organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3S,5R,6S)-Di­phenyl­methyl 1-oxo-6-bromo­penicillanate

aDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613 403, Thanjavur, Tamil Nadu, India, and bDepartment of Chemistry, Government Arts College, Tiruchirappalli- 620 022, Tamil Nadu, India
*Correspondence e-mail: xrdsethu@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 6 January 2020; accepted 1 February 2020; online 11 February 2020)

In the title compound, C21H20BrNO4S, a key inter­mediate in the synthesis of the widely used β-lactamase inhibitor tazobactam, the five-membered thia­zolidine ring adopts an envelope conformation and the four-membered azetidine ring is in a distorted planar conformation. The crystal structure features C—H⋯O hydrogen bonds and a weak C—H⋯π inter­action.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a key inter­mediate for the synthesis of tazobactam, a widely used β-lactamase inhibitor (Bai et al., 2001[Bai, G. Y., Chen, L. G., Li, Y. & Cao, L. (2001). Jingxi Huagong, 18, 634-637.]). The five-membered thia­zolidine ring (N1/C3/C2/S1/C5) adopts an envelope conformation, with an r.m.s deviation of 0.318 Å and a maximum deviation of 0.305 (1) Å for atom S1. The four-membered azetidine ring (N1/C5–C7) is in a distorted planar conformation, with an r.m.s deviation of 0.052 Å. The dihedral angle between the mean planes of these rings is 49.7 (2)°. The two phenyl rings of the di­phenyl­methyl group are inclined at an angle of 79.0 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

In the crystal (Fig. 2[link]), the mol­ecules self-assemble via C21—H21⋯O2 and C22—H22⋯O1 hydrogen bonds (Table 1[link]), forming a three-dimensional network. Weak C—H⋯π inter­actions involving the C18–C23 ring also occur.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O2i 0.93 2.54 3.465 (5) 171
C22—H22⋯O1ii 0.93 2.55 3.375 (5) 148
C14—H14⋯Cgiii 0.93 2.68 3.533 (5) 153
Symmetry codes: (i) [-y+1, x+1, z+{\script{1\over 4}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [y-1, -x+1, z-{\script{1\over 4}}].
[Figure 2]
Figure 2
A partial packing diagram for the title compound. Dashed lines indicate the C—H⋯O hydrogen bonds.

Synthesis and crystallization

The title compound, which was a gift sample from Orchid Pharmaceutical Ltd, India, prepared according to the procedure of Xu et al. (2005[Xu, W. L., Li, Y. Z., Zhang, Q. S. & Zhu, H. S. (2005). Synthesis, pp. 442-446.]), was dissolved in aceto­nitrile. It was heated over a water bath for few minutes and the resultant solution was allowed to cool. After a week, transparent yellow block-shaped crystals separated out.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H20BrNO4S
Mr 462.35
Crystal system, space group Tetragonal, P41
Temperature (K) 293
a, c (Å) 11.076 (2), 16.478 (3)
V3) 2021.4 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.16
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.563, 0.672
No. of measured, independent and observed [I > 2σ(I)] reflections 20917, 4005, 2553
Rint 0.072
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 0.89
No. of reflections 4005
No. of parameters 255
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.27
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.016 (8)
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(3S,5R,6S)-Diphenylmethyl 1-oxo-6-bromopenicillanate top
Crystal data top
C21H20BrNO4SDx = 1.519 Mg m3
Mr = 462.35Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 5313 reflections
Hall symbol: P 4wθ = 2.2–20.7°
a = 11.076 (2) ŵ = 2.16 mm1
c = 16.478 (3) ÅT = 293 K
V = 2021.4 (7) Å3Block, yellow
Z = 40.30 × 0.25 × 0.20 mm
F(000) = 944
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4005 independent reflections
Radiation source: fine-focus sealed tube2553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω and φ scanθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.563, Tmax = 0.672k = 1313
20917 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
4005 reflectionsΔρmax = 0.20 e Å3
255 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00718 (4)0.08038 (4)0.19956 (3)0.07083 (18)
S10.35274 (8)0.13083 (9)0.18370 (7)0.0532 (3)
O10.3126 (3)0.1885 (3)0.10598 (17)0.0729 (9)
O20.0067 (3)0.2442 (3)0.16015 (19)0.0668 (9)
O30.1395 (2)0.3262 (2)0.39477 (18)0.0509 (7)
O40.2319 (2)0.4801 (2)0.33087 (14)0.0433 (7)
N10.1482 (2)0.1911 (2)0.24983 (18)0.0340 (7)
C20.3557 (3)0.2540 (3)0.2593 (3)0.0478 (11)
C30.2217 (3)0.2991 (3)0.2603 (2)0.0355 (9)
H30.20880.35250.21370.043*
C50.2117 (3)0.0786 (3)0.2304 (2)0.0393 (10)
H50.22070.02130.27530.047*
C60.1117 (3)0.0491 (3)0.1688 (2)0.0433 (10)
H60.14230.04100.11320.052*
C70.0661 (3)0.1762 (3)0.1875 (3)0.0429 (9)
C80.3934 (4)0.1997 (4)0.3415 (3)0.0725 (15)
H8A0.40100.26300.38090.109*
H8B0.46950.15910.33570.109*
H8C0.33330.14310.35910.109*
C90.4420 (4)0.3490 (4)0.2290 (4)0.090 (2)
H9A0.43840.41830.26400.135*
H9B0.42000.37220.17490.135*
H9C0.52260.31720.22900.135*
C100.1903 (3)0.3669 (3)0.3367 (2)0.0385 (9)
C110.2093 (3)0.5603 (3)0.4013 (2)0.0392 (9)
H110.21500.51230.45110.047*
C120.0850 (3)0.6124 (3)0.3960 (3)0.0385 (9)
C130.0227 (4)0.6223 (4)0.3241 (3)0.0489 (11)
H130.05660.59400.27610.059*
C140.0922 (4)0.6754 (4)0.3235 (3)0.0641 (13)
H140.13420.68310.27490.077*
C150.1417 (4)0.7151 (4)0.3933 (4)0.0660 (13)
H150.21870.74830.39250.079*
C160.0808 (4)0.7075 (4)0.4651 (3)0.0628 (13)
H160.11560.73630.51270.075*
C170.0334 (4)0.6563 (3)0.4664 (3)0.0508 (11)
H170.07560.65150.51500.061*
C180.3106 (3)0.6508 (3)0.4006 (2)0.0370 (9)
C190.3129 (4)0.7455 (4)0.3469 (3)0.0479 (11)
H190.25090.75450.30940.057*
C200.4071 (4)0.8277 (4)0.3484 (3)0.0542 (12)
H200.40830.89140.31160.065*
C210.4986 (4)0.8154 (4)0.4038 (3)0.0568 (12)
H210.56170.87080.40470.068*
C220.4969 (3)0.7212 (4)0.4581 (3)0.0597 (12)
H220.55870.71290.49590.072*
C230.4040 (3)0.6394 (3)0.4562 (3)0.0486 (10)
H230.40360.57550.49280.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0570 (3)0.0518 (3)0.1037 (4)0.0182 (2)0.0112 (3)0.0148 (3)
S10.0352 (5)0.0467 (6)0.0777 (9)0.0011 (4)0.0143 (6)0.0181 (6)
O10.075 (2)0.090 (2)0.054 (2)0.0136 (18)0.0229 (18)0.0001 (18)
O20.0562 (19)0.0591 (19)0.085 (2)0.0144 (16)0.0230 (16)0.0023 (17)
O30.0619 (18)0.0393 (16)0.0516 (17)0.0119 (13)0.0178 (16)0.0062 (14)
O40.0485 (15)0.0305 (14)0.0509 (17)0.0064 (12)0.0093 (13)0.0076 (12)
N10.0290 (16)0.0246 (16)0.0486 (19)0.0025 (12)0.0027 (15)0.0078 (14)
C20.030 (2)0.043 (2)0.070 (3)0.0048 (19)0.012 (2)0.015 (2)
C30.035 (2)0.0265 (19)0.046 (2)0.0021 (16)0.0077 (18)0.0008 (17)
C50.039 (2)0.032 (2)0.047 (3)0.0025 (17)0.0037 (18)0.0097 (17)
C60.043 (2)0.038 (2)0.049 (3)0.0055 (17)0.0026 (19)0.0081 (19)
C70.042 (2)0.034 (2)0.053 (3)0.0004 (17)0.001 (2)0.002 (2)
C80.052 (3)0.083 (4)0.082 (4)0.016 (2)0.023 (3)0.030 (3)
C90.058 (3)0.061 (3)0.151 (6)0.027 (3)0.045 (3)0.033 (3)
C100.033 (2)0.030 (2)0.053 (3)0.0017 (17)0.002 (2)0.009 (2)
C110.048 (2)0.032 (2)0.038 (2)0.0027 (17)0.0054 (19)0.0052 (18)
C120.039 (2)0.030 (2)0.046 (2)0.0059 (16)0.000 (2)0.0033 (18)
C130.044 (2)0.047 (2)0.056 (3)0.0034 (19)0.000 (2)0.011 (2)
C140.046 (3)0.063 (3)0.083 (4)0.006 (2)0.015 (3)0.010 (3)
C150.047 (3)0.044 (3)0.107 (4)0.001 (2)0.001 (3)0.007 (3)
C160.061 (3)0.049 (3)0.079 (4)0.010 (2)0.020 (3)0.010 (3)
C170.061 (3)0.042 (2)0.049 (3)0.007 (2)0.005 (2)0.007 (2)
C180.033 (2)0.032 (2)0.046 (2)0.0010 (16)0.0013 (18)0.0067 (19)
C190.040 (2)0.048 (3)0.057 (3)0.0060 (19)0.006 (2)0.002 (2)
C200.051 (3)0.045 (2)0.066 (3)0.008 (2)0.008 (2)0.002 (2)
C210.039 (2)0.056 (3)0.075 (3)0.003 (2)0.003 (2)0.021 (3)
C220.042 (2)0.053 (3)0.085 (3)0.004 (2)0.019 (2)0.009 (3)
C230.043 (2)0.037 (2)0.065 (3)0.0060 (17)0.011 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C61.912 (4)C11—C121.495 (5)
S1—O11.499 (3)C11—C181.505 (5)
S1—C51.835 (4)C11—H110.9800
S1—C21.847 (4)C12—C131.375 (6)
O2—C71.191 (4)C12—C171.382 (5)
O3—C101.199 (4)C13—C141.401 (6)
O4—C101.338 (4)C13—H130.9300
O4—C111.484 (4)C14—C151.348 (7)
N1—C71.382 (5)C14—H140.9300
N1—C31.458 (4)C15—C161.364 (6)
N1—C51.466 (4)C15—H150.9300
C2—C91.506 (6)C16—C171.386 (6)
C2—C81.540 (6)C16—H160.9300
C2—C31.567 (5)C17—H170.9300
C3—C101.505 (5)C18—C191.372 (5)
C3—H30.9800C18—C231.388 (5)
C5—C61.537 (5)C19—C201.385 (6)
C5—H50.9800C19—H190.9300
C6—C71.528 (5)C20—C211.371 (6)
C6—H60.9800C20—H200.9300
C8—H8A0.9600C21—C221.374 (6)
C8—H8B0.9600C21—H210.9300
C8—H8C0.9600C22—C231.371 (5)
C9—H9A0.9600C22—H220.9300
C9—H9B0.9600C23—H230.9300
C9—H9C0.9600
O1—S1—C5103.90 (17)O3—C10—O4124.8 (3)
O1—S1—C2105.5 (2)O3—C10—C3126.0 (3)
C5—S1—C288.00 (16)O4—C10—C3109.1 (3)
C10—O4—C11116.5 (3)O4—C11—C12109.9 (3)
C7—N1—C3123.6 (3)O4—C11—C18105.5 (3)
C7—N1—C593.0 (3)C12—C11—C18115.4 (3)
C3—N1—C5117.1 (3)O4—C11—H11108.6
C9—C2—C8113.1 (4)C12—C11—H11108.6
C9—C2—C3112.4 (3)C18—C11—H11108.6
C8—C2—C3111.8 (3)C13—C12—C17119.2 (4)
C9—C2—S1107.7 (3)C13—C12—C11122.9 (4)
C8—C2—S1108.0 (3)C17—C12—C11117.9 (4)
C3—C2—S1103.1 (3)C12—C13—C14119.7 (4)
N1—C3—C10112.3 (3)C12—C13—H13120.1
N1—C3—C2105.4 (3)C14—C13—H13120.1
C10—C3—C2112.8 (3)C15—C14—C13120.0 (4)
N1—C3—H3108.7C15—C14—H14120.0
C10—C3—H3108.7C13—C14—H14120.0
C2—C3—H3108.7C14—C15—C16121.3 (4)
N1—C5—C688.8 (3)C14—C15—H15119.4
N1—C5—S1103.4 (2)C16—C15—H15119.4
C6—C5—S1113.8 (3)C15—C16—C17119.3 (4)
N1—C5—H5115.7C15—C16—H16120.4
C6—C5—H5115.7C17—C16—H16120.4
S1—C5—H5115.7C12—C17—C16120.6 (4)
C7—C6—C584.8 (3)C12—C17—H17119.7
C7—C6—Br1115.9 (3)C16—C17—H17119.7
C5—C6—Br1114.8 (3)C19—C18—C23118.8 (4)
C7—C6—H6112.8C19—C18—C11121.8 (3)
C5—C6—H6112.8C23—C18—C11119.4 (3)
Br1—C6—H6112.8C18—C19—C20120.4 (4)
O2—C7—N1130.6 (3)C18—C19—H19119.8
O2—C7—C6136.9 (4)C20—C19—H19119.8
N1—C7—C692.4 (3)C21—C20—C19120.2 (4)
C2—C8—H8A109.5C21—C20—H20119.9
C2—C8—H8B109.5C19—C20—H20119.9
H8A—C8—H8B109.5C20—C21—C22119.9 (4)
C2—C8—H8C109.5C20—C21—H21120.0
H8A—C8—H8C109.5C22—C21—H21120.0
H8B—C8—H8C109.5C23—C22—C21119.8 (4)
C2—C9—H9A109.5C23—C22—H22120.1
C2—C9—H9B109.5C21—C22—H22120.1
H9A—C9—H9B109.5C22—C23—C18120.9 (4)
C2—C9—H9C109.5C22—C23—H23119.5
H9A—C9—H9C109.5C18—C23—H23119.5
H9B—C9—H9C109.5
O1—S1—C2—C958.9 (3)C5—C6—C7—N17.5 (3)
C5—S1—C2—C9162.8 (3)Br1—C6—C7—N1107.6 (3)
O1—S1—C2—C8178.6 (3)C11—O4—C10—O31.9 (5)
C5—S1—C2—C874.7 (3)C11—O4—C10—C3179.8 (3)
O1—S1—C2—C360.1 (3)N1—C3—C10—O320.8 (5)
C5—S1—C2—C343.8 (3)C2—C3—C10—O398.2 (4)
C7—N1—C3—C10114.4 (4)N1—C3—C10—O4161.3 (3)
C5—N1—C3—C10131.4 (3)C2—C3—C10—O479.7 (4)
C7—N1—C3—C2122.4 (4)C10—O4—C11—C1282.9 (4)
C5—N1—C3—C28.2 (4)C10—O4—C11—C18152.0 (3)
C9—C2—C3—N1152.1 (4)O4—C11—C12—C1323.0 (5)
C8—C2—C3—N179.5 (4)C18—C11—C12—C1396.2 (4)
S1—C2—C3—N136.3 (3)O4—C11—C12—C17159.5 (3)
C9—C2—C3—C1085.0 (4)C18—C11—C12—C1781.4 (4)
C8—C2—C3—C1043.4 (4)C17—C12—C13—C140.7 (6)
S1—C2—C3—C10159.2 (3)C11—C12—C13—C14178.2 (4)
C7—N1—C5—C67.8 (3)C12—C13—C14—C150.8 (6)
C3—N1—C5—C6138.3 (3)C13—C14—C15—C161.6 (7)
C7—N1—C5—S1106.4 (2)C14—C15—C16—C170.9 (7)
C3—N1—C5—S124.1 (4)C13—C12—C17—C161.3 (6)
O1—S1—C5—N166.7 (3)C11—C12—C17—C16179.0 (4)
C2—S1—C5—N138.7 (3)C15—C16—C17—C120.6 (6)
O1—S1—C5—C628.0 (3)O4—C11—C18—C1976.6 (4)
C2—S1—C5—C6133.5 (3)C12—C11—C18—C1945.0 (5)
N1—C5—C6—C77.1 (3)O4—C11—C18—C23104.1 (4)
S1—C5—C6—C797.1 (3)C12—C11—C18—C23134.3 (4)
N1—C5—C6—Br1109.1 (3)C23—C18—C19—C200.2 (6)
S1—C5—C6—Br1146.69 (19)C11—C18—C19—C20179.5 (4)
C3—N1—C7—O243.8 (6)C18—C19—C20—C210.4 (6)
C5—N1—C7—O2169.4 (5)C19—C20—C21—C220.1 (6)
C3—N1—C7—C6133.5 (3)C20—C21—C22—C230.3 (6)
C5—N1—C7—C67.9 (3)C21—C22—C23—C180.5 (6)
C5—C6—C7—O2169.5 (5)C19—C18—C23—C220.2 (6)
Br1—C6—C7—O275.4 (6)C11—C18—C23—C22179.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···O2i0.932.543.465 (5)171
C22—H22···O1ii0.932.553.375 (5)148
C14—H14···Cgiii0.932.683.533 (5)153
Symmetry codes: (i) y+1, x+1, z+1/4; (ii) x+1, y+1, z+1/2; (iii) y1, x+1, z1/4.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBai, G. Y., Chen, L. G., Li, Y. & Cao, L. (2001). Jingxi Huagong, 18, 634–637.  CAS Google Scholar
First citationBruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, W. L., Li, Y. Z., Zhang, Q. S. & Zhu, H. S. (2005). Synthesis, pp. 442–446.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds