organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Bis­(4-meth­­oxy­phen­yl)naphthalene

aPG and Research Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai - 600 035, India, bDepartment of Physics, Jeppiar Engineering College, Jeppiar Nagar, OMR, Chennai - 600 119, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India
*Correspondence e-mail: agsv71@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 3 February 2020; accepted 14 February 2020; online 21 February 2020)

The title naphthalene derivative, C24H20O2, features 4-methy­oxy-substituted benzene rings in the 1 and 4 positions of the naphthalene ring system. There are two crystallographically independent mol­ecules (A and B) in asymmetric unit. The independent mol­ecules have very similar conformations in which the naphthalene ring systems are only slightly bent, exhibiting dihedral angles between the constituent benzene rings of 3.76 (15) and 3.39 (15)° for A and B, respectively. The pendent 4-methyoxybenzene rings are splayed out of the plane through the naphthalene ring system to which they are connected [range of dihedral angles = 59.63 (13) to 67.09 (13)°]. In the crystal, the mol­ecular packing is consolidated by inter­molecular C—H⋯π inter­actions, leading to supra­molecular chains along the b axis. The chains assemble without directional inter­actions between them.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mol­ecules related to the title compound are of inter­est in the field of organic electronics. A closely related structure is available whereby a perfluorinated phenyl ring is fused to the naphthalene ring system which is also perfluorinated (Tannaci et al., 2008[Tannaci, J. F., Noji, M., McBee, J. L. & Tilley, T. D. (2008). J. Org. Chem. 73, 7895-7900.]). Here, the effects of fluorination are apparent in that the pendant 4-meth­oxy­benzene rings are effectively perpendicular to the central plane.

The mol­ecular structures of the two crystallographically independent mol­ecules comprising the asymmetric unit in the title compound are shown in Fig. 1[link]. The mol­ecules exhibit very similar conformations, as illustrated in the overlay diagram of Fig. 2[link]. The r.m.s deviation between the bond lengths in the two mol­ecules is 0.419 Å (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

[Figure 1]
Figure 1
The mol­ecular structures of the title compound showing atom-numbering scheme and displacement ellipsoids at the 30% probability level. The H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
An overlay diagram of the first (red image) and inverted-second (black) independent mol­ecules of the title compound.

Within the naphthalene ring system, the dihedral angles between the least-squares planes through the constituent rings are 3.76 (15) and 3.39 (15)° for the two independent mol­ecules. The best plane of the (C1–C10) naphthalene ring system forms dihedral angles of 67.09 (13) and 60.71 (13)°, respectively, with the appended (C11–C16) and (C18–C23) rings of the meth­oxy-substituted benzene rings indicating splayed dispositions. The corresponding values for the second independent mol­ecule are 59.63 (13) and 63.75 (13)°. The dihedral angle between the peripheral rings, i.e. between the (C11–C16)/(C18–C23) benzene rings is 6.91 (16)° while that for the corresponding rings in the second independent mol­ecule, i.e. (C35–C40)/(C42–C47), is 8.82 (16)°.

In the crystal, C—H⋯π inter­actions, Table 1[link], link mol­ecules into a supra­molecular chain along the b-axis direction, i.e. with a helical topology. The chains assemble in the crystal without directional inter­actions between them.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the (C42–C47), (C25—C34) and (C11–C16) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1 0.93 2.76 3.531 (4) 141
C15—H15⋯Cg2i 0.93 2.96 3.737 (4) 142
C27—H27⋯Cg3 0.93 2.81 3.610 (4) 145
Symmetry code: (i) x, y+1, z.

Synthesis and crystallization

Tetra­thia­fulvalene [2-(1,3-di­thio­lan-2-yl­idene)-2H-1,3-di­thi­ole; 0.204 g, 1.0 mmol] was added to a solution of 1,3-bis­(4-meth­oxy­phen­yl)isobenzo­furan (0.33 g, 1.0 mmol) in dry xylenes (15 ml). The solution was refluxed until the benzo[c]furan was consumed, i.e. after ca 6 h, as indicated by the disappearance of fluorescence from the solution. After removal of xylenes in vacuo, the crude product was dissolved in dry di­chloro­methane (DCM, 15 ml) and kept at 273 K. To this solution, triflic acid (0.075 g, 0.50 mmol) was added followed by stirring at room temperature for 10 min. After the completion of reaction (as monitored by TLC), the solution was poured into ice–water (20 ml) and then extracted with DCM (2 × 10 ml). The combined organic layer was washed with aq. NaHCO3 (2 × 10 ml) and then dried over Na2SO4. The removal of solvent was followed by column chromatographic purification (silica gel, 10% ethyl acetate in hexa­ne) to afford 1,4-bis­(4-meth­oxy­phen­yl)naphthalene (0.288 g, 85%) as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ethyl acetate solution of the compound held at room temperature; m.p. 421–423 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H20O2
Mr 340.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 21.5500 (8), 6.0366 (2), 27.4915 (9)
β (°) 92.111 (1)
V3) 3573.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.984, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 124530, 7894, 4154
Rint 0.078
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.281, 1.02
No. of reflections 7894
No. of parameters 473
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020).

1,4-Bis(4-methoxyphenyl)naphthalene top
Crystal data top
C24H20O2F(000) = 1440
Mr = 340.40Dx = 1.265 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 7894 reflections
a = 21.5500 (8) Åθ = 1.2–27.1°
b = 6.0366 (2) ŵ = 0.08 mm1
c = 27.4915 (9) ÅT = 296 K
β = 92.111 (1)°BLOCK, yellow
V = 3573.9 (2) Å30.20 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7894 independent reflections
Radiation source: fine-focus sealed tube4154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ & ω scansθmax = 27.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2727
Tmin = 0.984, Tmax = 0.988k = 77
124530 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.281H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1238P)2 + 3.8143P]
where P = (Fo2 + 2Fc2)/3
7894 reflections(Δ/σ)max < 0.001
473 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The C-bound H-atoms were included in calculated positions and treated as riding with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for the other H-atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42322 (15)0.6450 (5)0.76704 (11)0.0430 (8)
H10.44530.64310.73860.052*
C20.43579 (16)0.4887 (6)0.80184 (11)0.0468 (8)
H20.46560.38040.79690.056*
C30.40344 (16)0.4927 (6)0.84511 (12)0.0485 (8)
H30.41220.38740.86910.058*
C40.35946 (15)0.6486 (5)0.85236 (11)0.0442 (8)
H40.33890.64920.88150.053*
C50.34414 (14)0.8104 (5)0.81670 (10)0.0357 (7)
C60.29864 (14)0.9775 (5)0.82446 (10)0.0379 (7)
C70.29017 (16)1.1416 (5)0.78998 (11)0.0457 (8)
H70.26141.25340.79500.055*
C80.32445 (15)1.1425 (5)0.74734 (11)0.0443 (8)
H80.31821.25740.72520.053*
C90.36667 (14)0.9803 (5)0.73731 (10)0.0378 (7)
C100.37770 (14)0.8092 (5)0.77290 (10)0.0360 (7)
C110.40148 (14)0.9863 (5)0.69146 (10)0.0392 (7)
C120.39530 (16)0.8223 (6)0.65583 (11)0.0456 (8)
H120.36860.70390.66050.055*
C130.42824 (16)0.8328 (6)0.61361 (11)0.0469 (8)
H130.42310.72310.59010.056*
C140.46885 (15)1.0066 (6)0.60642 (10)0.0419 (8)
C150.47614 (17)1.1689 (6)0.64097 (11)0.0495 (9)
H150.50351.28560.63640.059*
C160.44226 (17)1.1576 (5)0.68292 (11)0.0478 (8)
H160.44721.26920.70610.057*
C170.5414 (2)1.1779 (7)0.55437 (13)0.0680 (11)
H17A0.51971.31650.55610.102*
H17B0.55771.16060.52260.102*
H17C0.57491.17580.57840.102*
C180.26124 (14)0.9741 (5)0.86889 (10)0.0386 (7)
C190.22387 (15)0.7959 (6)0.87984 (11)0.0463 (8)
H190.22230.67480.85890.056*
C200.18858 (16)0.7924 (6)0.92110 (11)0.0494 (9)
H200.16370.67090.92760.059*
C210.19088 (16)0.9707 (6)0.95229 (11)0.0506 (9)
C220.22778 (18)1.1493 (6)0.94256 (13)0.0584 (10)
H220.22961.26910.96380.070*
C230.26234 (17)1.1513 (6)0.90108 (12)0.0526 (9)
H230.28681.27400.89460.063*
C240.1212 (2)0.8005 (9)1.00620 (15)0.0839 (15)
H24A0.09180.76890.98000.126*
H24B0.09940.83231.03520.126*
H24C0.14770.67451.01170.126*
C250.64533 (16)0.5039 (5)0.64015 (11)0.0449 (8)
H250.66650.49960.61130.054*
C260.60133 (16)0.6621 (5)0.64606 (11)0.0462 (8)
H260.59340.76590.62160.055*
C270.56793 (16)0.6694 (6)0.68881 (11)0.0461 (8)
H270.53810.77850.69280.055*
C280.57920 (15)0.5166 (5)0.72438 (11)0.0424 (8)
H280.55620.52200.75230.051*
C290.62471 (14)0.3499 (5)0.72018 (10)0.0362 (7)
C300.63511 (14)0.1831 (5)0.75665 (10)0.0371 (7)
C310.67742 (16)0.0207 (5)0.74832 (11)0.0452 (8)
H310.68290.09250.77100.054*
C320.71299 (16)0.0197 (6)0.70637 (11)0.0462 (8)
H320.74210.09210.70260.055*
C330.70595 (14)0.1781 (5)0.67099 (10)0.0378 (7)
C340.65981 (14)0.3453 (5)0.67696 (10)0.0366 (7)
C350.74535 (15)0.1737 (5)0.62787 (11)0.0403 (7)
C360.74759 (17)0.0110 (6)0.59848 (12)0.0491 (8)
H360.72230.13140.60510.059*
C370.78635 (18)0.0229 (6)0.55932 (13)0.0561 (9)
H370.78630.14800.53960.067*
C380.82476 (17)0.1528 (6)0.55015 (12)0.0517 (9)
C390.82314 (17)0.3408 (6)0.57853 (12)0.0523 (9)
H390.84830.46100.57170.063*
C400.78406 (16)0.3503 (6)0.61715 (12)0.0473 (8)
H400.78360.47710.63640.057*
C410.8757 (3)0.0372 (9)0.48697 (16)0.0996 (18)
H41A0.88670.15650.50870.149*
H41B0.90830.01500.46460.149*
H41C0.83790.07330.46910.149*
C420.59868 (14)0.1807 (5)0.80161 (10)0.0382 (7)
C430.56057 (17)0.0038 (5)0.81173 (12)0.0481 (8)
H430.55770.11300.78970.058*
C440.52641 (17)0.0064 (6)0.85351 (11)0.0492 (8)
H440.50080.12690.85910.059*
C450.53109 (15)0.1648 (5)0.88663 (10)0.0423 (8)
C460.56849 (16)0.3437 (6)0.87743 (11)0.0449 (8)
H460.57110.46020.89950.054*
C470.60218 (15)0.3520 (5)0.83579 (11)0.0429 (8)
H470.62760.47340.83040.051*
C480.4601 (2)0.0070 (8)0.93981 (16)0.0840 (14)
H48A0.42980.02670.91370.126*
H48B0.43940.02200.96950.126*
H48C0.48470.13900.94350.126*
O10.49974 (12)1.0013 (4)0.56346 (8)0.0566 (7)
O20.15737 (14)0.9849 (5)0.99390 (9)0.0790 (9)
O30.86713 (14)0.1572 (5)0.51385 (10)0.0776 (9)
O40.49915 (12)0.1742 (4)0.92913 (8)0.0601 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (19)0.0480 (19)0.0377 (16)0.0002 (16)0.0024 (14)0.0006 (14)
C20.046 (2)0.0478 (19)0.0462 (18)0.0056 (16)0.0030 (15)0.0003 (15)
C30.052 (2)0.049 (2)0.0444 (18)0.0091 (17)0.0002 (15)0.0116 (15)
C40.0435 (19)0.0504 (19)0.0387 (17)0.0019 (16)0.0013 (14)0.0047 (15)
C50.0354 (16)0.0401 (16)0.0315 (15)0.0007 (14)0.0003 (12)0.0005 (12)
C60.0361 (17)0.0430 (17)0.0345 (15)0.0030 (14)0.0012 (13)0.0061 (13)
C70.049 (2)0.0444 (18)0.0445 (18)0.0045 (16)0.0057 (15)0.0011 (15)
C80.050 (2)0.0441 (18)0.0386 (17)0.0036 (16)0.0013 (14)0.0074 (14)
C90.0399 (17)0.0438 (17)0.0298 (15)0.0032 (15)0.0001 (13)0.0003 (13)
C100.0377 (17)0.0385 (16)0.0316 (15)0.0035 (14)0.0012 (12)0.0008 (12)
C110.0422 (18)0.0429 (18)0.0322 (15)0.0007 (15)0.0000 (13)0.0025 (13)
C120.049 (2)0.0512 (19)0.0364 (16)0.0076 (16)0.0023 (14)0.0017 (15)
C130.054 (2)0.053 (2)0.0334 (16)0.0058 (17)0.0008 (14)0.0100 (15)
C140.0452 (19)0.0519 (19)0.0288 (15)0.0021 (16)0.0032 (13)0.0017 (14)
C150.058 (2)0.049 (2)0.0422 (18)0.0116 (17)0.0083 (16)0.0018 (15)
C160.065 (2)0.0427 (18)0.0357 (16)0.0100 (17)0.0066 (15)0.0064 (14)
C170.074 (3)0.081 (3)0.050 (2)0.015 (2)0.019 (2)0.003 (2)
C180.0351 (17)0.0437 (17)0.0370 (16)0.0006 (14)0.0012 (13)0.0016 (13)
C190.047 (2)0.0501 (19)0.0420 (17)0.0064 (16)0.0039 (15)0.0079 (15)
C200.047 (2)0.059 (2)0.0424 (18)0.0118 (17)0.0060 (15)0.0031 (16)
C210.049 (2)0.066 (2)0.0374 (17)0.0028 (19)0.0113 (15)0.0043 (16)
C220.066 (2)0.059 (2)0.051 (2)0.013 (2)0.0132 (18)0.0207 (18)
C230.057 (2)0.052 (2)0.0493 (19)0.0100 (18)0.0128 (17)0.0088 (16)
C240.078 (3)0.116 (4)0.059 (3)0.024 (3)0.026 (2)0.001 (3)
C250.0458 (19)0.0479 (19)0.0409 (17)0.0011 (16)0.0035 (14)0.0043 (15)
C260.050 (2)0.0440 (18)0.0443 (18)0.0094 (16)0.0009 (15)0.0122 (15)
C270.046 (2)0.0485 (19)0.0440 (18)0.0077 (16)0.0039 (15)0.0007 (15)
C280.0443 (19)0.0447 (18)0.0382 (16)0.0018 (16)0.0031 (14)0.0010 (14)
C290.0359 (17)0.0356 (16)0.0368 (16)0.0027 (14)0.0007 (13)0.0039 (13)
C300.0376 (17)0.0391 (17)0.0343 (15)0.0002 (14)0.0017 (13)0.0005 (13)
C310.052 (2)0.0430 (18)0.0411 (17)0.0063 (16)0.0026 (15)0.0075 (14)
C320.045 (2)0.0456 (19)0.0484 (19)0.0078 (16)0.0032 (15)0.0010 (15)
C330.0375 (17)0.0402 (17)0.0358 (15)0.0003 (14)0.0003 (13)0.0026 (13)
C340.0351 (16)0.0387 (16)0.0357 (15)0.0008 (14)0.0008 (12)0.0025 (13)
C350.0400 (18)0.0430 (18)0.0378 (16)0.0041 (15)0.0013 (13)0.0002 (14)
C360.052 (2)0.0454 (19)0.0501 (19)0.0012 (17)0.0084 (16)0.0033 (16)
C370.066 (3)0.054 (2)0.048 (2)0.009 (2)0.0048 (18)0.0102 (17)
C380.052 (2)0.064 (2)0.0405 (18)0.0125 (19)0.0116 (16)0.0080 (17)
C390.052 (2)0.053 (2)0.052 (2)0.0006 (18)0.0096 (16)0.0072 (17)
C400.048 (2)0.0461 (19)0.0477 (19)0.0004 (16)0.0043 (15)0.0035 (15)
C410.126 (5)0.119 (4)0.056 (3)0.029 (4)0.033 (3)0.009 (3)
C420.0393 (18)0.0422 (17)0.0327 (15)0.0039 (15)0.0022 (13)0.0007 (13)
C430.062 (2)0.0400 (18)0.0430 (18)0.0083 (17)0.0067 (16)0.0051 (14)
C440.059 (2)0.0448 (19)0.0444 (18)0.0086 (17)0.0072 (16)0.0038 (15)
C450.0447 (19)0.0513 (19)0.0309 (15)0.0027 (16)0.0003 (13)0.0015 (14)
C460.050 (2)0.0495 (19)0.0345 (16)0.0049 (17)0.0035 (14)0.0091 (14)
C470.0418 (19)0.0453 (18)0.0412 (17)0.0054 (15)0.0034 (14)0.0024 (14)
C480.100 (4)0.088 (3)0.066 (3)0.027 (3)0.033 (3)0.004 (2)
O10.0658 (17)0.0693 (16)0.0355 (12)0.0087 (14)0.0114 (11)0.0048 (11)
O20.087 (2)0.096 (2)0.0561 (16)0.0194 (18)0.0347 (15)0.0180 (15)
O30.083 (2)0.090 (2)0.0618 (17)0.0176 (17)0.0337 (15)0.0066 (16)
O40.0695 (17)0.0706 (17)0.0412 (13)0.0107 (14)0.0150 (12)0.0020 (12)
Geometric parameters (Å, º) top
C1—C21.364 (4)C25—C261.360 (4)
C1—C101.408 (4)C25—C341.419 (4)
C1—H10.9300C25—H250.9300
C2—C31.401 (4)C26—C271.401 (4)
C2—H20.9300C26—H260.9300
C3—C41.356 (4)C27—C281.360 (4)
C3—H30.9300C27—H270.9300
C4—C51.414 (4)C28—C291.413 (4)
C4—H40.9300C28—H280.9300
C5—C101.427 (4)C29—C341.432 (4)
C5—C61.428 (4)C29—C301.433 (4)
C6—C71.379 (4)C30—C311.364 (4)
C6—C181.488 (4)C30—C421.488 (4)
C7—C81.409 (4)C31—C321.408 (4)
C7—H70.9300C31—H310.9300
C8—C91.372 (4)C32—C331.369 (4)
C8—H80.9300C32—H320.9300
C9—C101.437 (4)C33—C341.431 (4)
C9—C111.491 (4)C33—C351.484 (4)
C11—C161.383 (4)C35—C361.379 (4)
C11—C121.395 (4)C35—C401.392 (4)
C12—C131.384 (4)C36—C371.389 (5)
C12—H120.9300C36—H360.9300
C13—C141.385 (5)C37—C381.375 (5)
C13—H130.9300C37—H370.9300
C14—C151.369 (4)C38—O31.378 (4)
C14—O11.377 (3)C38—C391.378 (5)
C15—C161.389 (4)C39—C401.380 (4)
C15—H150.9300C39—H390.9300
C16—H160.9300C40—H400.9300
C17—O11.422 (4)C41—O31.403 (5)
C17—H17A0.9600C41—H41A0.9600
C17—H17B0.9600C41—H41B0.9600
C17—H17C0.9600C41—H41C0.9600
C18—C191.383 (4)C42—C431.382 (4)
C18—C231.388 (4)C42—C471.398 (4)
C19—C201.389 (4)C43—C441.388 (4)
C19—H190.9300C43—H430.9300
C20—C211.375 (5)C44—C451.379 (4)
C20—H200.9300C44—H440.9300
C21—C221.372 (5)C45—C461.377 (4)
C21—O21.378 (4)C45—O41.379 (3)
C22—C231.385 (5)C46—C471.379 (4)
C22—H220.9300C46—H460.9300
C23—H230.9300C47—H470.9300
C24—O21.407 (5)C48—O41.418 (5)
C24—H24A0.9600C48—H48A0.9600
C24—H24B0.9600C48—H48B0.9600
C24—H24C0.9600C48—H48C0.9600
C2—C1—C10121.9 (3)C34—C25—H25119.2
C2—C1—H1119.1C25—C26—C27120.3 (3)
C10—C1—H1119.1C25—C26—H26119.9
C1—C2—C3119.4 (3)C27—C26—H26119.9
C1—C2—H2120.3C28—C27—C26119.9 (3)
C3—C2—H2120.3C28—C27—H27120.1
C4—C3—C2120.6 (3)C26—C27—H27120.1
C4—C3—H3119.7C27—C28—C29122.1 (3)
C2—C3—H3119.7C27—C28—H28119.0
C3—C4—C5121.6 (3)C29—C28—H28119.0
C3—C4—H4119.2C28—C29—C34118.1 (3)
C5—C4—H4119.2C28—C29—C30122.3 (3)
C4—C5—C10117.9 (3)C34—C29—C30119.6 (3)
C4—C5—C6121.9 (3)C31—C30—C29118.4 (3)
C10—C5—C6120.1 (3)C31—C30—C42120.6 (3)
C7—C6—C5118.6 (3)C29—C30—C42121.0 (3)
C7—C6—C18120.8 (3)C30—C31—C32121.9 (3)
C5—C6—C18120.6 (3)C30—C31—H31119.1
C6—C7—C8121.0 (3)C32—C31—H31119.1
C6—C7—H7119.5C33—C32—C31122.0 (3)
C8—C7—H7119.5C33—C32—H32119.0
C9—C8—C7122.5 (3)C31—C32—H32119.0
C9—C8—H8118.8C32—C33—C34118.1 (3)
C7—C8—H8118.8C32—C33—C35120.2 (3)
C8—C9—C10118.1 (3)C34—C33—C35121.7 (3)
C8—C9—C11120.7 (3)C25—C34—C33122.0 (3)
C10—C9—C11121.2 (3)C25—C34—C29118.0 (3)
C1—C10—C5118.5 (3)C33—C34—C29119.9 (3)
C1—C10—C9121.8 (3)C36—C35—C40117.5 (3)
C5—C10—C9119.6 (3)C36—C35—C33121.1 (3)
C16—C11—C12117.2 (3)C40—C35—C33121.4 (3)
C16—C11—C9120.3 (3)C35—C36—C37122.1 (3)
C12—C11—C9122.6 (3)C35—C36—H36119.0
C13—C12—C11121.2 (3)C37—C36—H36119.0
C13—C12—H12119.4C38—C37—C36119.1 (3)
C11—C12—H12119.4C38—C37—H37120.5
C12—C13—C14120.0 (3)C36—C37—H37120.5
C12—C13—H13120.0C37—C38—O3124.6 (3)
C14—C13—H13120.0C37—C38—C39120.2 (3)
C15—C14—O1124.4 (3)O3—C38—C39115.2 (3)
C15—C14—C13120.0 (3)C38—C39—C40119.9 (3)
O1—C14—C13115.6 (3)C38—C39—H39120.0
C14—C15—C16119.4 (3)C40—C39—H39120.0
C14—C15—H15120.3C39—C40—C35121.2 (3)
C16—C15—H15120.3C39—C40—H40119.4
C11—C16—C15122.3 (3)C35—C40—H40119.4
C11—C16—H16118.9O3—C41—H41A109.5
C15—C16—H16118.9O3—C41—H41B109.5
O1—C17—H17A109.5H41A—C41—H41B109.5
O1—C17—H17B109.5O3—C41—H41C109.5
H17A—C17—H17B109.5H41A—C41—H41C109.5
O1—C17—H17C109.5H41B—C41—H41C109.5
H17A—C17—H17C109.5C43—C42—C47117.0 (3)
H17B—C17—H17C109.5C43—C42—C30120.7 (3)
C19—C18—C23117.2 (3)C47—C42—C30122.3 (3)
C19—C18—C6121.8 (3)C42—C43—C44122.6 (3)
C23—C18—C6121.0 (3)C42—C43—H43118.7
C18—C19—C20122.0 (3)C44—C43—H43118.7
C18—C19—H19119.0C45—C44—C43119.0 (3)
C20—C19—H19119.0C45—C44—H44120.5
C21—C20—C19119.3 (3)C43—C44—H44120.5
C21—C20—H20120.4C46—C45—O4115.9 (3)
C19—C20—H20120.4C46—C45—C44119.7 (3)
C22—C21—C20120.1 (3)O4—C45—C44124.3 (3)
C22—C21—O2116.0 (3)C45—C46—C47120.7 (3)
C20—C21—O2124.0 (3)C45—C46—H46119.6
C21—C22—C23120.0 (3)C47—C46—H46119.6
C21—C22—H22120.0C46—C47—C42120.9 (3)
C23—C22—H22120.0C46—C47—H47119.5
C22—C23—C18121.4 (3)C42—C47—H47119.5
C22—C23—H23119.3O4—C48—H48A109.5
C18—C23—H23119.3O4—C48—H48B109.5
O2—C24—H24A109.5H48A—C48—H48B109.5
O2—C24—H24B109.5O4—C48—H48C109.5
H24A—C24—H24B109.5H48A—C48—H48C109.5
O2—C24—H24C109.5H48B—C48—H48C109.5
H24A—C24—H24C109.5C14—O1—C17117.5 (3)
H24B—C24—H24C109.5C21—O2—C24117.5 (3)
C26—C25—C34121.6 (3)C38—O3—C41118.0 (4)
C26—C25—H25119.2C45—O4—C48117.5 (3)
C10—C1—C2—C31.1 (5)C27—C28—C29—C30177.5 (3)
C1—C2—C3—C40.7 (5)C28—C29—C30—C31176.2 (3)
C2—C3—C4—C50.7 (5)C34—C29—C30—C311.6 (4)
C3—C4—C5—C101.7 (5)C28—C29—C30—C421.2 (4)
C3—C4—C5—C6178.9 (3)C34—C29—C30—C42179.0 (3)
C4—C5—C6—C7174.2 (3)C29—C30—C31—C323.3 (5)
C10—C5—C6—C73.0 (4)C42—C30—C31—C32179.4 (3)
C4—C5—C6—C185.8 (4)C30—C31—C32—C331.8 (5)
C10—C5—C6—C18177.1 (3)C31—C32—C33—C341.5 (5)
C5—C6—C7—C81.5 (5)C31—C32—C33—C35178.6 (3)
C18—C6—C7—C8178.5 (3)C26—C25—C34—C33179.9 (3)
C6—C7—C8—C91.4 (5)C26—C25—C34—C292.6 (5)
C7—C8—C9—C102.6 (5)C32—C33—C34—C25174.1 (3)
C7—C8—C9—C11179.3 (3)C35—C33—C34—C255.7 (5)
C2—C1—C10—C50.1 (5)C32—C33—C34—C293.0 (4)
C2—C1—C10—C9176.8 (3)C35—C33—C34—C29177.1 (3)
C4—C5—C10—C11.3 (4)C28—C29—C34—C252.1 (4)
C6—C5—C10—C1178.5 (3)C30—C29—C34—C25175.8 (3)
C4—C5—C10—C9175.5 (3)C28—C29—C34—C33179.4 (3)
C6—C5—C10—C91.7 (4)C30—C29—C34—C331.5 (4)
C8—C9—C10—C1175.6 (3)C32—C33—C35—C3656.0 (4)
C11—C9—C10—C12.4 (4)C34—C33—C35—C36123.9 (3)
C8—C9—C10—C51.1 (4)C32—C33—C35—C40120.3 (4)
C11—C9—C10—C5179.1 (3)C34—C33—C35—C4059.8 (4)
C8—C9—C11—C1663.9 (4)C40—C35—C36—C370.4 (5)
C10—C9—C11—C16114.1 (4)C33—C35—C36—C37176.8 (3)
C8—C9—C11—C12116.7 (4)C35—C36—C37—C381.5 (5)
C10—C9—C11—C1265.3 (4)C36—C37—C38—O3177.0 (3)
C16—C11—C12—C130.6 (5)C36—C37—C38—C392.2 (5)
C9—C11—C12—C13179.9 (3)C37—C38—C39—C401.8 (5)
C11—C12—C13—C140.9 (5)O3—C38—C39—C40177.5 (3)
C12—C13—C14—C150.4 (5)C38—C39—C40—C350.8 (5)
C12—C13—C14—O1179.5 (3)C36—C35—C40—C390.1 (5)
O1—C14—C15—C16179.7 (3)C33—C35—C40—C39176.5 (3)
C13—C14—C15—C160.3 (5)C31—C30—C42—C4359.6 (4)
C12—C11—C16—C150.1 (5)C29—C30—C42—C43117.7 (3)
C9—C11—C16—C15179.3 (3)C31—C30—C42—C47119.0 (3)
C14—C15—C16—C110.6 (5)C29—C30—C42—C4763.7 (4)
C7—C6—C18—C19120.9 (4)C47—C42—C43—C440.5 (5)
C5—C6—C18—C1959.1 (4)C30—C42—C43—C44179.2 (3)
C7—C6—C18—C2358.8 (4)C42—C43—C44—C450.8 (5)
C5—C6—C18—C23121.2 (3)C43—C44—C45—C461.1 (5)
C23—C18—C19—C200.1 (5)C43—C44—C45—O4179.4 (3)
C6—C18—C19—C20179.6 (3)O4—C45—C46—C47179.6 (3)
C18—C19—C20—C210.3 (5)C44—C45—C46—C471.1 (5)
C19—C20—C21—C220.1 (6)C45—C46—C47—C420.8 (5)
C19—C20—C21—O2179.4 (3)C43—C42—C47—C460.5 (5)
C20—C21—C22—C230.6 (6)C30—C42—C47—C46179.1 (3)
O2—C21—C22—C23178.9 (3)C15—C14—O1—C170.7 (5)
C21—C22—C23—C180.8 (6)C13—C14—O1—C17179.4 (3)
C19—C18—C23—C220.4 (5)C22—C21—O2—C24177.2 (4)
C6—C18—C23—C22179.9 (3)C20—C21—O2—C243.4 (6)
C34—C25—C26—C271.3 (5)C37—C38—O3—C415.7 (6)
C25—C26—C27—C280.5 (5)C39—C38—O3—C41173.5 (4)
C26—C27—C28—C291.0 (5)C46—C45—O4—C48179.9 (3)
C27—C28—C29—C340.4 (5)C44—C45—O4—C481.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the (C42–C47), (C25—C34) and (C11–C16) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg10.932.763.531 (4)141
C15—H15···Cg2i0.932.963.737 (4)142
C27—H27···Cg30.932.813.610 (4)145
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officers, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTannaci, J. F., Noji, M., McBee, J. L. & Tilley, T. D. (2008). J. Org. Chem. 73, 7895–7900.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds