organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino­anilinium 4-methyl­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Goa University PO, Goa 403206, India
*Correspondence e-mail: srini@unigoa.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 February 2020; accepted 19 February 2020; online 21 February 2020)

In the extended structure of the title mol­ecular salt, C6H9N2+·C7H7O3S, the cations and anions are linked by N—H⋯O hydrogen bonds to generate [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of an ongoing research programme, we are investigating the structural chemistry of the mol­ecular salts of benzene-1,2-di­amine. In a recent data report we described the crystal structure of benzene-1,2-diaminium bis­(4-methyl­benzene-1-sulfonate), 2 (Narvekar & Srinivasan, 2020[Narvekar, K. U. & Srinivasan, B. R. (2020). IUCrData, 5, x200100.]). The structure of another mol­ecular salt of 4-methyl­benzene-1-sulfonic acid containing both mono and diprotonated cations of benzene-1,2-di­amine, namely 2-amino­anilinium benzene-1,2-diaminium tris­(4-methyl­benzene-1-sulfonate), 3, was reported earlier (Amirthakumar et al., 2018[Amirthakumar, C., Pandi, P., Kumar, R. M. & Chakkaravarthi, G. (2018). IUCrData, 3, x180437.]). The Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists several structurally characterized salts of benzene-1,2-di­amine containing the monoprotonated 2-amino­anilinium cation or the diprotonated benzene-1,2-diaminium dication.

In this report, we describe the crystal structure of the title salt, 1, which is the third anhydrous compound that can be isolated from the benzene-1,2-di­amine/4-methyl­benzene-1-sulfonic acid/water system. The title salt was obtained by an aqueous reaction of the aromatic di­amine with 4-methyl­benzene-1-sulfonic acid in a 2:1 molar ratio, unlike 2, which was crystallized from a 1:2 reaction.

The asymmetric unit of 1 consists of one 2-amino­anilinium cation and one 4-methyl­benzene-1-sulfonate anion (Fig. 1[link]) with all atoms located in general positions. The geometric parameters of the cation and the anion are in their normal ranges and are in agreement with previously reported data (Mishra & Pallepogu, 2018[Mishra, R. & Pallepogu, R. (2018). Acta Cryst. B74, 32-41.]; Narvekar & Srinivasan, 2020[Narvekar, K. U. & Srinivasan, B. R. (2020). IUCrData, 5, x200100.]).

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at 50% probability level. Hydrogen bonds are shown as blue dashed lines.

All the oxygen atoms attached to the sulfur atom of the sulfonate moiety of the anion function as hydrogen-bond acceptors (Fig. 2[link]), while four of the five H atoms attached to the N atoms of the 2-amino­anilinium cation function as hydrogen-bond donors, resulting in a total of four N—H⋯O hydrogen bonds (with two occurring within the arbitrarily chosen asymmetric unit; Table 1[link]). Thus, the cations and the anions are linked only via N—H⋯O hydrogen bonds, as observed earlier for 2. The extended structure of 1 features [010] hydrogen-bonded chains, with adjacent cations and anions related by the 21 screw axis (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O11 0.89 1.89 2.7767 (17) 174
N1—H1B⋯O13i 0.89 1.93 2.8111 (17) 171
N1—H1C⋯O12ii 0.89 1.92 2.7914 (17) 165
N2—H2A⋯O12 0.90 (2) 2.22 (2) 3.097 (3) 165 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The hydrogen-bonding scheme around the 4-methyl­benzene-1-sulfonate anion. Symmetry codes: (i) -x + 1, −y, −z + 1; (ii) −x + 1, −y + 1, −z + 1.
[Figure 3]
Figure 3
A view down [010] of the packing in 1 with N—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

Freshly recrystallized benzene-1,2-di­amine (216 mg, 1 mmol) was dissolved in aqueous ethanol (25–30 ml). Into this, an aqueous solution of 4-methyl­benzene-1-sulfonic acid (190 mg, 1 mmol) was added. The clear reaction mixture thus obtained was left aside for crystallization. After a few days crystals of 1 in the form of colourless blocks slowly separated. The crystals were filtered and dried in air. Yield 45%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9N2+·C7H7O3S
Mr 280.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.6392 (5), 5.7111 (2), 17.5295 (6)
β (°) 102.349 (1)
V3) 1431.66 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.45 × 0.37 × 0.33
 
Data collection
Diffractometer Bruker D8 Quest ECO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.682, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22028, 4362, 3253
Rint 0.027
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.06
No. of reflections 4362
No. of parameters 182
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and shelXle (Hübschle et al., 2011); software used to prepare material for publication: shelXle (Hübschle et al., 2011).

2-Aminoanilinium 4-methylbenzenesulfonate top
Crystal data top
C6H9N2+·C7H7O3SF(000) = 592
Mr = 280.34Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.6392 (5) ÅCell parameters from 7623 reflections
b = 5.7111 (2) Åθ = 2.9–30.2°
c = 17.5295 (6) ŵ = 0.23 mm1
β = 102.349 (1)°T = 293 K
V = 1431.66 (9) Å3Block, colourless
Z = 40.45 × 0.37 × 0.33 mm
Data collection top
Bruker D8 Quest ECO
diffractometer
3253 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2020
Tmin = 0.682, Tmax = 0.746k = 88
22028 measured reflectionsl = 2525
4362 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.3765P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.010
4362 reflectionsΔρmax = 0.21 e Å3
182 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36804 (8)0.2361 (2)0.46460 (7)0.0440 (3)
H1A0.4148760.1967630.4420760.066*
H1B0.3505980.1116060.4885140.066*
H1C0.3867800.3490230.4994100.066*
N20.37965 (15)0.6564 (3)0.38220 (11)0.0700 (5)
H2B0.3826 (18)0.763 (5)0.3528 (16)0.095 (9)*
H2A0.4355 (16)0.584 (4)0.3963 (13)0.076 (7)*
C10.28909 (9)0.3195 (2)0.40520 (8)0.0394 (3)
C20.29793 (11)0.5272 (3)0.36608 (8)0.0468 (3)
C30.21843 (15)0.6058 (3)0.31307 (10)0.0657 (5)
H30.2210900.7445520.2858490.079*
C40.13647 (15)0.4805 (5)0.30077 (12)0.0804 (7)
H40.0841790.5369090.2657970.096*
C50.13039 (14)0.2741 (5)0.33902 (13)0.0774 (6)
H50.0747460.1898180.3296320.093*
C60.20756 (11)0.1926 (3)0.39160 (10)0.0552 (4)
H60.2044530.0521010.4177680.066*
S110.59680 (3)0.22022 (7)0.39473 (2)0.04691 (12)
O110.51524 (8)0.0815 (2)0.40070 (7)0.0599 (3)
O120.58218 (10)0.4676 (2)0.40655 (7)0.0702 (4)
O130.68108 (8)0.1290 (2)0.44434 (7)0.0647 (3)
C110.6391 (2)0.0983 (7)0.06127 (15)0.1203 (11)
H11A0.6074860.0413560.0393930.180*
H11B0.7043910.0863900.0606950.180*
H11C0.6127530.2312880.0308950.180*
C120.62771 (14)0.1275 (4)0.14452 (12)0.0720 (5)
C130.65754 (14)0.0419 (4)0.19988 (13)0.0732 (5)
H130.6841830.1784300.1855810.088*
C140.64892 (12)0.0142 (3)0.27597 (11)0.0609 (4)
H140.6691120.1315660.3124680.073*
C150.61010 (10)0.1889 (3)0.29789 (9)0.0444 (3)
C160.58045 (14)0.3615 (3)0.24378 (11)0.0619 (4)
H160.5549200.4993630.2582520.074*
C170.58897 (16)0.3279 (4)0.16747 (12)0.0764 (6)
H170.5679400.4439250.1306910.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0443 (6)0.0444 (6)0.0411 (6)0.0028 (5)0.0042 (5)0.0072 (5)
N20.0852 (13)0.0577 (10)0.0664 (10)0.0219 (9)0.0146 (9)0.0133 (8)
C10.0403 (6)0.0410 (7)0.0348 (6)0.0001 (5)0.0037 (5)0.0034 (5)
C20.0600 (9)0.0424 (7)0.0368 (7)0.0031 (6)0.0077 (6)0.0008 (6)
C30.0862 (13)0.0619 (11)0.0450 (8)0.0282 (10)0.0050 (8)0.0040 (8)
C40.0615 (11)0.1129 (19)0.0574 (11)0.0317 (12)0.0082 (8)0.0091 (12)
C50.0463 (9)0.1129 (18)0.0668 (12)0.0095 (10)0.0019 (8)0.0164 (12)
C60.0523 (9)0.0601 (10)0.0518 (8)0.0128 (7)0.0083 (7)0.0102 (7)
S110.0464 (2)0.0440 (2)0.0472 (2)0.00369 (15)0.00294 (14)0.00788 (15)
O110.0509 (6)0.0685 (8)0.0641 (7)0.0118 (6)0.0208 (5)0.0027 (6)
O120.1021 (10)0.0465 (7)0.0531 (7)0.0017 (7)0.0033 (6)0.0028 (5)
O130.0512 (6)0.0777 (8)0.0597 (7)0.0014 (6)0.0007 (5)0.0279 (6)
C110.117 (2)0.184 (3)0.0711 (15)0.009 (2)0.0443 (15)0.0057 (19)
C120.0600 (10)0.0984 (16)0.0623 (11)0.0045 (11)0.0240 (9)0.0010 (11)
C130.0648 (11)0.0780 (13)0.0803 (13)0.0103 (10)0.0235 (10)0.0079 (11)
C140.0588 (10)0.0544 (10)0.0684 (11)0.0089 (8)0.0111 (8)0.0072 (8)
C150.0361 (6)0.0440 (7)0.0513 (8)0.0042 (5)0.0057 (5)0.0086 (6)
C160.0720 (11)0.0550 (9)0.0590 (10)0.0110 (8)0.0146 (8)0.0159 (8)
C170.0873 (14)0.0843 (15)0.0586 (11)0.0096 (12)0.0179 (10)0.0261 (10)
Geometric parameters (Å, º) top
N1—C11.4601 (17)S11—O121.4506 (13)
N1—H1A0.8900S11—O111.4554 (12)
N1—H1B0.8900S11—C151.7586 (16)
N1—H1C0.8900C11—C121.513 (3)
N2—C21.382 (2)C11—H11A0.9600
N2—H2B0.81 (3)C11—H11B0.9600
N2—H2A0.90 (2)C11—H11C0.9600
C1—C61.373 (2)C12—C131.374 (3)
C1—C21.390 (2)C12—C171.375 (3)
C2—C31.399 (2)C13—C141.376 (3)
C3—C41.374 (3)C13—H130.9300
C3—H30.9300C14—C151.382 (2)
C4—C51.368 (3)C14—H140.9300
C4—H40.9300C15—C161.372 (2)
C5—C61.377 (3)C16—C171.383 (3)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
S11—O131.4462 (12)
C1—N1—H1A109.5O12—S11—O11111.82 (8)
C1—N1—H1B109.5O13—S11—C15106.70 (7)
H1A—N1—H1B109.5O12—S11—C15106.69 (7)
C1—N1—H1C109.5O11—S11—C15106.01 (7)
H1A—N1—H1C109.5C12—C11—H11A109.5
H1B—N1—H1C109.5C12—C11—H11B109.5
C2—N2—H2B115.8 (19)H11A—C11—H11B109.5
C2—N2—H2A120.5 (15)C12—C11—H11C109.5
H2B—N2—H2A111 (2)H11A—C11—H11C109.5
C6—C1—C2122.28 (14)H11B—C11—H11C109.5
C6—C1—N1118.54 (13)C13—C12—C17117.91 (18)
C2—C1—N1119.16 (12)C13—C12—C11121.3 (2)
N2—C2—C1121.50 (15)C17—C12—C11120.8 (2)
N2—C2—C3121.66 (17)C12—C13—C14121.53 (19)
C1—C2—C3116.73 (16)C12—C13—H13119.2
C4—C3—C2120.76 (18)C14—C13—H13119.2
C4—C3—H3119.6C13—C14—C15119.64 (17)
C2—C3—H3119.6C13—C14—H14120.2
C5—C4—C3121.20 (18)C15—C14—H14120.2
C5—C4—H4119.4C16—C15—C14119.92 (16)
C3—C4—H4119.4C16—C15—S11120.67 (13)
C4—C5—C6119.28 (19)C14—C15—S11119.40 (12)
C4—C5—H5120.4C15—C16—C17119.22 (18)
C6—C5—H5120.4C15—C16—H16120.4
C1—C6—C5119.73 (18)C17—C16—H16120.4
C1—C6—H6120.1C12—C17—C16121.77 (18)
C5—C6—H6120.1C12—C17—H17119.1
O13—S11—O12113.46 (8)C16—C17—H17119.1
O13—S11—O11111.59 (8)
C6—C1—C2—N2178.01 (16)C13—C14—C15—C160.0 (3)
N1—C1—C2—N20.1 (2)C13—C14—C15—S11178.53 (14)
C6—C1—C2—C31.7 (2)O13—S11—C15—C16139.99 (14)
N1—C1—C2—C3176.40 (13)O12—S11—C15—C1618.38 (16)
N2—C2—C3—C4176.72 (18)O11—S11—C15—C16100.95 (15)
C1—C2—C3—C40.4 (2)O13—S11—C15—C1441.48 (15)
C2—C3—C4—C50.9 (3)O12—S11—C15—C14163.08 (13)
C3—C4—C5—C60.9 (3)O11—S11—C15—C1477.59 (14)
C2—C1—C6—C51.7 (2)C14—C15—C16—C170.7 (3)
N1—C1—C6—C5176.40 (16)S11—C15—C16—C17177.78 (15)
C4—C5—C6—C10.4 (3)C13—C12—C17—C160.5 (3)
C17—C12—C13—C140.3 (3)C11—C12—C17—C16178.0 (2)
C11—C12—C13—C14178.8 (2)C15—C16—C17—C121.0 (3)
C12—C13—C14—C150.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O110.891.892.7767 (17)174
N1—H1B···O13i0.891.932.8111 (17)171
N1—H1C···O12ii0.891.922.7914 (17)165
N2—H2A···O120.90 (2)2.22 (2)3.097 (3)165 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

BRS acknowledges the Department of Science & Technology (DST) New Delhi, for the sanction of a Bruker D8 Quest Eco single crystal X-ray diffractometer under the DST–FIST program.

References

First citationAmirthakumar, C., Pandi, P., Kumar, R. M. & Chakkaravarthi, G. (2018). IUCrData, 3, x180437.  Google Scholar
First citationBruker (2019). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMishra, R. & Pallepogu, R. (2018). Acta Cryst. B74, 32–41.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarvekar, K. U. & Srinivasan, B. R. (2020). IUCrData, 5, x200100.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds