organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1R*,3S*,4S*)-3-(2-Hy­dr­oxy­benzo­yl)-1,2,3,4-tetra­hydro-1,4-ep­­oxy­naphthalen-1-yl]methyl 4-nitro­benzoate

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alan.lough@utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 February 2020; accepted 25 February 2020; online 28 February 2020)

The relative stereo- and regiochemistry of the racemic title compound, C25H19NO7, were established from the crystal structure. The fused benzene ring forms dihedral angles of 77.3 (1) and 60.3 (1)° with the hy­droxy-substituted benzene ring and the nitro-substituted benzene ring, respectively. The dihedral angle between the hy­droxy-substituted benzene ring and the nitro-substituted benzene ring is 76.4 (1)°. An intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules, forming layers parallel to (100). Within these layers, there are weak ππ stacking inter­actions with a ring centroid–ring centroid distance of 3.555 (1) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In past years, our research group (Ballantine et al., 2009[Ballantine, M., Menard, M. L. & Tam, W. (2009). J. Org. Chem. 74, 7570-7573.]; Edmunds et al., 2015[Edmunds, M., Menard, M. L. & Tam, W. (2015). Synth. Commun. 45, 458-466.]; Hill & Tam, 2019[Hill, J. & Tam, W. (2019). J. Org. Chem. 84, 8309-8314.]; Edmunds et al., 2016[Edmunds, M., Raheem, M.-A., Boutin, R., Tait, K. & Tam, W. (2016). Beilstein J. Org. Chem. 12, 239-244.]; Raheem et al., 2014[Raheem, M. A., Edmunds, M. & Tam, W. (2014). Can. J. Chem. 92, 888-895.]) has investigated the effects of various C1-substituted oxabenzonorbornadienes (OBD) on controlling the regioselectivity of ring-opening reactions. In 2015[Nagamoto, M. & Nishimura, T. (2015). Chem. Commun. 51, 13791-13794.], Nagamoto and Nishimura reported the iridium-catalysed hydro­acyl­ation reaction of bicyclic alkenes with 2-hy­droxy­benzaldehyde and its derivatives. Based upon these findings, we set out to determine the effect of C1 substitution on controlling the regioselectivity in the iridium-catalysed hydro­acyl­ation reaction with salicyl­aldehyde II (see Fig. 1[link]) on unsymmetrical oxabenzonorbornadienes. Reaction of C1-substituted OBD (I) with salicyl­aldehyde II in the presence of [Ir(COD)Cl]2 (COD = 1,5-cyclo­octa­iene), and 5 M KOH afforded exclusively the title C3 regioisomer (III) in a 82% yield. The relative stereo- and regiochemistry of the adduct system was determined by single-crystal X-ray analysis. There are two possible stereoisomers as the addition can occur on the exo or the endo face, and two possible regioisomers as the addition can occur at the C2 or C3 position. Of the four possible stereo- and regio-isomers, only the exo-C3 isomer was obtained. The title compound is racemic: in the arbitrarily chosen asymmetric unit, the stereogenic centres are as follows: C1 R; C3 S; C4 S.

[Figure 1]
Figure 1
The reaction scheme.

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The fused benzene ring (C5–C10) forms dihedral angles of 77.3 (1) and 60.3 (1)° with the hy­droxy-substituted benzene ring (C12–C17) and the nitro-substituted benzene ring (C20–C25), respectively. The dihedral angle between the hy­droxy-substituted benzene ring and the nitro-substituted benzene ring is 76.4 (1)°. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) connect the mol­ecules, forming layers lying parallel to (100) (Fig. 3[link]). Within these layers, there are weak ππ stacking inter­actions with a ring centroid–ring centroid distance of 3.555 (1) Å for CgCg(1 − x, −y, 1 − z) where Cg is the centroid of the C20–C25 ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2 0.94 (2) 1.67 (2) 2.5321 (15) 151.7 (19)
C3—H3A⋯O3i 1.00 2.48 3.4510 (17) 163
C8—H8A⋯O1ii 0.95 2.38 3.2782 (17) 157
C9—H9A⋯O7iii 0.95 2.49 3.4057 (19) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound with displacement ellipsoids drawn the 30% probability level.
[Figure 3]
Figure 3
Part of the crystal structure with weak hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

Synthesis and crystallization

To a dried screw-cap vial, was added [Ir(COD)Cl]2 (10 mg, 5 mol%), C1-substituted oxabenzonorbornadiene (I) (Fig. 1[link]) (0.3 mmol, 1.2 equiv.), salicyl­aldehyde II (27 µl, 1 equiv.) and 5M KOH (0.03 mmol, 10 mol%) dissolved in 2 ml of 1,4-dioxane. The reaction was left to stir at 338 K for 20 h, the resultant mixture was loaded directly onto a column and the crude reaction mixture was purified by flash chromatography (EtOAc:hexa­nes 25:75) to obtain the adduct product III (101 mg, 0.23 mmol, 82%) as a yellow solid. The product was then subsequently recrystallized from solution in pure hexa­nes by slow evaporation of the solvent to give product III as colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C25H19NO7
Mr 445.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.7455 (10), 11.9504 (8), 11.9649 (8)
β (°) 101.898 (2)
V3) 2063.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.32 × 0.30 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEX DUO PHOTON II
Absorption correction Multi-scan (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.623, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40054, 4727, 3399
Rint 0.059
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.01
No. of reflections 4727
No. of parameters 302
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: APEX3 (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

[(1R*,3S*,4S*)-3-(2-Hydroxybenzoyl)-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-1-yl]methyl 4-nitrobenzoate top
Crystal data top
C25H19NO7F(000) = 928
Mr = 445.41Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7455 (10) ÅCell parameters from 9213 reflections
b = 11.9504 (8) Åθ = 2.4–27.2°
c = 11.9649 (8) ŵ = 0.11 mm1
β = 101.898 (2)°T = 150 K
V = 2063.1 (2) Å3Shard, colourless
Z = 40.32 × 0.30 × 0.16 mm
Data collection top
Bruker Kappa APEX DUO PHOTON II
diffractometer
3399 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.059
φ and ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(Krause et al., 2015)
h = 1919
Tmin = 0.623, Tmax = 0.746k = 1515
40054 measured reflectionsl = 1515
4727 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.039P)2 + 0.5845P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4727 reflectionsΔρmax = 0.25 e Å3
302 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21520 (6)0.45410 (8)0.52221 (8)0.0254 (2)
O20.09918 (8)0.66077 (8)0.55530 (9)0.0357 (3)
O30.08195 (8)0.86474 (10)0.60434 (9)0.0376 (3)
H3O0.0802 (14)0.7862 (18)0.6067 (18)0.069 (6)*
O40.37771 (6)0.32000 (8)0.53811 (9)0.0295 (2)
O50.53204 (7)0.32594 (9)0.60060 (9)0.0336 (2)
O60.35631 (8)0.23766 (9)0.63820 (10)0.0430 (3)
O70.50514 (8)0.25121 (9)0.65612 (9)0.0393 (3)
N10.43308 (9)0.19667 (10)0.64302 (10)0.0317 (3)
C10.27856 (9)0.46052 (11)0.44429 (11)0.0239 (3)
C20.26049 (9)0.58196 (11)0.39894 (12)0.0247 (3)
H2A0.2750880.5906030.3222640.030*
H2B0.2967330.6370460.4518390.030*
C30.15431 (9)0.59376 (11)0.39449 (11)0.0238 (3)
H3A0.1200160.6053310.3140730.029*
C40.13143 (9)0.47745 (11)0.43864 (12)0.0249 (3)
H4A0.0729190.4740980.4684390.030*
C50.13776 (9)0.39344 (11)0.34635 (12)0.0249 (3)
C60.07283 (10)0.33873 (12)0.26533 (13)0.0302 (3)
H6A0.0083190.3485990.2613610.036*
C70.10549 (11)0.26840 (12)0.18949 (13)0.0332 (3)
H7A0.0623960.2287310.1334440.040*
C80.19923 (11)0.25522 (12)0.19418 (12)0.0319 (3)
H8A0.2195480.2062930.1417570.038*
C90.26456 (10)0.31274 (11)0.27481 (12)0.0283 (3)
H9A0.3290650.3047730.2774550.034*
C100.23228 (9)0.38140 (11)0.35039 (11)0.0235 (3)
C110.13163 (9)0.68588 (11)0.47082 (11)0.0254 (3)
C120.14368 (9)0.80400 (11)0.44234 (12)0.0250 (3)
C130.11508 (10)0.88844 (12)0.50972 (12)0.0283 (3)
C140.11990 (10)1.00024 (12)0.47954 (14)0.0349 (4)
H14A0.1004141.0569980.5249700.042*
C150.15290 (11)1.02872 (12)0.38389 (14)0.0369 (4)
H15A0.1551581.1052730.3632550.044*
C160.18300 (10)0.94724 (12)0.31691 (13)0.0340 (3)
H16A0.2065900.9679470.2517140.041*
C170.17825 (10)0.83600 (12)0.34613 (12)0.0287 (3)
H17A0.1986780.7801740.3004440.034*
C180.37610 (10)0.43650 (11)0.50427 (12)0.0279 (3)
H18A0.4194560.4495280.4524970.034*
H18B0.3942230.4852600.5721000.034*
C190.46027 (9)0.27418 (12)0.57989 (11)0.0253 (3)
C200.45169 (9)0.15105 (11)0.59774 (11)0.0247 (3)
C210.36672 (9)0.09770 (12)0.56869 (12)0.0274 (3)
H21A0.3127630.1394040.5366670.033*
C220.36020 (10)0.01641 (12)0.58624 (12)0.0287 (3)
H22A0.3020950.0536410.5680050.034*
C230.44020 (10)0.07438 (12)0.63079 (11)0.0273 (3)
C240.52603 (10)0.02386 (12)0.65983 (12)0.0293 (3)
H24A0.5799340.0664350.6899550.035*
C250.53146 (10)0.09052 (12)0.64388 (12)0.0284 (3)
H25A0.5894630.1276950.6643420.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (5)0.0252 (5)0.0235 (5)0.0008 (4)0.0085 (4)0.0022 (4)
O20.0536 (7)0.0288 (5)0.0292 (5)0.0063 (5)0.0189 (5)0.0028 (4)
O30.0493 (7)0.0330 (6)0.0332 (6)0.0069 (5)0.0145 (5)0.0052 (5)
O40.0247 (5)0.0248 (5)0.0380 (6)0.0019 (4)0.0040 (4)0.0041 (4)
O50.0259 (5)0.0370 (6)0.0358 (6)0.0032 (5)0.0019 (4)0.0034 (5)
O60.0423 (7)0.0330 (6)0.0484 (7)0.0031 (5)0.0029 (5)0.0024 (5)
O70.0485 (7)0.0354 (6)0.0344 (6)0.0168 (5)0.0097 (5)0.0035 (5)
N10.0408 (8)0.0302 (7)0.0224 (6)0.0058 (6)0.0027 (5)0.0004 (5)
C10.0258 (7)0.0230 (7)0.0245 (7)0.0012 (5)0.0085 (6)0.0011 (5)
C20.0277 (7)0.0212 (6)0.0260 (7)0.0009 (5)0.0074 (6)0.0007 (5)
C30.0272 (7)0.0219 (7)0.0228 (7)0.0008 (5)0.0059 (5)0.0002 (5)
C40.0236 (7)0.0241 (7)0.0278 (7)0.0015 (5)0.0072 (6)0.0017 (6)
C50.0278 (7)0.0193 (6)0.0280 (7)0.0008 (5)0.0069 (6)0.0025 (5)
C60.0279 (7)0.0254 (7)0.0360 (8)0.0022 (6)0.0036 (6)0.0018 (6)
C70.0402 (9)0.0258 (7)0.0307 (8)0.0053 (6)0.0007 (7)0.0019 (6)
C80.0441 (9)0.0242 (7)0.0284 (7)0.0012 (6)0.0098 (7)0.0032 (6)
C90.0311 (8)0.0251 (7)0.0305 (8)0.0010 (6)0.0105 (6)0.0011 (6)
C100.0265 (7)0.0202 (6)0.0242 (7)0.0012 (5)0.0058 (5)0.0031 (5)
C110.0273 (7)0.0263 (7)0.0220 (7)0.0039 (6)0.0036 (6)0.0020 (6)
C120.0250 (7)0.0240 (7)0.0239 (7)0.0026 (5)0.0003 (5)0.0000 (5)
C130.0268 (7)0.0280 (7)0.0279 (7)0.0035 (6)0.0010 (6)0.0021 (6)
C140.0317 (8)0.0259 (7)0.0440 (9)0.0040 (6)0.0005 (7)0.0062 (7)
C150.0372 (9)0.0223 (7)0.0460 (9)0.0010 (6)0.0032 (7)0.0046 (7)
C160.0354 (8)0.0305 (8)0.0338 (8)0.0035 (6)0.0015 (7)0.0066 (6)
C170.0307 (7)0.0267 (7)0.0269 (7)0.0006 (6)0.0018 (6)0.0006 (6)
C180.0282 (7)0.0227 (7)0.0322 (8)0.0011 (6)0.0044 (6)0.0022 (6)
C190.0237 (7)0.0326 (8)0.0197 (7)0.0025 (6)0.0049 (5)0.0008 (6)
C200.0265 (7)0.0281 (7)0.0200 (6)0.0027 (6)0.0060 (5)0.0010 (5)
C210.0244 (7)0.0293 (7)0.0286 (7)0.0057 (6)0.0053 (6)0.0008 (6)
C220.0269 (7)0.0287 (7)0.0305 (7)0.0004 (6)0.0058 (6)0.0025 (6)
C230.0336 (8)0.0277 (7)0.0208 (7)0.0061 (6)0.0062 (6)0.0002 (5)
C240.0289 (8)0.0335 (8)0.0243 (7)0.0090 (6)0.0030 (6)0.0004 (6)
C250.0248 (7)0.0344 (8)0.0251 (7)0.0023 (6)0.0035 (6)0.0018 (6)
Geometric parameters (Å, º) top
O1—C41.4471 (16)C8—C91.396 (2)
O1—C11.4515 (15)C8—H8A0.9500
O2—C111.2410 (16)C9—C101.3766 (19)
O3—C131.3523 (18)C9—H9A0.9500
O3—H3O0.94 (2)C11—C121.4715 (19)
O4—C191.3345 (16)C12—C171.405 (2)
O4—C181.4487 (16)C12—C131.4093 (19)
O5—C191.2066 (16)C13—C141.390 (2)
O6—N11.2238 (16)C14—C151.375 (2)
O7—N11.2287 (15)C14—H14A0.9500
N1—C231.4746 (19)C15—C161.391 (2)
C1—C181.4968 (19)C15—H15A0.9500
C1—C101.5185 (18)C16—C171.380 (2)
C1—C21.5531 (18)C16—H16A0.9500
C2—C31.5620 (19)C17—H17A0.9500
C2—H2A0.9900C18—H18A0.9900
C2—H2B0.9900C18—H18B0.9900
C3—C111.5112 (18)C19—C201.4959 (19)
C3—C41.5486 (18)C20—C211.3848 (19)
C3—H3A1.0000C20—C251.3942 (19)
C4—C51.5095 (19)C21—C221.386 (2)
C4—H4A1.0000C21—H21A0.9500
C5—C61.3788 (19)C22—C231.3770 (19)
C5—C101.3920 (19)C22—H22A0.9500
C6—C71.393 (2)C23—C241.380 (2)
C6—H6A0.9500C24—C251.385 (2)
C7—C81.381 (2)C24—H24A0.9500
C7—H7A0.9500C25—H25A0.9500
C4—O1—C196.71 (9)O2—C11—C12120.38 (12)
C13—O3—H3O104.6 (13)O2—C11—C3119.12 (12)
C19—O4—C18117.40 (11)C12—C11—C3120.43 (12)
O6—N1—O7124.11 (13)C17—C12—C13118.41 (13)
O6—N1—C23118.42 (12)C17—C12—C11122.17 (12)
O7—N1—C23117.46 (13)C13—C12—C11119.33 (13)
O1—C1—C18111.35 (11)O3—C13—C14117.75 (13)
O1—C1—C10101.05 (10)O3—C13—C12122.09 (13)
C18—C1—C10118.44 (11)C14—C13—C12120.16 (14)
O1—C1—C2100.78 (10)C15—C14—C13119.99 (14)
C18—C1—C2115.17 (11)C15—C14—H14A120.0
C10—C1—C2107.74 (11)C13—C14—H14A120.0
C1—C2—C3101.24 (10)C14—C15—C16121.06 (14)
C1—C2—H2A111.5C14—C15—H15A119.5
C3—C2—H2A111.5C16—C15—H15A119.5
C1—C2—H2B111.5C17—C16—C15119.31 (15)
C3—C2—H2B111.5C17—C16—H16A120.3
H2A—C2—H2B109.3C15—C16—H16A120.3
C11—C3—C4110.90 (11)C16—C17—C12121.05 (14)
C11—C3—C2112.98 (11)C16—C17—H17A119.5
C4—C3—C2101.22 (10)C12—C17—H17A119.5
C11—C3—H3A110.5O4—C18—C1106.08 (11)
C4—C3—H3A110.5O4—C18—H18A110.5
C2—C3—H3A110.5C1—C18—H18A110.5
O1—C4—C5101.80 (10)O4—C18—H18B110.5
O1—C4—C3101.18 (10)C1—C18—H18B110.5
C5—C4—C3107.26 (11)H18A—C18—H18B108.7
O1—C4—H4A115.0O5—C19—O4124.08 (13)
C5—C4—H4A115.0O5—C19—C20124.85 (12)
C3—C4—H4A115.0O4—C19—C20111.08 (11)
C6—C5—C10121.37 (13)C21—C20—C25120.42 (13)
C6—C5—C4133.71 (13)C21—C20—C19121.05 (12)
C10—C5—C4104.82 (11)C25—C20—C19118.53 (12)
C5—C6—C7117.43 (13)C20—C21—C22120.16 (13)
C5—C6—H6A121.3C20—C21—H21A119.9
C7—C6—H6A121.3C22—C21—H21A119.9
C8—C7—C6121.32 (14)C23—C22—C21118.22 (13)
C8—C7—H7A119.3C23—C22—H22A120.9
C6—C7—H7A119.3C21—C22—H22A120.9
C7—C8—C9120.95 (13)C22—C23—C24123.04 (14)
C7—C8—H8A119.5C22—C23—N1117.66 (13)
C9—C8—H8A119.5C24—C23—N1119.26 (12)
C10—C9—C8117.70 (13)C23—C24—C25118.24 (13)
C10—C9—H9A121.2C23—C24—H24A120.9
C8—C9—H9A121.2C25—C24—H24A120.9
C9—C10—C5121.20 (13)C24—C25—C20119.91 (13)
C9—C10—C1133.92 (12)C24—C25—H25A120.0
C5—C10—C1104.80 (11)C20—C25—H25A120.0
C4—O1—C1—C18178.46 (11)O2—C11—C12—C17178.58 (13)
C4—O1—C1—C1051.79 (11)C3—C11—C12—C171.5 (2)
C4—O1—C1—C258.90 (11)O2—C11—C12—C132.1 (2)
O1—C1—C2—C335.63 (12)C3—C11—C12—C13174.94 (12)
C18—C1—C2—C3155.56 (11)C17—C12—C13—O3179.28 (12)
C10—C1—C2—C369.79 (12)C11—C12—C13—O34.1 (2)
C1—C2—C3—C11118.93 (12)C17—C12—C13—C141.1 (2)
C1—C2—C3—C40.30 (12)C11—C12—C13—C14175.51 (13)
C1—O1—C4—C551.61 (11)O3—C13—C14—C15179.85 (13)
C1—O1—C4—C358.89 (11)C12—C13—C14—C150.2 (2)
C11—C3—C4—O184.83 (12)C13—C14—C15—C160.9 (2)
C2—C3—C4—O135.28 (12)C14—C15—C16—C171.0 (2)
C11—C3—C4—C5168.93 (11)C15—C16—C17—C120.1 (2)
C2—C3—C4—C570.96 (12)C13—C12—C17—C160.9 (2)
O1—C4—C5—C6151.71 (15)C11—C12—C17—C16175.55 (13)
C3—C4—C5—C6102.49 (17)C19—O4—C18—C1171.18 (11)
O1—C4—C5—C1032.04 (13)O1—C1—C18—O466.60 (13)
C3—C4—C5—C1073.76 (13)C10—C1—C18—O449.87 (15)
C10—C5—C6—C71.7 (2)C2—C1—C18—O4179.47 (11)
C4—C5—C6—C7177.47 (14)C18—O4—C19—O56.95 (19)
C5—C6—C7—C80.9 (2)C18—O4—C19—C20173.23 (11)
C6—C7—C8—C90.5 (2)O5—C19—C20—C21178.22 (13)
C7—C8—C9—C101.0 (2)O4—C19—C20—C211.96 (18)
C8—C9—C10—C50.2 (2)O5—C19—C20—C251.4 (2)
C8—C9—C10—C1176.44 (14)O4—C19—C20—C25178.39 (11)
C6—C5—C10—C91.2 (2)C25—C20—C21—C220.6 (2)
C4—C5—C10—C9178.00 (12)C19—C20—C21—C22179.80 (13)
C6—C5—C10—C1176.00 (12)C20—C21—C22—C231.2 (2)
C4—C5—C10—C10.82 (13)C21—C22—C23—C240.8 (2)
O1—C1—C10—C9150.10 (15)C21—C22—C23—N1176.67 (12)
C18—C1—C10—C928.3 (2)O6—N1—C23—C2216.19 (19)
C2—C1—C10—C9104.67 (17)O7—N1—C23—C22162.95 (12)
O1—C1—C10—C533.25 (12)O6—N1—C23—C24166.29 (13)
C18—C1—C10—C5155.09 (12)O7—N1—C23—C2414.57 (18)
C2—C1—C10—C571.98 (13)C22—C23—C24—C250.4 (2)
C4—C3—C11—O20.02 (17)N1—C23—C24—C25177.78 (12)
C2—C3—C11—O2112.86 (14)C23—C24—C25—C201.1 (2)
C4—C3—C11—C12177.14 (12)C21—C20—C25—C240.6 (2)
C2—C3—C11—C1270.02 (15)C19—C20—C25—C24179.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O20.94 (2)1.67 (2)2.5321 (15)151.7 (19)
C3—H3A···O3i1.002.483.4510 (17)163
C8—H8A···O1ii0.952.383.2782 (17)157
C9—H9A···O7iii0.952.493.4057 (19)161
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1.
 

Acknowledgements

The University of Toronto thanks NSERC Canada for funding.

References

First citationBallantine, M., Menard, M. L. & Tam, W. (2009). J. Org. Chem. 74, 7570–7573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdmunds, M., Menard, M. L. & Tam, W. (2015). Synth. Commun. 45, 458–466.  Web of Science CrossRef CAS Google Scholar
First citationEdmunds, M., Raheem, M.-A., Boutin, R., Tait, K. & Tam, W. (2016). Beilstein J. Org. Chem. 12, 239–244.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHill, J. & Tam, W. (2019). J. Org. Chem. 84, 8309–8314.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNagamoto, M. & Nishimura, T. (2015). Chem. Commun. 51, 13791–13794.  CrossRef CAS Google Scholar
First citationRaheem, M. A., Edmunds, M. & Tam, W. (2014). Can. J. Chem. 92, 888–895.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds