organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Nitro-2,3-bis­­(thio­phen-2-yl)quinoxaline

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 16 January 2020; accepted 11 February 2020; online 14 February 2020)

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. The dihedral angles between the mean plane of the quinoxaline unit and the thienyl rings are 35.16 (5)° and 24.94 (3)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

5-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline crystallizes in space group P21. All bond lengths and angles are within expected values. The nitro group makes a angle of 43.07 (6)° with respect to the mean plane of the quinoxaline unit. This angle is comparable to the angles of 44.96 and 50.93° observed for the two mol­ecules in the asymmetric unit in the published crystal structure of 5-nitro-2,3-bis­(2-pyrid­yl)quinoxaline (Du & Zhao, 2003[Du, M. & Zhao, X.-J. (2003). Acta Cryst. C59, o403-o405.]) and with the 44.12° determined in a corresponding silver complex with the pyridyl ligand (Liu & Du, 2002[Liu, H. & Du, M. (2002). J. Mol. Struct. 607, 143-148.]). The thienyl rings make angles of 35.16 (5) and 24.94 (3)°, for rings with S1 and S2 respectively, with the mean plane of the quinoxaline unit. Both the heterocyclic thienyl ring sulfur atoms reside in close proximity to the quinoxaline N atoms. When describing the structure of 5-nitro-2,3-bis­(2-pyrid­yl)quinoxaline, Du & Zhao (2003[Du, M. & Zhao, X.-J. (2003). Acta Cryst. C59, o403-o405.]) labeled this orientation of the heterocyclic ring to the quinoxaline unit as a transtrans arrangement. There are no inter­molecular inter­actions of consequence. An ORTEP view is shown in Fig. 1[link] and a view of the unit cell along (010) is shown in Fig. 2[link].

[Figure 1]
Figure 1
A view of 5-nitro-2,3-bis­(thio­phen-2-yl)quinoxaline (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the unit cell of 5-nitro-2,3-bis­(thio­phen-2-yl)quinoxaline along (010).

Synthesis and crystallization

2-Thio­phene­carboxaldehyde was condensed to 2,2′-thenoin (Crundwell et al., 2002[Crundwell, G., Meskill, T., Sayers, D. & Kantardjieff, K. (2002). Acta Cryst. E58, o666-o667.]) followed by oxidation to 2,2′-thenil (Crundwell et al., 2003[Crundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Cryst, 33, 239-244.]). The nitro­phenyl­enedi­amines were used as purchased from Sigma–Aldrich.

In a 100 ml round-bottom flask, 2.22 g of 2,2′-thenil (10.0 mmol) and 1.52 g of 3-nitro-1,2-phenyl­enedi­amine were added to 50 ml of concentrated acetic acid. The solution was refluxed with stirring for 18 h. The solution was cooled to room temperature and neutralized with 6 M NaOH. The solution was again cooled then filtered. The resulting solid was filtered and washed with cold water then dried. The yield of the yellow product was 2.80 g (83%), m.p. 445 K. Crystals were obtained by recrystallization from ethanol solution. 1H NMR (CDCl3, 300 MHz): δ = 7.17 (m, 2H), 7.42 (dd, 1H), 7.49 (dd, 1H), 7.80 (m, 2H), 7.97 (t, 1H), 8.30 (m, 2H); 13C NMR (CDCl3, 300 MHz): δ = 124.4, 127.7, 127.8, 128.8, 130.2, 130.3, 130.5, 131.0, 132.1, 132.8, 140.1, 140.5, 141.0, 147.0, 148.0, 148.1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C16H9N3O2S2
Mr 339.38
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 9.6598 (4), 7.4249 (3), 11.2457 (6)
β (°) 109.745 (5)
V3) 759.15 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.42 × 0.34 × 0.21
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.865, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12526, 6073, 3455
Rint 0.021
(sin θ/λ)max−1) 0.802
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.076, 0.81
No. of reflections 6073
No. of parameters 208
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.15
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.02 (4)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction, Yarnton, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Bourhis et al., 2015).

5-Nitro-2,3-bis(thiophen-2-yl)quinoxaline top
Crystal data top
C16H9N3O2S2Dx = 1.485 Mg m3
Mr = 339.38Melting point: 445 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.6598 (4) ÅCell parameters from 4761 reflections
b = 7.4249 (3) Åθ = 4.2–34.7°
c = 11.2457 (6) ŵ = 0.36 mm1
β = 109.745 (5)°T = 293 K
V = 759.15 (6) Å3Block, yellow
Z = 20.42 × 0.34 × 0.21 mm
F(000) = 348
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
6073 independent reflections
Radiation source: Enhance (Mo) X-ray Source3455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.1790 pixels mm-1θmax = 34.7°, θmin = 4.2°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1111
Tmin = 0.865, Tmax = 1.000l = 1717
12526 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
6073 reflectionsΔρmax = 0.43 e Å3
208 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: iterativeAbsolute structure parameter: 0.02 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were included in calculated positions with C-H distances of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2 of the carrier atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47899 (5)0.46766 (7)0.76512 (4)0.06021 (14)
S20.19846 (4)0.56574 (5)0.45980 (4)0.04714 (10)
O10.14872 (15)0.6115 (2)0.11787 (12)0.0794 (4)
O20.12755 (18)0.3929 (3)0.00033 (12)0.0978 (6)
N10.33895 (13)0.50828 (18)0.48400 (11)0.0434 (3)
N20.03464 (12)0.50012 (16)0.35820 (10)0.0368 (3)
N30.07726 (18)0.4977 (3)0.08793 (12)0.0608 (4)
C10.24643 (14)0.52968 (18)0.54672 (12)0.0358 (3)
C20.08928 (14)0.51352 (17)0.48202 (12)0.0324 (3)
C30.13010 (16)0.4937 (2)0.29286 (13)0.0390 (3)
C40.08067 (17)0.4805 (2)0.16013 (13)0.0473 (4)
C50.1750 (2)0.4561 (3)0.09426 (17)0.0645 (5)
H50.13940.44640.00670.077*
C60.3257 (2)0.4459 (3)0.16079 (18)0.0727 (6)
H60.39030.42870.11640.087*
C70.3801 (2)0.4603 (3)0.28792 (17)0.0647 (5)
H70.48110.45370.32990.078*
C80.28385 (16)0.4853 (2)0.35731 (14)0.0435 (3)
C90.31323 (14)0.5671 (2)0.68209 (12)0.0378 (3)
C100.26900 (17)0.6793 (2)0.75847 (14)0.0447 (4)
H100.18310.74720.73080.054*
C110.36745 (19)0.6812 (2)0.88351 (15)0.0554 (4)
H110.35290.74910.94780.066*
C120.48426 (19)0.5748 (3)0.90005 (15)0.0630 (5)
H120.55990.56100.97690.076*
C130.02054 (14)0.50573 (18)0.54585 (12)0.0332 (3)
C140.01082 (17)0.4470 (2)0.66529 (14)0.0452 (4)
H140.07560.40750.72620.054*
C150.1486 (2)0.4545 (3)0.68296 (16)0.0554 (4)
H150.16250.41910.75740.066*
C160.25747 (19)0.5175 (2)0.58246 (17)0.0552 (5)
H160.35390.53290.58020.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0398 (2)0.0812 (3)0.0524 (2)0.0186 (2)0.00605 (16)0.0062 (2)
S20.03174 (17)0.0601 (2)0.0503 (2)0.00166 (19)0.01476 (14)0.0002 (2)
O10.0607 (8)0.1124 (12)0.0540 (8)0.0145 (9)0.0049 (6)0.0004 (8)
O20.0919 (11)0.1455 (15)0.0512 (8)0.0414 (11)0.0180 (7)0.0355 (9)
N10.0313 (5)0.0576 (8)0.0441 (7)0.0034 (5)0.0163 (5)0.0023 (6)
N20.0324 (5)0.0459 (7)0.0336 (6)0.0032 (5)0.0130 (4)0.0010 (5)
N30.0650 (9)0.0883 (11)0.0270 (6)0.0192 (9)0.0130 (6)0.0009 (7)
C10.0309 (6)0.0381 (9)0.0380 (7)0.0006 (5)0.0110 (5)0.0010 (6)
C20.0299 (6)0.0335 (7)0.0359 (7)0.0008 (5)0.0137 (5)0.0011 (5)
C30.0416 (7)0.0408 (7)0.0388 (7)0.0044 (7)0.0193 (6)0.0011 (6)
C40.0517 (9)0.0560 (9)0.0362 (7)0.0060 (8)0.0172 (6)0.0046 (7)
C50.0788 (13)0.0810 (12)0.0454 (9)0.0026 (12)0.0363 (9)0.0057 (10)
C60.0749 (13)0.0977 (15)0.0651 (12)0.0070 (12)0.0494 (11)0.0044 (11)
C70.0481 (9)0.0942 (14)0.0624 (11)0.0057 (10)0.0326 (8)0.0038 (11)
C80.0393 (7)0.0503 (8)0.0463 (8)0.0020 (7)0.0214 (6)0.0015 (7)
C90.0300 (6)0.0451 (7)0.0361 (7)0.0024 (7)0.0085 (5)0.0068 (7)
C100.0380 (8)0.0513 (9)0.0404 (8)0.0033 (7)0.0074 (6)0.0021 (7)
C110.0552 (10)0.0658 (11)0.0422 (9)0.0047 (9)0.0126 (7)0.0075 (8)
C120.0515 (9)0.0874 (13)0.0394 (8)0.0023 (11)0.0014 (7)0.0092 (10)
C130.0286 (6)0.0369 (7)0.0355 (7)0.0008 (5)0.0125 (5)0.0013 (6)
C140.0446 (8)0.0523 (9)0.0424 (8)0.0013 (8)0.0195 (6)0.0057 (7)
C150.0598 (10)0.0686 (11)0.0483 (9)0.0147 (10)0.0321 (8)0.0071 (9)
C160.0420 (8)0.0686 (12)0.0664 (11)0.0068 (8)0.0331 (8)0.0123 (9)
Geometric parameters (Å, º) top
S1—C91.7234 (14)C5—C61.396 (3)
S1—C121.6986 (19)C6—H60.9300
S2—C131.7219 (14)C6—C71.351 (2)
S2—C161.6992 (17)C7—H70.9300
O1—N31.209 (2)C7—C81.414 (2)
O2—N31.220 (2)C9—C101.365 (2)
N1—C11.3218 (17)C10—H100.9300
N1—C81.3528 (19)C10—C111.407 (2)
N2—C21.3155 (17)C11—H110.9300
N2—C31.3602 (17)C11—C121.338 (2)
N3—C41.472 (2)C12—H120.9300
C1—C21.4498 (18)C13—C141.3849 (19)
C1—C91.4653 (19)C14—H140.9300
C2—C131.4693 (18)C14—C151.411 (2)
C3—C41.409 (2)C15—H150.9300
C3—C81.417 (2)C15—C161.341 (3)
C4—C51.367 (2)C16—H160.9300
C5—H50.9300
C12—S1—C991.46 (8)N1—C8—C3120.30 (12)
C16—S2—C1391.95 (8)N1—C8—C7119.98 (14)
C1—N1—C8118.73 (12)C3—C8—C7119.66 (14)
C2—N2—C3118.14 (12)C1—C9—S1118.96 (11)
O1—N3—O2124.17 (17)C10—C9—S1110.59 (10)
O1—N3—C4119.36 (15)C10—C9—C1130.37 (13)
O2—N3—C4116.47 (19)C9—C10—H10123.7
N1—C1—C2120.28 (12)C9—C10—C11112.66 (14)
N1—C1—C9115.93 (12)C11—C10—H10123.7
C2—C1—C9123.78 (12)C10—C11—H11123.6
N2—C2—C1121.01 (12)C12—C11—C10112.76 (15)
N2—C2—C13114.61 (11)C12—C11—H11123.6
C1—C2—C13124.37 (12)S1—C12—H12123.7
N2—C3—C4121.73 (13)C11—C12—S1112.51 (12)
N2—C3—C8120.66 (13)C11—C12—H12123.7
C8—C3—C4117.41 (12)C2—C13—S2117.62 (10)
C3—C4—N3119.71 (13)C14—C13—S2110.76 (10)
C5—C4—N3117.98 (14)C14—C13—C2131.50 (13)
C5—C4—C3122.29 (15)C13—C14—H14124.3
C4—C5—H5120.6C13—C14—C15111.45 (14)
C4—C5—C6118.83 (16)C15—C14—H14124.3
C6—C5—H5120.6C14—C15—H15123.1
C5—C6—H6119.1C16—C15—C14113.81 (14)
C7—C6—C5121.71 (15)C16—C15—H15123.1
C7—C6—H6119.1S2—C16—H16124.0
C6—C7—H7120.0C15—C16—S2112.01 (12)
C6—C7—C8120.09 (17)C15—C16—H16124.0
C8—C7—H7120.0
 

Funding information

This research was funded by a CCSU–AAUP research grant.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCrundwell, G., Sullivan, J., Pelto, R. & Kantardjieff, K. (2003). J. Chem. Cryst, 33, 239–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrundwell, G., Meskill, T., Sayers, D. & Kantardjieff, K. (2002). Acta Cryst. E58, o666–o667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, M. & Zhao, X.-J. (2003). Acta Cryst. C59, o403–o405.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, H. & Du, M. (2002). J. Mol. Struct. 607, 143–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds