refinement leads to a chemical sensible atomic arrangement. All H atoms were discernable from difference-Fourier maps and refined with an O—H distance restraint of 0.82(2) Å and Uiso(H) = 1.2Ueq(O).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2015); cell refinement: X-AREA (Stoe & Cie, 2015); data reduction: X-RED (Stoe & Cie, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Dicaesium tetramagnesium pentakis(carbonate) decahydrate top
Crystal data top
Cs2Mg4(CO3)5·10H2OF(000) = 1632
Mr = 843.27Dx = 2.444 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1617 (9) ÅCell parameters from 11266 reflections
b = 19.233 (3) Åθ = 10.0–27.5°
c = 13.0065 (13) ŵ = 3.41 mm1
β = 91.136 (8)°T = 200 K
V = 2291.4 (4) Å3Needle, colorless
Z = 40.6 × 0.45 × 0.25 mm
Data collection top
STOE IPDS 2T
diffractometer
37526 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus31786 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.086
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.7°
rotation method scansh = 1111
Absorption correction: integration
(Coppens, 1970)
k = 2424
Tmin = 0.151, Tmax = 0.439l = 1616
37526 measured reflections
Refinement top
Refinement on F219 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Only H-atom coordinates refined
wR(F2) = 0.274 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
37526 reflectionsΔρmax = 3.48 e Å3
386 parametersΔρmin = 2.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin. All H atoms were discernable from difference Fourier maps. Their Uiso values were set at 1.2Ueq(O) using a riding-model approximation, with O—H distance restraint of 0.82 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs11.00975 (7)0.66121 (4)0.01626 (5)0.0303 (3)
Cs21.32369 (7)0.49560 (3)0.40043 (5)0.0264 (3)
Mg11.1797 (3)0.68437 (15)0.3146 (2)0.0151 (6)
Mg20.7423 (3)0.50315 (14)0.2539 (2)0.0180 (6)
Mg31.5193 (3)0.68707 (16)0.0165 (2)0.0149 (6)
Mg41.8523 (3)0.68950 (15)0.3500 (2)0.0148 (6)
C11.6693 (10)0.6520 (4)0.1682 (7)0.0151 (17)
C21.3367 (10)0.6479 (5)0.1655 (7)0.0157 (17)
C30.9960 (9)0.6486 (5)0.4985 (7)0.0159 (18)
C40.6528 (9)0.3691 (5)0.3489 (7)0.0159 (15)
C50.6780 (9)0.6242 (5)0.3186 (6)0.0161 (15)
O1W0.9961 (8)0.6901 (4)0.2222 (6)0.0214 (13)
H1A0.927 (10)0.664 (6)0.231 (10)0.026*
H1B0.972 (13)0.729 (4)0.201 (10)0.026*
O2W1.3628 (8)0.6785 (4)0.4098 (6)0.0226 (14)
H2A1.437 (9)0.678 (7)0.378 (8)0.027*
H2B1.375 (14)0.658 (6)0.464 (6)0.027*
O311.0684 (8)0.6279 (4)0.4208 (5)0.0200 (13)
O211.3187 (7)0.7114 (3)0.1938 (5)0.0185 (12)
O221.2623 (8)0.6024 (3)0.2168 (5)0.0211 (13)
O231.4196 (8)0.6297 (4)0.0929 (5)0.0197 (13)
O3W1.3266 (8)0.6867 (4)0.1057 (6)0.0204 (13)
H3B1.318 (14)0.662 (6)0.157 (7)0.025*
H3A1.301 (13)0.725 (4)0.126 (9)0.025*
O4W1.7042 (8)0.6938 (4)0.0761 (6)0.0220 (14)
H4B1.726 (14)0.667 (6)0.123 (8)0.026*
H4A1.734 (14)0.731 (4)0.102 (9)0.026*
O5W2.0403 (8)0.6925 (4)0.2549 (6)0.0218 (14)
H5B2.097 (11)0.661 (5)0.258 (10)0.026*
H5A2.074 (13)0.730 (4)0.233 (10)0.026*
O6W1.6622 (8)0.6890 (4)0.4404 (6)0.0227 (14)
H6A1.576 (7)0.684 (7)0.421 (10)0.027*
H6B1.652 (14)0.690 (7)0.502 (4)0.027*
O111.7447 (8)0.6338 (4)0.2448 (5)0.0220 (14)
O121.6439 (8)0.7159 (3)0.1449 (5)0.0200 (13)
O131.6152 (7)0.6063 (3)0.1054 (5)0.0176 (12)
O7W0.5600 (9)0.5047 (3)0.1568 (7)0.0302 (16)
H7A0.601 (15)0.512 (8)0.100 (7)0.036*
H7B0.527 (14)0.545 (4)0.156 (11)0.036*
O8W0.8731 (8)0.4854 (4)0.1256 (5)0.0280 (14)
H8A0.960 (7)0.495 (6)0.122 (12)0.034*
H8B0.843 (15)0.490 (7)0.066 (5)0.034*
O510.7580 (7)0.6121 (3)0.2376 (5)0.0182 (12)
O520.6504 (8)0.6860 (3)0.3457 (6)0.0231 (13)
O410.7184 (8)0.3984 (3)0.2720 (5)0.0241 (13)
O420.6027 (12)0.4052 (5)0.4216 (7)0.049 (2)
O430.6392 (11)0.3043 (4)0.3508 (7)0.040 (2)
O320.9441 (7)0.6056 (3)0.5649 (5)0.0186 (13)
O330.9686 (8)0.7136 (3)0.5157 (5)0.0177 (12)
O9W0.9293 (9)0.5041 (3)0.3441 (6)0.0283 (15)
H9B0.959 (14)0.468 (4)0.370 (10)0.034*
H9A0.949 (14)0.542 (4)0.369 (10)0.034*
O530.6312 (7)0.5693 (4)0.3652 (5)0.0261 (14)
O10W1.1733 (8)0.4982 (3)0.0876 (5)0.0222 (14)
H10A1.223 (12)0.465 (5)0.103 (9)0.027*
H10B1.214 (14)0.531 (7)0.128 (10)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0293 (4)0.0358 (4)0.0260 (4)0.0016 (2)0.0086 (3)0.0031 (2)
Cs20.0259 (4)0.0232 (4)0.0301 (4)0.00246 (19)0.0027 (3)0.0020 (2)
Mg10.0138 (15)0.0184 (14)0.0132 (15)0.0001 (10)0.0024 (11)0.0003 (11)
Mg20.0192 (15)0.0154 (14)0.0195 (14)0.0015 (9)0.0023 (12)0.0001 (10)
Mg30.0136 (14)0.0178 (14)0.0135 (15)0.0011 (10)0.0036 (11)0.0000 (10)
Mg40.0127 (14)0.0188 (14)0.0129 (15)0.0006 (10)0.0027 (11)0.0000 (11)
C10.015 (4)0.015 (4)0.015 (4)0.002 (3)0.004 (3)0.000 (3)
C20.016 (4)0.018 (4)0.013 (4)0.003 (3)0.003 (3)0.001 (3)
C30.014 (4)0.018 (4)0.015 (4)0.001 (3)0.008 (3)0.000 (3)
C40.010 (3)0.023 (4)0.015 (4)0.004 (3)0.002 (3)0.003 (3)
C50.010 (4)0.027 (4)0.011 (4)0.004 (3)0.000 (3)0.002 (3)
O1W0.016 (3)0.023 (3)0.025 (4)0.003 (2)0.001 (3)0.003 (3)
O2W0.017 (3)0.035 (4)0.016 (3)0.002 (3)0.002 (2)0.006 (3)
O310.023 (3)0.022 (3)0.015 (3)0.001 (2)0.008 (3)0.004 (2)
O210.022 (3)0.017 (3)0.017 (3)0.001 (2)0.006 (2)0.001 (2)
O220.021 (3)0.022 (3)0.021 (3)0.001 (2)0.011 (3)0.003 (2)
O230.019 (3)0.022 (3)0.018 (3)0.002 (2)0.007 (3)0.001 (2)
O3W0.019 (3)0.023 (3)0.019 (4)0.002 (2)0.000 (3)0.005 (3)
O4W0.021 (3)0.027 (3)0.018 (3)0.001 (2)0.004 (3)0.006 (3)
O5W0.019 (3)0.028 (3)0.018 (3)0.004 (2)0.001 (3)0.003 (3)
O6W0.014 (3)0.037 (4)0.017 (3)0.004 (3)0.000 (2)0.002 (3)
O110.025 (4)0.026 (3)0.016 (3)0.000 (3)0.010 (3)0.002 (3)
O120.026 (4)0.016 (3)0.017 (3)0.002 (2)0.005 (3)0.002 (2)
O130.015 (3)0.022 (3)0.016 (3)0.002 (2)0.007 (2)0.002 (2)
O7W0.023 (4)0.020 (3)0.046 (4)0.002 (2)0.011 (3)0.002 (3)
O8W0.021 (3)0.042 (4)0.021 (3)0.000 (3)0.006 (3)0.002 (3)
O510.020 (3)0.016 (3)0.019 (3)0.001 (2)0.004 (2)0.001 (2)
O520.026 (3)0.018 (3)0.026 (3)0.002 (2)0.001 (3)0.001 (3)
O410.035 (3)0.018 (3)0.019 (3)0.008 (3)0.007 (3)0.002 (2)
O420.075 (6)0.044 (5)0.030 (4)0.027 (4)0.023 (4)0.000 (3)
O430.070 (6)0.021 (3)0.030 (4)0.009 (4)0.007 (4)0.009 (3)
O320.018 (3)0.022 (3)0.016 (3)0.001 (2)0.005 (2)0.002 (2)
O330.021 (3)0.017 (3)0.015 (3)0.001 (2)0.004 (2)0.001 (2)
O9W0.030 (4)0.019 (3)0.035 (4)0.000 (2)0.012 (3)0.004 (3)
O530.030 (3)0.019 (3)0.029 (3)0.001 (2)0.010 (3)0.003 (3)
O10W0.020 (3)0.024 (4)0.023 (3)0.000 (2)0.001 (3)0.002 (2)
Geometric parameters (Å, º) top
Cs1—O4Wi3.132 (8)Mg1—O212.107 (8)
Cs1—O1W3.156 (8)Mg1—O222.171 (8)
Cs1—O5Wi3.180 (8)Mg2—O412.041 (7)
Cs1—O3W3.187 (8)Mg2—O9W2.057 (9)
Cs1—O6Wii3.342 (8)Mg2—O7W2.074 (9)
Cs1—O8Wiii3.344 (8)Mg2—O8W2.102 (7)
Cs1—O2Wiv3.492 (8)Mg2—O512.111 (7)
Cs1—O10Wiii3.607 (7)Mg2—O532.193 (7)
Cs1—O52v3.689 (7)Mg3—O33v2.012 (8)
Cs1—O10W3.718 (7)Mg3—O232.032 (7)
Cs1—O43vi3.767 (8)Mg3—O4W2.063 (7)
Cs1—O11i3.837 (7)Mg3—O3W2.093 (7)
Cs1—O12i3.862 (7)Mg3—O122.116 (8)
Cs1—O13i3.920 (7)Mg3—O132.137 (7)
Cs1—O223.943 (7)Mg4—O112.011 (7)
Cs1—O214.013 (7)Mg4—O21v2.015 (7)
Cs1—O234.034 (7)Mg4—O6W2.082 (7)
Cs1—O8W4.062 (8)Mg4—O5W2.101 (7)
Cs2—O42vii3.065 (10)Mg4—O33x2.115 (8)
Cs2—O42viii3.099 (9)Mg4—O32x2.139 (7)
Cs2—O32vii3.171 (7)C1—O111.272 (11)
Cs2—O223.191 (7)C1—O121.289 (11)
Cs2—O53viii3.195 (7)C1—O131.305 (11)
Cs2—O11ix3.261 (7)C2—O231.272 (11)
Cs2—O53vii3.312 (7)C2—O211.286 (11)
Cs2—O313.470 (7)C2—O221.302 (11)
Cs2—O2W3.537 (8)C3—O311.283 (11)
Cs2—O6Wix3.590 (8)C3—O321.292 (11)
Cs2—O9W3.676 (8)C3—O331.296 (12)
Cs2—O7Wviii3.877 (9)C4—O431.252 (12)
Cs2—O9Wvii4.090 (9)C4—O421.267 (12)
Mg1—O12ii2.017 (7)C4—O411.305 (11)
Mg1—O312.045 (8)C5—O521.266 (12)
Mg1—O1W2.050 (8)C5—O531.296 (11)
Mg1—O2W2.068 (7)C5—O511.316 (11)
O4Wi—Cs1—O1W62.25 (18)O11ix—Cs2—O9Wvii113.60 (15)
O4Wi—Cs1—O5Wi115.68 (19)O53vii—Cs2—O9Wvii46.77 (15)
O1W—Cs1—O5Wi158.76 (19)O31—Cs2—O9Wvii62.82 (15)
O4Wi—Cs1—O3W159.55 (19)O2W—Cs2—O9Wvii91.69 (16)
O1W—Cs1—O3W112.70 (19)O6Wix—Cs2—O9Wvii84.43 (16)
O5Wi—Cs1—O3W61.06 (18)O9W—Cs2—O9Wvii65.87 (19)
O4Wi—Cs1—O6Wii94.90 (19)O7Wviii—Cs2—O9Wvii177.29 (14)
O1W—Cs1—O6Wii65.32 (18)O12ii—Mg1—O31104.0 (3)
O5Wi—Cs1—O6Wii94.64 (19)O12ii—Mg1—O1W88.1 (3)
O3W—Cs1—O6Wii66.23 (17)O31—Mg1—O1W90.6 (3)
O4Wi—Cs1—O8Wiii128.97 (18)O12ii—Mg1—O2W91.7 (3)
O1W—Cs1—O8Wiii125.86 (18)O31—Mg1—O2W88.6 (3)
O5Wi—Cs1—O8Wiii73.09 (18)O1W—Mg1—O2W179.1 (3)
O3W—Cs1—O8Wiii70.86 (17)O12ii—Mg1—O2193.7 (3)
O6Wii—Cs1—O8Wiii135.78 (18)O31—Mg1—O21162.0 (3)
O4Wi—Cs1—O2Wiv65.55 (17)O1W—Mg1—O2192.9 (3)
O1W—Cs1—O2Wiv95.32 (18)O2W—Mg1—O2188.0 (3)
O5Wi—Cs1—O2Wiv66.73 (17)O12ii—Mg1—O22154.6 (3)
O3W—Cs1—O2Wiv96.47 (18)O31—Mg1—O22101.2 (3)
O6Wii—Cs1—O2Wiv58.45 (17)O1W—Mg1—O2289.3 (3)
O8Wiii—Cs1—O2Wiv138.81 (18)O2W—Mg1—O2291.3 (3)
O4Wi—Cs1—O10Wiii81.63 (18)O21—Mg1—O2261.3 (3)
O1W—Cs1—O10Wiii112.04 (17)O41—Mg2—O9W91.9 (3)
O5Wi—Cs1—O10Wiii87.65 (17)O41—Mg2—O7W89.9 (3)
O3W—Cs1—O10Wiii117.33 (17)O9W—Mg2—O7W176.9 (4)
O6Wii—Cs1—O10Wiii176.43 (18)O41—Mg2—O8W89.7 (3)
O8Wiii—Cs1—O10Wiii47.59 (17)O9W—Mg2—O8W88.4 (3)
O2Wiv—Cs1—O10Wiii120.32 (16)O7W—Mg2—O8W89.1 (3)
O4Wi—Cs1—O52v110.53 (17)O41—Mg2—O51177.6 (3)
O1W—Cs1—O52v111.04 (17)O9W—Mg2—O5189.5 (3)
O5Wi—Cs1—O52v48.39 (17)O7W—Mg2—O5188.9 (3)
O3W—Cs1—O52v50.97 (17)O8W—Mg2—O5192.3 (3)
O6Wii—Cs1—O52v46.30 (17)O41—Mg2—O53116.4 (3)
O8Wiii—Cs1—O52v110.27 (17)O9W—Mg2—O5390.6 (3)
O2Wiv—Cs1—O52v45.51 (17)O7W—Mg2—O5390.9 (3)
O10Wiii—Cs1—O52v135.79 (15)O8W—Mg2—O53153.9 (3)
O4Wi—Cs1—O10W112.73 (17)O51—Mg2—O5361.6 (3)
O1W—Cs1—O10W79.33 (17)O33v—Mg3—O23105.2 (3)
O5Wi—Cs1—O10W118.15 (17)O33v—Mg3—O4W90.5 (3)
O3W—Cs1—O10W84.19 (17)O23—Mg3—O4W90.0 (3)
O6Wii—Cs1—O10W117.17 (16)O33v—Mg3—O3W85.6 (3)
O8Wiii—Cs1—O10W46.62 (16)O23—Mg3—O3W90.0 (3)
O2Wiv—Cs1—O10W174.40 (16)O4W—Mg3—O3W176.0 (3)
O10Wiii—Cs1—O10W63.82 (19)O33v—Mg3—O1292.6 (3)
O52v—Cs1—O10W134.94 (15)O23—Mg3—O12162.2 (3)
O4Wi—Cs1—O43vi45.4 (2)O4W—Mg3—O1289.7 (3)
O1W—Cs1—O43vi44.59 (18)O3W—Mg3—O1291.5 (3)
O5Wi—Cs1—O43vi117.36 (19)O33v—Mg3—O13154.5 (3)
O3W—Cs1—O43vi116.1 (2)O23—Mg3—O13100.3 (3)
O6Wii—Cs1—O43vi49.9 (2)O4W—Mg3—O1391.2 (3)
O8Wiii—Cs1—O43vi169.12 (19)O3W—Mg3—O1392.8 (3)
O2Wiv—Cs1—O43vi50.96 (18)O12—Mg3—O1361.9 (3)
O10Wiii—Cs1—O43vi126.59 (19)O11—Mg4—O21v103.4 (3)
O52v—Cs1—O43vi80.2 (2)O11—Mg4—O6W88.1 (3)
O10W—Cs1—O43vi123.82 (17)O21v—Mg4—O6W91.9 (3)
O4Wi—Cs1—O11i76.59 (17)O11—Mg4—O5W91.2 (3)
O1W—Cs1—O11i138.48 (17)O21v—Mg4—O5W86.3 (3)
O5Wi—Cs1—O11i48.42 (16)O6W—Mg4—O5W177.9 (3)
O3W—Cs1—O11i107.78 (16)O11—Mg4—O33x160.1 (3)
O6Wii—Cs1—O11i126.97 (16)O21v—Mg4—O33x96.2 (3)
O8Wiii—Cs1—O11i76.01 (17)O6W—Mg4—O33x88.0 (3)
O2Wiv—Cs1—O11i70.93 (16)O5W—Mg4—O33x93.4 (3)
O10Wiii—Cs1—O11i53.13 (15)O11—Mg4—O32x98.8 (3)
C1i—Cs1—O11i19.35 (18)O21v—Mg4—O32x157.5 (3)
O52v—Cs1—O11i87.38 (15)O6W—Mg4—O32x92.2 (3)
O10W—Cs1—O11i114.21 (15)O5W—Mg4—O32x89.9 (3)
O43vi—Cs1—O11i108.19 (17)O33x—Mg4—O32x61.9 (3)
C2—Cs1—O11i162.70 (18)O11—C1—O12123.4 (9)
O4Wi—Cs1—O12i48.47 (17)O11—C1—O13121.6 (8)
O1W—Cs1—O12i109.07 (17)O12—C1—O13115.0 (8)
O5Wi—Cs1—O12i67.54 (17)O23—C2—O21123.8 (9)
O3W—Cs1—O12i126.08 (17)O23—C2—O22121.4 (8)
O6Wii—Cs1—O12i104.30 (15)O21—C2—O22114.8 (8)
O8Wiii—Cs1—O12i109.18 (16)O31—C3—O32122.1 (8)
O2Wiv—Cs1—O12i46.65 (15)O31—C3—O33122.7 (9)
O10Wiii—Cs1—O12i74.03 (15)O32—C3—O33115.3 (8)
O52v—Cs1—O12i83.15 (15)O43—C4—O42119.5 (9)
O10W—Cs1—O12i136.66 (15)O43—C4—O41119.5 (9)
O43vi—Cs1—O12i74.18 (17)O42—C4—O41121.0 (9)
C2—Cs1—O12i163.24 (17)O43—C4—Cs2i122.3 (7)
O11i—Cs1—O12i34.05 (15)O52—C5—O53124.4 (8)
O4Wi—Cs1—O13i48.80 (16)O52—C5—O51120.5 (8)
O1W—Cs1—O13i106.49 (16)O53—C5—O51115.1 (8)
O5Wi—Cs1—O13i82.00 (16)Mg1—O1W—Cs1121.2 (3)
O3W—Cs1—O13i140.80 (16)Mg1—O2W—Cs1xi114.8 (3)
O6Wii—Cs1—O13i134.21 (16)Mg1—O2W—Cs287.3 (3)
O8Wiii—Cs1—O13i87.06 (16)Cs1xi—O2W—Cs2157.8 (2)
O2Wiv—Cs1—O13i78.95 (15)Mg1—O2W—Cs2xii141.2 (3)
O10Wiii—Cs1—O13i43.39 (15)Cs1xi—O2W—Cs2xii103.85 (15)
O52v—Cs1—O13i113.57 (14)Cs2—O2W—Cs2xii53.93 (10)
O10W—Cs1—O13i104.06 (14)C3—O31—Mg1129.8 (6)
O43vi—Cs1—O13i91.34 (18)C3—O31—Cs2130.3 (6)
O11i—Cs1—O13i33.70 (13)Mg1—O31—Cs289.5 (2)
O12i—Cs1—O13i32.64 (14)C3—O31—Cs2vii52.0 (5)
O4Wi—Cs1—O22106.13 (16)Mg1—O31—Cs2vii162.3 (3)
O1W—Cs1—O2247.85 (16)Cs2—O31—Cs2vii100.45 (15)
O5Wi—Cs1—O22138.01 (16)C2—O21—Mg4ii142.7 (7)
O3W—Cs1—O2278.46 (16)C2—O21—Mg193.6 (6)
O6Wii—Cs1—O2277.57 (15)Mg4ii—O21—Mg1122.8 (4)
O8Wiii—Cs1—O2284.08 (16)C2—O21—Cs170.7 (5)
O2Wiv—Cs1—O22133.02 (15)Mg4ii—O21—Cs198.3 (2)
O10Wiii—Cs1—O22102.53 (15)Mg1—O21—Cs191.1 (2)
O52v—Cs1—O22113.41 (14)C2—O21—Cs1xi131.5 (5)
O10W—Cs1—O2241.62 (14)Mg4ii—O21—Cs1xi71.6 (2)
O43vi—Cs1—O2289.08 (16)Mg1—O21—Cs1xi75.9 (2)
O11i—Cs1—O22155.36 (15)Cs1—O21—Cs1xi154.06 (17)
O12i—Cs1—O22154.45 (14)C2—O21—Cs250.1 (5)
O13i—Cs1—O22132.37 (15)Mg4ii—O21—Cs2161.5 (3)
O4Wi—Cs1—O21108.32 (16)Mg1—O21—Cs252.20 (17)
O1W—Cs1—O2147.90 (16)Cs1—O21—Cs299.62 (13)
O5Wi—Cs1—O21123.01 (17)Cs1xi—O21—Cs290.13 (11)
O3W—Cs1—O2164.93 (16)C2—O22—Mg190.2 (5)
O6Wii—Cs1—O2146.11 (15)C2—O22—Cs2136.9 (5)
O8Wiii—Cs1—O21105.33 (16)Mg1—O22—Cs295.0 (2)
O2Wiv—Cs1—O21103.78 (15)C2—O22—Cs173.7 (5)
O10Wiii—Cs1—O21134.24 (15)Mg1—O22—Cs192.1 (2)
O52v—Cs1—O2183.76 (14)Cs2—O22—Cs1148.4 (2)
O10W—Cs1—O2171.43 (14)C2—O23—Mg3130.8 (6)
O43vi—Cs1—O2172.18 (17)C2—O23—Cs169.8 (5)
O11i—Cs1—O21170.94 (14)Mg3—O23—Cs195.7 (2)
O12i—Cs1—O21145.47 (16)C2—O23—Cs254.2 (5)
O13i—Cs1—O21154.19 (14)Mg3—O23—Cs2163.1 (3)
O22—Cs1—O2131.80 (13)Cs1—O23—Cs2100.81 (14)
O4Wi—Cs1—O23136.71 (16)Mg3—O3W—Cs1124.2 (3)
O1W—Cs1—O2374.65 (16)Mg3—O4W—Cs1viii119.6 (3)
O5Wi—Cs1—O23105.83 (16)Mg4—O5W—Cs1viii118.8 (3)
O3W—Cs1—O2345.84 (16)Mg4—O5W—Cs2ix42.37 (17)
O6Wii—Cs1—O2369.21 (16)Cs1viii—O5W—Cs2ix98.86 (18)
O8Wiii—Cs1—O2373.66 (16)Mg4—O6W—Cs1v120.2 (3)
O2Wiv—Cs1—O23125.51 (15)Mg4—O6W—Cs2ix84.0 (2)
O10Wiii—Cs1—O23112.81 (15)Cs1v—O6W—Cs2ix155.4 (2)
O52v—Cs1—O2387.67 (14)Mg4—O6W—Cs2xiii135.1 (3)
O10W—Cs1—O2351.65 (15)Cs1v—O6W—Cs2xiii104.75 (15)
O43vi—Cs1—O23104.71 (17)Cs2ix—O6W—Cs2xiii51.31 (9)
O11i—Cs1—O23145.33 (16)C1—O11—Mg4131.9 (6)
O12i—Cs1—O23170.81 (14)C1—O11—Cs2ix126.5 (6)
O13i—Cs1—O23155.54 (14)Mg4—O11—Cs2ix94.3 (2)
O22—Cs1—O2332.67 (13)C1—O11—Cs1viii72.6 (5)
O21—Cs1—O2332.57 (14)Mg4—O11—Cs1viii98.2 (3)
O4Wi—Cs1—O8W72.94 (17)Cs2ix—O11—Cs1viii134.2 (2)
O1W—Cs1—O8W71.44 (16)C1—O12—Mg1v144.5 (7)
O5Wi—Cs1—O8W129.40 (17)C1—O12—Mg392.2 (6)
O3W—Cs1—O8W125.80 (17)Mg1v—O12—Mg3123.3 (4)
O6Wii—Cs1—O8W135.59 (17)C1—O12—Cs1viii71.5 (5)
O8Wiii—Cs1—O8W66.15 (18)Mg1v—O12—Cs1viii103.2 (3)
O2Wiv—Cs1—O8W137.70 (16)Mg3—O12—Cs1viii93.7 (2)
O10Wiii—Cs1—O8W42.56 (15)C1—O12—Cs2ix26.0 (5)
O52v—Cs1—O8W176.33 (16)Mg1v—O12—Cs2ix123.9 (3)
O10W—Cs1—O8W42.13 (15)Mg3—O12—Cs2ix109.5 (2)
O43vi—Cs1—O8W103.32 (18)Cs1viii—O12—Cs2ix90.21 (13)
O11i—Cs1—O8W92.38 (15)C1—O13—Mg390.8 (5)
O12i—Cs1—O8W98.68 (15)C1—O13—Cs1viii69.1 (5)
O13i—Cs1—O8W67.61 (14)Mg3—O13—Cs1viii91.7 (2)
O22—Cs1—O8W66.01 (14)C1—O13—Cs2ix72.2 (5)
O21—Cs1—O8W96.34 (14)Mg3—O13—Cs2ix150.0 (3)
O23—Cs1—O8W90.46 (14)Cs1viii—O13—Cs2ix104.35 (14)
O42vii—Cs2—O42viii96.5 (2)Mg2—O7W—Cs2i87.6 (3)
O42vii—Cs2—O32vii115.7 (2)Mg2—O8W—Cs1iii131.9 (3)
O42viii—Cs2—O32vii106.4 (2)Mg2—O8W—Cs1114.3 (3)
O42vii—Cs2—O22101.4 (2)Cs1iii—O8W—Cs1113.85 (18)
O42viii—Cs2—O22124.1 (2)C5—O51—Mg293.2 (5)
O32vii—Cs2—O22112.10 (17)C5—O51—Cs1156.7 (5)
O42vii—Cs2—O53viii69.5 (2)Mg2—O51—Cs1110.1 (2)
O42viii—Cs2—O53viii62.2 (2)C5—O51—Cs2i44.7 (4)
O32vii—Cs2—O53viii168.44 (17)Mg2—O51—Cs2i57.54 (17)
O22—Cs2—O53viii75.52 (18)Cs1—O51—Cs2i151.86 (15)
O42vii—Cs2—O11ix168.8 (2)C5—O51—Cs2vii41.9 (5)
O42viii—Cs2—O11ix77.0 (2)Mg2—O51—Cs2vii60.22 (17)
O32vii—Cs2—O11ix58.68 (17)Cs1—O51—Cs2vii153.67 (15)
O22—Cs2—O11ix89.88 (17)Cs2i—O51—Cs2vii47.04 (6)
O53viii—Cs2—O11ix114.14 (17)C5—O52—Cs1ii163.0 (6)
O42vii—Cs2—O53vii61.2 (2)C5—O52—Cs2i56.8 (5)
O42viii—Cs2—O53vii67.60 (19)Cs1ii—O52—Cs2i108.13 (17)
O32vii—Cs2—O53vii73.77 (17)C5—O52—Cs2vii60.2 (5)
O22—Cs2—O53vii161.46 (17)Cs1ii—O52—Cs2vii104.91 (17)
O53viii—Cs2—O53vii101.82 (15)Cs2i—O52—Cs2vii50.61 (7)
O11ix—Cs2—O53vii107.61 (17)C4—O41—Mg2124.5 (6)
O42vii—Cs2—O3167.9 (2)C4—O41—Cs1iii138.8 (5)
O42viii—Cs2—O31163.9 (2)Mg2—O41—Cs1iii96.2 (2)
O32vii—Cs2—O3185.09 (17)C4—O41—Cs2i60.1 (5)
O22—Cs2—O3158.40 (16)Mg2—O41—Cs2i73.5 (2)
O53viii—Cs2—O31106.45 (17)Cs1iii—O41—Cs2i152.17 (18)
O11ix—Cs2—O31119.04 (16)C4—O41—Cs2vii56.7 (5)
O53vii—Cs2—O31106.15 (16)Mg2—O41—Cs2vii71.9 (2)
O42vii—Cs2—O2W48.3 (2)Cs1iii—O41—Cs2vii149.07 (17)
O42viii—Cs2—O2W118.2 (2)Cs2i—O41—Cs2vii53.02 (8)
O32vii—Cs2—O2W133.11 (17)C4—O42—Cs2vii145.8 (8)
O22—Cs2—O2W53.27 (17)C4—O42—Cs2i123.5 (7)
O53viii—Cs2—O2W58.31 (17)Cs2vii—O42—Cs2i83.5 (2)
O11ix—Cs2—O2W142.97 (17)C4—O42—Cs1xiv75.4 (6)
O53vii—Cs2—O2W109.42 (17)Cs2vii—O42—Cs1xiv116.4 (2)
O31—Cs2—O2W48.41 (17)Cs2i—O42—Cs1xiv112.2 (3)
O42vii—Cs2—O6Wix120.0 (2)C4—O43—Cs1xiv140.8 (7)
O42viii—Cs2—O6Wix53.5 (2)C4—O43—Cs2i44.8 (6)
O32vii—Cs2—O6Wix53.01 (17)Cs1xiv—O43—Cs2i105.1 (2)
O22—Cs2—O6Wix138.61 (17)C4—O43—Cs2vii41.1 (5)
O53viii—Cs2—O6Wix115.48 (17)Cs1xiv—O43—Cs2vii102.23 (19)
O11ix—Cs2—O6Wix48.78 (17)Cs2i—O43—Cs2vii49.58 (9)
O53vii—Cs2—O6Wix59.37 (17)C3—O32—Mg4xv91.0 (6)
O31—Cs2—O6Wix137.44 (17)C3—O32—Cs2vii141.6 (5)
O2W—Cs2—O6Wix167.16 (17)Mg4xv—O32—Cs2vii94.4 (2)
O42vii—Cs2—O9W108.9 (2)C3—O32—Cs272.2 (5)
O42viii—Cs2—O9W148.0 (2)Mg4xv—O32—Cs2152.9 (3)
O32vii—Cs2—O9W45.22 (16)Cs2vii—O32—Cs2112.07 (17)
O22—Cs2—O9W70.37 (17)C3—O33—Mg3ii146.5 (7)
O53viii—Cs2—O9W144.84 (16)C3—O33—Mg4xv91.9 (6)
O11ix—Cs2—O9W74.59 (17)Mg3ii—O33—Mg4xv120.1 (3)
O53vii—Cs2—O9W107.74 (17)C3—O33—Cs1ii129.4 (5)
O31—Cs2—O9W47.24 (16)Mg3ii—O33—Cs1ii73.4 (2)
O2W—Cs2—O9W93.49 (15)Mg4xv—O33—Cs1ii74.3 (2)
O6Wix—Cs2—O9W96.06 (15)C3—O33—Cs2vii50.4 (5)
O42vii—Cs2—O7Wviii118.1 (2)Mg3ii—O33—Cs2vii160.5 (3)
O42viii—Cs2—O7Wviii67.99 (19)Mg4xv—O33—Cs2vii50.09 (17)
O32vii—Cs2—O7Wviii126.18 (17)Cs1ii—O33—Cs2vii87.18 (11)
O22—Cs2—O7Wviii56.80 (16)Mg2—O9W—Cs2156.6 (4)
O53viii—Cs2—O7Wviii49.80 (17)Mg2—O9W—Cs2vii89.1 (3)
O11ix—Cs2—O7Wviii68.33 (16)Cs2—O9W—Cs2vii114.13 (19)
O53vii—Cs2—O7Wviii135.04 (16)C5—O53—Mg290.1 (5)
O31—Cs2—O7Wviii114.68 (15)C5—O53—Cs2i136.9 (5)
O2W—Cs2—O7Wviii85.72 (16)Mg2—O53—Cs2i105.0 (3)
O6Wix—Cs2—O7Wviii98.27 (16)C5—O53—Cs2vii134.6 (5)
O9W—Cs2—O7Wviii113.43 (18)Mg2—O53—Cs2vii109.7 (3)
O42vii—Cs2—O9Wvii60.4 (2)Cs2i—O53—Cs2vii78.18 (15)
O42viii—Cs2—O9Wvii114.08 (19)Cs1iii—O10W—Cs1116.18 (19)
O32vii—Cs2—O9Wvii55.41 (16)Cs1iii—O10W—Cs2112.02 (16)
O22—Cs2—O9Wvii120.86 (16)Cs1—O10W—Cs2118.44 (16)
O53viii—Cs2—O9Wvii129.17 (16)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y+1, z; (iv) x1/2, y+3/2, z1/2; (v) x+1/2, y+3/2, z1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x+2, y+1, z+1; (viii) x+1, y, z; (ix) x+3, y+1, z; (x) x+1, y, z1; (xi) x+1/2, y+3/2, z+1/2; (xii) x+3, y+1, z+1; (xiii) x, y, z1; (xiv) x+3/2, y1/2, z+1/2; (xv) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O510.82 (5)1.85 (6)2.658 (10)172 (12)
O1W—H1B···O43vi0.83 (5)1.89 (6)2.686 (11)162 (12)
O2W—H2A···O52viii0.80 (5)2.01 (6)2.783 (11)160 (12)
O2W—H2B···O42vii0.81 (5)1.93 (6)2.734 (12)170 (13)
O3W—H3A···O52v0.82 (5)2.23 (6)2.993 (12)157 (11)
O3W—H3B···O41iii0.82 (5)1.92 (6)2.737 (11)175 (12)
O4W—H4A···O43xvi0.82 (5)1.93 (6)2.724 (11)162 (13)
O4W—H4B···O51viii0.82 (5)1.84 (6)2.661 (9)174 (14)
O5W—H5A···O52xvii0.82 (5)2.04 (6)2.853 (10)169 (13)
O5W—H5B···O41ix0.80 (5)2.05 (6)2.831 (10)164 (13)
O6W—H6A···O43iii0.84 (5)2.21 (6)3.021 (13)165 (13)
O6W—H6B···O52x0.81 (5)1.98 (6)2.783 (10)174 (13)
O7W—H7B···O23i0.83 (5)2.07 (7)2.843 (10)155 (13)
O8W—H8A···O10W0.82 (5)2.02 (6)2.815 (10)165 (13)
O8W—H8B···O10Wiii0.82 (5)2.02 (7)2.815 (10)164 (15)
O9W—H9A···O310.82 (5)2.09 (7)2.869 (10)161 (13)
O9W—H9B···O32vii0.82 (5)1.87 (7)2.673 (10)170 (13)
O10W—H10A···O13ix0.81 (5)2.01 (6)2.798 (9)162 (13)
O10W—H10B···O220.90 (13)1.84 (13)2.730 (10)169 (12)
Symmetry codes: (i) x1, y, z; (iii) x+2, y+1, z; (v) x+1/2, y+3/2, z1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x+2, y+1, z+1; (viii) x+1, y, z; (ix) x+3, y+1, z; (x) x+1, y, z1; (xvi) x+5/2, y+1/2, z+1/2; (xvii) x+3/2, y+3/2, z1/2.
 

References

First citationBrandenburg, K. (2017). DIAMOND. Bonn, Germany: Crystal Impact GbR.  Google Scholar
First citationBucat, R. B., Patrick, J. M., White, A. H. & Willis, A. C. (1977). Aust. J. Chem. 30, 1379–1382.  CrossRef ICSD CAS Web of Science Google Scholar
First citationCirpus, V. (1997). Dissertation, Universität Köln. Köln, Germany.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing. Copenhagen: Munksgaard.  Google Scholar
First citationDahm, M. (2000). Dissertation, Universität Köln. Köln, Germany.  Google Scholar
First citationFernandes, N. G., Tellgren, R. & Olovsson, I. (1988). Acta Cryst. C44, 1168–1172.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGloss, G. (1937). Dissertation, Berlin, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2015). X-AREA and X-RED. Darmstadt, German: Stoe & Cie.  Google Scholar
First citationTkachev, V. I., Popova, R. A., Rogachev, D. L. & Kobycheva, T. A. (1978). Issled. Fiz.-khim. Svoistv Soedinenii Redk. Elementov, 39–44.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZemann, J. (1981). Fortschr. Mineral. 59, 95–116.  CAS Google Scholar
First citationZheng, Y. Q. & Adam, A. (1994). Z. Naturforsch. Teil B, 49, 1368–1372.  CrossRef ICSD CAS Web of Science Google Scholar
First citationZheng, Y.-Q. & Adam, A. (1999). Chem. Res. Chin. Univ. 15, 211–21.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds