organic compounds
2-(Octadecylsulfanyl)-1,3-thiazole
aDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, FL, 33965, USA, bAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA, and cPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana USA, 47907, USA
*Correspondence e-mail: amirjafari@fgcu.edu
The title compound, C21H39NS2, crystallizes with two molecules in the both having a linear 18-carbon alkyl chain bound through a thioether group. No π–π stacking or hydrogen bonding is observed. The orientation of the alkyl chains facilitates intermolecular interactions between te chains. The structure is metrically orthorhombic but crystallizes in the monoclinic P21 and was found to be twinned by pseudomerohedry (emulating orthorhombic symmetry) and by inversion. The twin factions refined to 0.37 (4), 0.13 (4), 0.31 (5), and 0.19 (4).
Keywords: crystal structure; thiazole; alkyl chains.
CCDC reference: 1982241
Structure description
The title compound (Fig. 1) exhibits no notable hydrogen bonding or π–π interactions. It appears that interactions involving atoms of the alkyl chains form the majority of the intermolecular interactions [D⋯A = 3.730 (10) to 3.974 (11) Å]. There are two independent molecular units found in the structure, indicated by the atom label suffixes A and B. While the majority of the two molecules exhibit similar geometrical features, such as a linear alkyl chain, the two molecules differ in the C3—S2—C4—C5 torsion angles [177.9 (7)° in molecule A and 70.6 (8)° in molecule B. From the packing diagram (Fig. 2), it appears that molecule B adopts this torsion angle to facilitate the alkyl-chain interactions while avoiding any repulsive interactions with the thiazole ring of the adjacent molecule A.
For the synthesis and applications of alkylated thiazoles, see: Iwasaki et al., (2016). For an example of alkylated thiazoles as metal ligands, see: Artem'ev et al. (2018). For similarly alkylated complexes as ionic liquids, see: Nestor et al. (2017) and O'Brien et al.(2016).
Synthesis and crystallization
A 250 ml round-bottom flask, oven dried, was paired with a Teflon-coated magnetic stir bar. 2-Mercaptothiazole (1.004 g, 1 equiv.) and 1-bromooctadecane (2.861 g, 1 equiv.) were dissolved into 150 ml of acetonitrile in the 250 ml round bottom flask, which was attached to a water-jacketed reflux condenser and placed into an oil bath. The hot plate was set to 82°C with stirring on and ran for 48 h, after which it was left to cool to room temperature. The solvent was then removed under reduced pressure and a white crystalline solid formed in high yield (92%).
The solid product was dissolved in boiling acetonitrile and laboratory parafilm was used to cover the vial, with one hole prodded at the top. Colorless crystals of the product formed over 12 d.
1H NMR (400 MHz, chloroform-d) δ 7.65–7.64 (m, 1H), 7.19 (q, J = 1.6 Hz, 1H), 3.19 (t, J = 7.3 Hz, 2H), 1.77–1.70 (m, 2H), 1.45–1.38 (m, 2H), 1.24 (s, 28H), 0.88–0.85 (m, 3H)
13C NMR (101 MHz, chloroform-d) δ 142.8, 118.7, 77.4, 77.1, 76.8, 34.7, 32.0, 29.8, 29.7, 29.6, 29.5, 29.3, 29.2, 28.8, 22.8, 14.2
Refinement
Crystal data, data collection and structure . The structure is metrically orthorhombic but crystallizes in the monoclinic P21. Initial attempts to solve the structure in various orthorhombic space groups failed. A closer inspection of diffraction images showed the peaks to be a bit asymmetric, but they were not obviously split. Unit-cell angles were indecisive. Reflection statistics (XPREP; Sheldrick, 2008) indicated a high Rsym value for orthorhombic and for two of the three possible monoclinic settings (> 1/5). The third monoclinic option had a low Rsym (0.05). After relaxation of the default thresholds for maximum intensity for systematically absent reflections, XPREP indicated a 21 screw axis, but was indecisive regarding the presence of glide planes because of twin overlaps. Solution attempts in P21 in this monoclinic setting were able to localize some of the alkyl chains. The addition of a twin transformation matrix (1 0 0 0 −1 0 0 0 −1) (Rotax within WinGX; Farrugia, 2012) and iterative refinements allowed for the assignment of the remaining atoms from difference density maps. The initial indicated the presence of inversion and in the final model the structure was refined as four component twinned by pseudo-merohedry (emulating orthorhombic symmetry) and by fractions refined to 0.37 (4), 0.13 (4), 0.31 (5) and 0.19 (4). The outer ends of the C18 alkyl chains are ill defined because of large thermal libration and/or ill-defined disorder. The outermost C—C bond distances in the two molecules were restrained to be similar (e.s.d. = 0.02 Å), and a rigid bond restraint (RIGU, e.s.d. = 0.004 Å2) was applied for the four outermost two carbon atoms of each molecule.
details are summarized in Table 1Structural data
CCDC reference: 1982241
https://doi.org/10.1107/S2414314620001704/bv4027sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620001704/bv4027Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620001704/bv4027Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015, 2018) and SHELXLE (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).C21H39NS2 | F(000) = 816 |
Mr = 369.65 | Dx = 1.117 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 5.5457 (6) Å | Cell parameters from 9695 reflections |
b = 9.1108 (10) Å | θ = 3.0–73.0° |
c = 43.511 (6) Å | µ = 2.19 mm−1 |
β = 90.376 (5)° | T = 150 K |
V = 2198.4 (4) Å3 | Plate, colourless |
Z = 4 | 0.16 × 0.14 × 0.02 mm |
Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD) | 8140 independent reflections |
Radiation source: I-mu-S microsource X-ray tube | 7233 reflections with I > 2σ(I) |
Laterally graded multilayer (Goebel) mirror monochromator | Rint = 0.113 |
Detector resolution: 7.4074 pixels mm-1 | θmax = 73.0°, θmin = 2.0° |
ω and phi scans | h = −5→6 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −10→11 |
Tmin = 0.082, Tmax = 0.226 | l = −53→53 |
20191 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.097 | H-atom parameters constrained |
wR(F2) = 0.263 | w = 1/[σ2(Fo2) + (0.1736P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
8140 reflections | Δρmax = 0.98 e Å−3 |
438 parameters | Δρmin = −0.75 e Å−3 |
44 restraints | Absolute structure: Twinning involves inversion, so Flack parameter cannot be determined |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure is metrically orthorhombic but crystallizes in P21. It was found to be twinned by pseudo-merohedry (emulating orthorhombic symmetry) and by inversion and was refined as a 4-component inversion twin. Twin factions refined to 0.37 (4), 0.13 (4), 0.31 (5) and 0.19 (4). The outer ends of the C18 alkyl chain is ill defined due to large thermal libration and/or ill defined disorder. The outermost C-C bond distance in the two molecules was restrained to be similar, and a rigid bond restraint (RIGU) was applied for the four outermost carbon atoms of each molecule. C—H bond distances were constrained to 0.95 Å for thiazole C—H moieties, 0.99 Å for methylene CH2 and 0.98 Å for methyl CH3 moieties. Uiso(H) values were set to 1.5 times Ueq(C) for methyl groups, and 1.2 times Ueq(C) CH and CH2 groups. |
x | y | z | Uiso*/Ueq | ||
N1A | −0.9102 (18) | 0.9632 (9) | 0.08345 (19) | 0.0389 (19) | |
C1A | −1.2274 (17) | 0.8909 (13) | 0.05318 (19) | 0.035 (2) | |
H1A | −1.359748 | 0.902576 | 0.039414 | 0.042* | |
S1A | −1.1325 (5) | 0.7269 (3) | 0.06812 (6) | 0.0400 (6) | |
C2A | −1.086 (2) | 1.0024 (11) | 0.0639 (3) | 0.044 (2) | |
H2A | −1.110693 | 1.101489 | 0.057795 | 0.052* | |
S2A | −0.7221 (5) | 0.7202 (3) | 0.11213 (7) | 0.0445 (6) | |
C3A | −0.9098 (18) | 0.8239 (11) | 0.0887 (2) | 0.035 (2) | |
C4A | −0.5488 (18) | 0.8633 (11) | 0.1303 (2) | 0.036 (2) | |
H4AA | −0.454522 | 0.918792 | 0.114926 | 0.043* | |
H4AB | −0.655094 | 0.932302 | 0.141395 | 0.043* | |
C5A | −0.380 (2) | 0.7814 (11) | 0.1529 (3) | 0.040 (2) | |
H5AA | −0.479374 | 0.723997 | 0.167394 | 0.049* | |
H5AB | −0.279545 | 0.711484 | 0.141175 | 0.049* | |
C6A | −0.221 (2) | 0.8817 (11) | 0.1705 (2) | 0.037 (2) | |
H6AA | −0.320040 | 0.951837 | 0.182357 | 0.045* | |
H6AB | −0.119161 | 0.938528 | 0.156183 | 0.045* | |
C7A | −0.058 (2) | 0.7939 (12) | 0.1927 (3) | 0.042 (2) | |
H7AA | −0.161900 | 0.734007 | 0.206281 | 0.050* | |
H7AB | 0.042393 | 0.725816 | 0.180595 | 0.050* | |
C8A | 0.104 (2) | 0.8881 (11) | 0.2124 (2) | 0.040 (2) | |
H8AA | 0.003657 | 0.958254 | 0.224072 | 0.048* | |
H8AB | 0.211172 | 0.945739 | 0.198867 | 0.048* | |
C9A | 0.258 (2) | 0.8008 (13) | 0.2348 (3) | 0.046 (2) | |
H9AA | 0.357113 | 0.730238 | 0.223130 | 0.055* | |
H9AB | 0.150297 | 0.743610 | 0.248404 | 0.055* | |
C10A | 0.423 (2) | 0.8955 (12) | 0.2546 (3) | 0.048 (3) | |
H10A | 0.323170 | 0.964711 | 0.266598 | 0.057* | |
H10B | 0.528011 | 0.954173 | 0.240992 | 0.057* | |
C11A | 0.581 (2) | 0.8063 (13) | 0.2767 (3) | 0.050 (3) | |
H11A | 0.475798 | 0.746010 | 0.290008 | 0.060* | |
H11B | 0.683071 | 0.738580 | 0.264673 | 0.060* | |
C12A | 0.739 (3) | 0.8992 (13) | 0.2965 (3) | 0.060 (3) | |
H12A | 0.636006 | 0.964899 | 0.308931 | 0.072* | |
H12B | 0.840013 | 0.961604 | 0.283162 | 0.072* | |
C13A | 0.906 (3) | 0.8103 (15) | 0.3185 (3) | 0.062 (4) | |
H13A | 0.804874 | 0.746109 | 0.331494 | 0.075* | |
H13B | 1.011296 | 0.746216 | 0.306033 | 0.075* | |
C14A | 1.056 (3) | 0.9007 (14) | 0.3383 (3) | 0.064 (4) | |
H14A | 0.950936 | 0.963980 | 0.350929 | 0.077* | |
H14B | 1.156295 | 0.965510 | 0.325312 | 0.077* | |
C15A | 1.226 (3) | 0.8098 (16) | 0.3601 (3) | 0.069 (4) | |
H15A | 1.126217 | 0.743174 | 0.372773 | 0.083* | |
H15B | 1.334243 | 0.748473 | 0.347510 | 0.083* | |
C16A | 1.371 (4) | 0.9013 (17) | 0.3804 (4) | 0.083 (6) | |
H16A | 1.262449 | 0.961754 | 0.393178 | 0.099* | |
H16B | 1.468878 | 0.968876 | 0.367737 | 0.099* | |
C17A | 1.546 (4) | 0.810 (2) | 0.4023 (4) | 0.101 (6) | |
H17A | 1.447828 | 0.741971 | 0.414744 | 0.121* | |
H17B | 1.655128 | 0.750604 | 0.389467 | 0.121* | |
C18A | 1.695 (4) | 0.903 (2) | 0.4235 (4) | 0.109 (7) | |
H18A | 1.584091 | 0.960429 | 0.436584 | 0.131* | |
H18B | 1.787191 | 0.973481 | 0.410935 | 0.131* | |
C19A | 1.880 (5) | 0.817 (2) | 0.4455 (5) | 0.115 (7) | |
H19A | 1.788400 | 0.745451 | 0.457819 | 0.138* | |
H19B | 1.993042 | 0.761172 | 0.432417 | 0.138* | |
C20A | 2.020 (5) | 0.907 (3) | 0.4661 (6) | 0.138 (9) | |
H20A | 1.905486 | 0.965017 | 0.478641 | 0.166* | |
H20B | 2.112387 | 0.977688 | 0.453576 | 0.166* | |
C21A | 2.203 (5) | 0.829 (3) | 0.4890 (5) | 0.152 (10) | |
H21A | 2.365633 | 0.831955 | 0.480288 | 0.228* | |
H21B | 2.154139 | 0.727159 | 0.492139 | 0.228* | |
H21C | 2.203401 | 0.880998 | 0.508784 | 0.228* | |
N1B | −0.3610 (15) | 0.3613 (9) | 0.03120 (17) | 0.0332 (16) | |
C1B | −0.3453 (17) | 0.5615 (11) | −0.0031 (2) | 0.034 (2) | |
H1B | −0.289999 | 0.619919 | −0.019707 | 0.041* | |
S1B | −0.6079 (5) | 0.5923 (3) | 0.01858 (6) | 0.0389 (5) | |
C2B | −0.2370 (18) | 0.4401 (11) | 0.0081 (2) | 0.034 (2) | |
H2B | −0.084246 | 0.408798 | 0.000816 | 0.041* | |
S2B | −0.7610 (4) | 0.3686 (3) | 0.06669 (6) | 0.0345 (5) | |
C3B | −0.5590 (17) | 0.4307 (11) | 0.0392 (2) | 0.038 (2) | |
C4B | −0.5670 (18) | 0.2595 (13) | 0.0909 (3) | 0.042 (3) | |
H4BA | −0.665925 | 0.200980 | 0.105217 | 0.050* | |
H4BB | −0.473032 | 0.190771 | 0.078025 | 0.050* | |
C5B | −0.3916 (16) | 0.3598 (10) | 0.10946 (19) | 0.0269 (17) | |
H5BA | −0.288999 | 0.415915 | 0.095109 | 0.032* | |
H5BB | −0.485597 | 0.430746 | 0.121769 | 0.032* | |
C6B | −0.2336 (18) | 0.2684 (10) | 0.1306 (2) | 0.034 (2) | |
H6BA | −0.135299 | 0.200076 | 0.118203 | 0.040* | |
H6BB | −0.336775 | 0.209091 | 0.144346 | 0.040* | |
C7B | −0.0677 (15) | 0.3648 (11) | 0.1499 (2) | 0.0301 (17) | |
H7BA | 0.034383 | 0.423721 | 0.136028 | 0.036* | |
H7BB | −0.167491 | 0.433812 | 0.161990 | 0.036* | |
C8B | 0.094 (2) | 0.2804 (11) | 0.1718 (3) | 0.039 (2) | |
H8BA | −0.008060 | 0.221157 | 0.185669 | 0.047* | |
H8BB | 0.194445 | 0.211769 | 0.159752 | 0.047* | |
C9B | 0.2563 (18) | 0.3774 (11) | 0.1909 (2) | 0.0348 (18) | |
H9BA | 0.155460 | 0.446583 | 0.202724 | 0.042* | |
H9BB | 0.358888 | 0.435960 | 0.176956 | 0.042* | |
C10B | 0.4180 (19) | 0.2929 (11) | 0.2131 (2) | 0.040 (2) | |
H10C | 0.315155 | 0.234480 | 0.227048 | 0.048* | |
H10D | 0.518178 | 0.223425 | 0.201255 | 0.048* | |
C11B | 0.5807 (19) | 0.3881 (12) | 0.2322 (2) | 0.040 (2) | |
H11C | 0.480899 | 0.457543 | 0.244083 | 0.048* | |
H11D | 0.684051 | 0.446439 | 0.218283 | 0.048* | |
C12B | 0.743 (2) | 0.3013 (11) | 0.2545 (3) | 0.046 (3) | |
H12C | 0.639419 | 0.240664 | 0.267950 | 0.055* | |
H12D | 0.845679 | 0.233823 | 0.242513 | 0.055* | |
C13B | 0.902 (3) | 0.3955 (12) | 0.2744 (3) | 0.054 (3) | |
H13C | 0.799784 | 0.461581 | 0.286800 | 0.064* | |
H13D | 1.004162 | 0.457444 | 0.261043 | 0.064* | |
C14B | 1.065 (2) | 0.3061 (13) | 0.2960 (3) | 0.056 (3) | |
H14C | 0.962078 | 0.246454 | 0.309691 | 0.067* | |
H14D | 1.162754 | 0.237694 | 0.283542 | 0.067* | |
C15B | 1.232 (3) | 0.3997 (14) | 0.3155 (3) | 0.064 (4) | |
H15C | 1.134613 | 0.469594 | 0.327604 | 0.077* | |
H15D | 1.337595 | 0.457688 | 0.301799 | 0.077* | |
C16B | 1.392 (3) | 0.3100 (15) | 0.3377 (4) | 0.068 (4) | |
H16C | 1.286969 | 0.252074 | 0.351459 | 0.082* | |
H16D | 1.489971 | 0.240101 | 0.325639 | 0.082* | |
C17B | 1.558 (3) | 0.4038 (14) | 0.3570 (3) | 0.069 (4) | |
H17C | 1.458790 | 0.475483 | 0.368448 | 0.082* | |
H17D | 1.664076 | 0.459935 | 0.343077 | 0.082* | |
C18B | 1.721 (3) | 0.3159 (16) | 0.3807 (4) | 0.077 (4) | |
H18C | 1.614009 | 0.258535 | 0.394380 | 0.093* | |
H18D | 1.821044 | 0.245277 | 0.369189 | 0.093* | |
C19B | 1.874 (3) | 0.4044 (16) | 0.3992 (4) | 0.075 (4) | |
H19C | 1.774431 | 0.472867 | 0.411380 | 0.090* | |
H19D | 1.978561 | 0.463942 | 0.385667 | 0.090* | |
C20B | 2.037 (3) | 0.314 (2) | 0.4216 (5) | 0.098 (6) | |
H20C | 1.932315 | 0.259883 | 0.435952 | 0.118* | |
H20D | 2.127849 | 0.240942 | 0.409475 | 0.118* | |
C21B | 2.219 (4) | 0.405 (2) | 0.4406 (4) | 0.107 (6) | |
H21D | 2.133384 | 0.483177 | 0.451476 | 0.129* | |
H21E | 2.338536 | 0.448541 | 0.426818 | 0.129* | |
H21F | 2.300394 | 0.341123 | 0.455478 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.040 (5) | 0.028 (4) | 0.049 (4) | −0.003 (4) | 0.001 (4) | 0.000 (3) |
C1A | 0.018 (4) | 0.055 (6) | 0.031 (4) | 0.005 (5) | 0.000 (3) | 0.003 (4) |
S1A | 0.0325 (13) | 0.0268 (11) | 0.0605 (14) | −0.0012 (11) | −0.0109 (10) | −0.0003 (11) |
C2A | 0.032 (5) | 0.024 (5) | 0.074 (7) | 0.003 (4) | 0.007 (5) | −0.006 (5) |
S2A | 0.0344 (14) | 0.0278 (11) | 0.0710 (15) | −0.0035 (12) | −0.0150 (11) | 0.0016 (12) |
C3A | 0.015 (4) | 0.034 (5) | 0.055 (5) | −0.003 (4) | −0.004 (4) | 0.001 (4) |
C4A | 0.028 (5) | 0.024 (4) | 0.055 (5) | −0.003 (4) | −0.005 (4) | −0.003 (4) |
C5A | 0.031 (5) | 0.029 (5) | 0.062 (6) | 0.002 (5) | 0.011 (5) | −0.008 (4) |
C6A | 0.036 (6) | 0.020 (4) | 0.056 (5) | 0.008 (4) | 0.000 (4) | −0.005 (4) |
C7A | 0.031 (6) | 0.035 (5) | 0.060 (6) | 0.006 (5) | −0.004 (4) | −0.002 (5) |
C8A | 0.040 (6) | 0.028 (5) | 0.053 (5) | 0.009 (5) | 0.002 (4) | 0.003 (4) |
C9A | 0.034 (6) | 0.040 (6) | 0.063 (6) | 0.020 (5) | −0.003 (5) | 0.008 (5) |
C10A | 0.052 (7) | 0.032 (6) | 0.059 (6) | 0.016 (5) | 0.007 (5) | 0.007 (4) |
C11A | 0.043 (7) | 0.041 (6) | 0.066 (7) | 0.026 (6) | 0.011 (5) | 0.015 (5) |
C12A | 0.067 (8) | 0.042 (7) | 0.070 (7) | 0.032 (7) | 0.009 (7) | 0.016 (5) |
C13A | 0.070 (9) | 0.052 (7) | 0.064 (7) | 0.039 (7) | 0.019 (6) | 0.022 (6) |
C14A | 0.089 (11) | 0.042 (7) | 0.061 (7) | 0.027 (7) | 0.015 (7) | 0.014 (5) |
C15A | 0.082 (11) | 0.054 (7) | 0.072 (8) | 0.037 (8) | 0.034 (8) | 0.023 (7) |
C16A | 0.117 (14) | 0.057 (9) | 0.075 (9) | 0.042 (10) | 0.038 (10) | 0.028 (7) |
C17A | 0.131 (16) | 0.080 (11) | 0.093 (10) | 0.073 (11) | 0.058 (9) | 0.051 (8) |
C18A | 0.140 (18) | 0.090 (12) | 0.098 (11) | 0.070 (12) | 0.055 (9) | 0.049 (8) |
C19A | 0.141 (16) | 0.108 (14) | 0.097 (11) | 0.087 (13) | 0.072 (9) | 0.062 (9) |
C20A | 0.17 (2) | 0.116 (18) | 0.130 (17) | 0.083 (16) | 0.043 (12) | 0.041 (12) |
C21A | 0.18 (2) | 0.14 (2) | 0.137 (15) | 0.114 (17) | 0.086 (12) | 0.092 (13) |
N1B | 0.022 (4) | 0.031 (4) | 0.047 (4) | −0.013 (3) | 0.000 (3) | 0.004 (3) |
C1B | 0.025 (4) | 0.032 (5) | 0.046 (5) | −0.012 (4) | −0.010 (4) | 0.009 (4) |
S1B | 0.0309 (12) | 0.0278 (11) | 0.0580 (13) | −0.0003 (10) | −0.0033 (10) | 0.0027 (10) |
C2B | 0.021 (5) | 0.029 (4) | 0.052 (5) | −0.009 (4) | 0.000 (4) | −0.004 (4) |
S2B | 0.0181 (10) | 0.0287 (10) | 0.0568 (12) | −0.0021 (9) | −0.0032 (9) | −0.0009 (10) |
C3B | 0.016 (5) | 0.033 (5) | 0.066 (6) | −0.001 (4) | −0.014 (4) | −0.006 (4) |
C4B | 0.021 (5) | 0.039 (6) | 0.064 (7) | 0.001 (4) | −0.002 (4) | −0.003 (4) |
C5B | 0.021 (4) | 0.023 (4) | 0.037 (4) | −0.002 (4) | −0.007 (3) | 0.001 (3) |
C6B | 0.017 (4) | 0.027 (4) | 0.056 (5) | 0.001 (4) | 0.000 (4) | 0.003 (4) |
C7B | 0.012 (4) | 0.022 (4) | 0.056 (5) | −0.008 (4) | −0.001 (3) | −0.006 (4) |
C8B | 0.025 (5) | 0.022 (4) | 0.071 (7) | 0.007 (4) | 0.009 (4) | 0.003 (4) |
C9B | 0.020 (4) | 0.024 (4) | 0.060 (5) | −0.001 (4) | 0.001 (4) | −0.002 (4) |
C10B | 0.028 (5) | 0.028 (5) | 0.064 (6) | 0.009 (4) | 0.003 (4) | 0.000 (4) |
C11B | 0.030 (5) | 0.033 (5) | 0.056 (6) | 0.003 (5) | 0.007 (4) | 0.005 (4) |
C12B | 0.036 (6) | 0.026 (5) | 0.075 (7) | 0.013 (5) | 0.013 (5) | 0.014 (5) |
C13B | 0.060 (8) | 0.030 (6) | 0.072 (7) | 0.010 (6) | 0.019 (6) | 0.015 (5) |
C14B | 0.044 (7) | 0.035 (6) | 0.090 (9) | 0.022 (6) | 0.013 (6) | 0.025 (6) |
C15B | 0.067 (9) | 0.048 (7) | 0.077 (8) | 0.032 (7) | 0.020 (7) | 0.028 (6) |
C16B | 0.067 (9) | 0.045 (7) | 0.093 (9) | 0.040 (7) | 0.024 (8) | 0.039 (7) |
C17B | 0.091 (11) | 0.041 (7) | 0.074 (8) | 0.025 (7) | 0.026 (7) | 0.021 (6) |
C18B | 0.076 (10) | 0.048 (7) | 0.108 (10) | 0.033 (7) | 0.039 (7) | 0.039 (6) |
C19B | 0.080 (10) | 0.052 (8) | 0.094 (9) | 0.037 (7) | 0.035 (7) | 0.030 (6) |
C20B | 0.076 (11) | 0.092 (12) | 0.126 (13) | 0.057 (9) | 0.046 (7) | 0.072 (10) |
C21B | 0.115 (15) | 0.105 (15) | 0.102 (12) | 0.055 (11) | 0.046 (9) | 0.033 (10) |
N1A—C3A | 1.289 (14) | N1B—C3B | 1.316 (14) |
N1A—C2A | 1.340 (14) | N1B—C2B | 1.417 (11) |
C1A—C2A | 1.363 (15) | C1B—C2B | 1.348 (14) |
C1A—S1A | 1.711 (11) | C1B—S1B | 1.763 (11) |
C1A—H1A | 0.9500 | C1B—H1B | 0.9500 |
S1A—C3A | 1.758 (10) | S1B—C3B | 1.744 (11) |
C2A—H2A | 0.9500 | C2B—H2B | 0.9500 |
S2A—C3A | 1.733 (10) | S2B—C3B | 1.740 (11) |
S2A—C4A | 1.799 (10) | S2B—C4B | 1.799 (11) |
C4A—C5A | 1.543 (14) | C4B—C5B | 1.557 (13) |
C4A—H4AA | 0.9900 | C4B—H4BA | 0.9900 |
C4A—H4AB | 0.9900 | C4B—H4BB | 0.9900 |
C5A—C6A | 1.484 (15) | C5B—C6B | 1.516 (12) |
C5A—H5AA | 0.9900 | C5B—H5BA | 0.9900 |
C5A—H5AB | 0.9900 | C5B—H5BB | 0.9900 |
C6A—C7A | 1.539 (14) | C6B—C7B | 1.521 (12) |
C6A—H6AA | 0.9900 | C6B—H6BA | 0.9900 |
C6A—H6AB | 0.9900 | C6B—H6BB | 0.9900 |
C7A—C8A | 1.507 (15) | C7B—C8B | 1.511 (13) |
C7A—H7AA | 0.9900 | C7B—H7BA | 0.9900 |
C7A—H7AB | 0.9900 | C7B—H7BB | 0.9900 |
C8A—C9A | 1.516 (13) | C8B—C9B | 1.508 (14) |
C8A—H8AA | 0.9900 | C8B—H8BA | 0.9900 |
C8A—H8AB | 0.9900 | C8B—H8BB | 0.9900 |
C9A—C10A | 1.520 (17) | C9B—C10B | 1.524 (14) |
C9A—H9AA | 0.9900 | C9B—H9BA | 0.9900 |
C9A—H9AB | 0.9900 | C9B—H9BB | 0.9900 |
C10A—C11A | 1.533 (15) | C10B—C11B | 1.497 (15) |
C10A—H10A | 0.9900 | C10B—H10C | 0.9900 |
C10A—H10B | 0.9900 | C10B—H10D | 0.9900 |
C11A—C12A | 1.49 (2) | C11B—C12B | 1.540 (14) |
C11A—H11A | 0.9900 | C11B—H11C | 0.9900 |
C11A—H11B | 0.9900 | C11B—H11D | 0.9900 |
C12A—C13A | 1.556 (16) | C12B—C13B | 1.500 (19) |
C12A—H12A | 0.9900 | C12B—H12C | 0.9900 |
C12A—H12B | 0.9900 | C12B—H12D | 0.9900 |
C13A—C14A | 1.45 (2) | C13B—C14B | 1.533 (16) |
C13A—H13A | 0.9900 | C13B—H13C | 0.9900 |
C13A—H13B | 0.9900 | C13B—H13D | 0.9900 |
C14A—C15A | 1.570 (19) | C14B—C15B | 1.52 (2) |
C14A—H14A | 0.9900 | C14B—H14C | 0.9900 |
C14A—H14B | 0.9900 | C14B—H14D | 0.9900 |
C15A—C16A | 1.45 (3) | C15B—C16B | 1.539 (17) |
C15A—H15A | 0.9900 | C15B—H15C | 0.9900 |
C15A—H15B | 0.9900 | C15B—H15D | 0.9900 |
C16A—C17A | 1.59 (2) | C16B—C17B | 1.51 (2) |
C16A—H16A | 0.9900 | C16B—H16C | 0.9900 |
C16A—H16B | 0.9900 | C16B—H16D | 0.9900 |
C17A—C18A | 1.49 (3) | C17B—C18B | 1.59 (2) |
C17A—H17A | 0.9900 | C17B—H17C | 0.9900 |
C17A—H17B | 0.9900 | C17B—H17D | 0.9900 |
C18A—C19A | 1.60 (3) | C18B—C19B | 1.42 (3) |
C18A—H18A | 0.9900 | C18B—H18C | 0.9900 |
C18A—H18B | 0.9900 | C18B—H18D | 0.9900 |
C19A—C20A | 1.44 (4) | C19B—C20B | 1.56 (2) |
C19A—H19A | 0.9900 | C19B—H19C | 0.9900 |
C19A—H19B | 0.9900 | C19B—H19D | 0.9900 |
C20A—C21A | 1.59 (3) | C20B—C21B | 1.54 (3) |
C20A—H20A | 0.9900 | C20B—H20C | 0.9900 |
C20A—H20B | 0.9900 | C20B—H20D | 0.9900 |
C21A—H21A | 0.9800 | C21B—H21D | 0.9800 |
C21A—H21B | 0.9800 | C21B—H21E | 0.9800 |
C21A—H21C | 0.9800 | C21B—H21F | 0.9800 |
C3A—N1A—C2A | 112.0 (9) | C3B—N1B—C2B | 110.7 (9) |
C2A—C1A—S1A | 110.3 (7) | C2B—C1B—S1B | 107.8 (7) |
C2A—C1A—H1A | 124.9 | C2B—C1B—H1B | 126.1 |
S1A—C1A—H1A | 124.9 | S1B—C1B—H1B | 126.1 |
C1A—S1A—C3A | 88.2 (5) | C3B—S1B—C1B | 90.8 (5) |
N1A—C2A—C1A | 115.6 (10) | C1B—C2B—N1B | 117.1 (9) |
N1A—C2A—H2A | 122.2 | C1B—C2B—H2B | 121.5 |
C1A—C2A—H2A | 122.2 | N1B—C2B—H2B | 121.5 |
C3A—S2A—C4A | 100.4 (5) | C3B—S2B—C4B | 101.3 (5) |
N1A—C3A—S2A | 129.8 (8) | N1B—C3B—S2B | 124.6 (8) |
N1A—C3A—S1A | 113.9 (8) | N1B—C3B—S1B | 113.4 (8) |
S2A—C3A—S1A | 116.3 (6) | S2B—C3B—S1B | 122.0 (6) |
C5A—C4A—S2A | 104.4 (7) | C5B—C4B—S2B | 110.4 (8) |
C5A—C4A—H4AA | 110.9 | C5B—C4B—H4BA | 109.6 |
S2A—C4A—H4AA | 110.9 | S2B—C4B—H4BA | 109.6 |
C5A—C4A—H4AB | 110.9 | C5B—C4B—H4BB | 109.6 |
S2A—C4A—H4AB | 110.9 | S2B—C4B—H4BB | 109.6 |
H4AA—C4A—H4AB | 108.9 | H4BA—C4B—H4BB | 108.1 |
C6A—C5A—C4A | 112.9 (8) | C6B—C5B—C4B | 110.5 (8) |
C6A—C5A—H5AA | 109.0 | C6B—C5B—H5BA | 109.6 |
C4A—C5A—H5AA | 109.0 | C4B—C5B—H5BA | 109.6 |
C6A—C5A—H5AB | 109.0 | C6B—C5B—H5BB | 109.6 |
C4A—C5A—H5AB | 109.0 | C4B—C5B—H5BB | 109.6 |
H5AA—C5A—H5AB | 107.8 | H5BA—C5B—H5BB | 108.1 |
C5A—C6A—C7A | 110.5 (9) | C5B—C6B—C7B | 111.3 (8) |
C5A—C6A—H6AA | 109.6 | C5B—C6B—H6BA | 109.4 |
C7A—C6A—H6AA | 109.6 | C7B—C6B—H6BA | 109.4 |
C5A—C6A—H6AB | 109.6 | C5B—C6B—H6BB | 109.4 |
C7A—C6A—H6AB | 109.6 | C7B—C6B—H6BB | 109.4 |
H6AA—C6A—H6AB | 108.1 | H6BA—C6B—H6BB | 108.0 |
C8A—C7A—C6A | 113.9 (8) | C8B—C7B—C6B | 114.0 (8) |
C8A—C7A—H7AA | 108.8 | C8B—C7B—H7BA | 108.7 |
C6A—C7A—H7AA | 108.8 | C6B—C7B—H7BA | 108.7 |
C8A—C7A—H7AB | 108.8 | C8B—C7B—H7BB | 108.7 |
C6A—C7A—H7AB | 108.8 | C6B—C7B—H7BB | 108.7 |
H7AA—C7A—H7AB | 107.7 | H7BA—C7B—H7BB | 107.6 |
C7A—C8A—C9A | 113.5 (9) | C9B—C8B—C7B | 113.4 (8) |
C7A—C8A—H8AA | 108.9 | C9B—C8B—H8BA | 108.9 |
C9A—C8A—H8AA | 108.9 | C7B—C8B—H8BA | 108.9 |
C7A—C8A—H8AB | 108.9 | C9B—C8B—H8BB | 108.9 |
C9A—C8A—H8AB | 108.9 | C7B—C8B—H8BB | 108.9 |
H8AA—C8A—H8AB | 107.7 | H8BA—C8B—H8BB | 107.7 |
C8A—C9A—C10A | 113.6 (9) | C8B—C9B—C10B | 113.7 (8) |
C8A—C9A—H9AA | 108.8 | C8B—C9B—H9BA | 108.8 |
C10A—C9A—H9AA | 108.8 | C10B—C9B—H9BA | 108.8 |
C8A—C9A—H9AB | 108.8 | C8B—C9B—H9BB | 108.8 |
C10A—C9A—H9AB | 108.8 | C10B—C9B—H9BB | 108.8 |
H9AA—C9A—H9AB | 107.7 | H9BA—C9B—H9BB | 107.7 |
C9A—C10A—C11A | 113.3 (9) | C11B—C10B—C9B | 114.1 (8) |
C9A—C10A—H10A | 108.9 | C11B—C10B—H10C | 108.7 |
C11A—C10A—H10A | 108.9 | C9B—C10B—H10C | 108.7 |
C9A—C10A—H10B | 108.9 | C11B—C10B—H10D | 108.7 |
C11A—C10A—H10B | 108.9 | C9B—C10B—H10D | 108.7 |
H10A—C10A—H10B | 107.7 | H10C—C10B—H10D | 107.6 |
C12A—C11A—C10A | 113.2 (10) | C10B—C11B—C12B | 113.6 (9) |
C12A—C11A—H11A | 108.9 | C10B—C11B—H11C | 108.9 |
C10A—C11A—H11A | 108.9 | C12B—C11B—H11C | 108.9 |
C12A—C11A—H11B | 108.9 | C10B—C11B—H11D | 108.9 |
C10A—C11A—H11B | 108.9 | C12B—C11B—H11D | 108.9 |
H11A—C11A—H11B | 107.7 | H11C—C11B—H11D | 107.7 |
C11A—C12A—C13A | 113.9 (10) | C13B—C12B—C11B | 114.2 (8) |
C11A—C12A—H12A | 108.8 | C13B—C12B—H12C | 108.7 |
C13A—C12A—H12A | 108.8 | C11B—C12B—H12C | 108.7 |
C11A—C12A—H12B | 108.8 | C13B—C12B—H12D | 108.7 |
C13A—C12A—H12B | 108.8 | C11B—C12B—H12D | 108.7 |
H12A—C12A—H12B | 107.7 | H12C—C12B—H12D | 107.6 |
C14A—C13A—C12A | 114.0 (11) | C12B—C13B—C14B | 113.0 (9) |
C14A—C13A—H13A | 108.7 | C12B—C13B—H13C | 109.0 |
C12A—C13A—H13A | 108.7 | C14B—C13B—H13C | 109.0 |
C14A—C13A—H13B | 108.7 | C12B—C13B—H13D | 109.0 |
C12A—C13A—H13B | 108.7 | C14B—C13B—H13D | 109.0 |
H13A—C13A—H13B | 107.6 | H13C—C13B—H13D | 107.8 |
C13A—C14A—C15A | 113.6 (11) | C15B—C14B—C13B | 113.6 (10) |
C13A—C14A—H14A | 108.8 | C15B—C14B—H14C | 108.8 |
C15A—C14A—H14A | 108.8 | C13B—C14B—H14C | 108.8 |
C13A—C14A—H14B | 108.8 | C15B—C14B—H14D | 108.8 |
C15A—C14A—H14B | 108.8 | C13B—C14B—H14D | 108.8 |
H14A—C14A—H14B | 107.7 | H14C—C14B—H14D | 107.7 |
C16A—C15A—C14A | 113.1 (12) | C14B—C15B—C16B | 113.6 (11) |
C16A—C15A—H15A | 109.0 | C14B—C15B—H15C | 108.8 |
C14A—C15A—H15A | 109.0 | C16B—C15B—H15C | 108.8 |
C16A—C15A—H15B | 109.0 | C14B—C15B—H15D | 108.8 |
C14A—C15A—H15B | 109.0 | C16B—C15B—H15D | 108.8 |
H15A—C15A—H15B | 107.8 | H15C—C15B—H15D | 107.7 |
C15A—C16A—C17A | 113.5 (13) | C17B—C16B—C15B | 113.2 (11) |
C15A—C16A—H16A | 108.9 | C17B—C16B—H16C | 108.9 |
C17A—C16A—H16A | 108.9 | C15B—C16B—H16C | 108.9 |
C15A—C16A—H16B | 108.9 | C17B—C16B—H16D | 108.9 |
C17A—C16A—H16B | 108.9 | C15B—C16B—H16D | 108.9 |
H16A—C16A—H16B | 107.7 | H16C—C16B—H16D | 107.8 |
C18A—C17A—C16A | 114.1 (15) | C16B—C17B—C18B | 114.8 (11) |
C18A—C17A—H17A | 108.7 | C16B—C17B—H17C | 108.6 |
C16A—C17A—H17A | 108.7 | C18B—C17B—H17C | 108.6 |
C18A—C17A—H17B | 108.7 | C16B—C17B—H17D | 108.6 |
C16A—C17A—H17B | 108.7 | C18B—C17B—H17D | 108.6 |
H17A—C17A—H17B | 107.6 | H17C—C17B—H17D | 107.5 |
C17A—C18A—C19A | 116.4 (16) | C19B—C18B—C17B | 114.9 (12) |
C17A—C18A—H18A | 108.2 | C19B—C18B—H18C | 108.5 |
C19A—C18A—H18A | 108.2 | C17B—C18B—H18C | 108.5 |
C17A—C18A—H18B | 108.2 | C19B—C18B—H18D | 108.5 |
C19A—C18A—H18B | 108.2 | C17B—C18B—H18D | 108.5 |
H18A—C18A—H18B | 107.3 | H18C—C18B—H18D | 107.5 |
C20A—C19A—C18A | 115.9 (18) | C18B—C19B—C20B | 113.5 (13) |
C20A—C19A—H19A | 108.3 | C18B—C19B—H19C | 108.9 |
C18A—C19A—H19A | 108.3 | C20B—C19B—H19C | 108.9 |
C20A—C19A—H19B | 108.3 | C18B—C19B—H19D | 108.9 |
C18A—C19A—H19B | 108.3 | C20B—C19B—H19D | 108.9 |
H19A—C19A—H19B | 107.4 | H19C—C19B—H19D | 107.7 |
C19A—C20A—C21A | 119 (2) | C21B—C20B—C19B | 115.3 (15) |
C19A—C20A—H20A | 107.7 | C21B—C20B—H20C | 108.5 |
C21A—C20A—H20A | 107.7 | C19B—C20B—H20C | 108.5 |
C19A—C20A—H20B | 107.7 | C21B—C20B—H20D | 108.5 |
C21A—C20A—H20B | 107.7 | C19B—C20B—H20D | 108.5 |
H20A—C20A—H20B | 107.1 | H20C—C20B—H20D | 107.5 |
C20A—C21A—H21A | 109.5 | C20B—C21B—H21D | 109.5 |
C20A—C21A—H21B | 109.5 | C20B—C21B—H21E | 109.5 |
H21A—C21A—H21B | 109.5 | H21D—C21B—H21E | 109.5 |
C20A—C21A—H21C | 109.5 | C20B—C21B—H21F | 109.5 |
H21A—C21A—H21C | 109.5 | H21D—C21B—H21F | 109.5 |
H21B—C21A—H21C | 109.5 | H21E—C21B—H21F | 109.5 |
C2A—C1A—S1A—C3A | 1.3 (8) | C2B—C1B—S1B—C3B | −3.9 (7) |
C3A—N1A—C2A—C1A | −0.4 (14) | S1B—C1B—C2B—N1B | 5.6 (10) |
S1A—C1A—C2A—N1A | −0.8 (12) | C3B—N1B—C2B—C1B | −4.7 (12) |
C2A—N1A—C3A—S2A | −179.7 (8) | C2B—N1B—C3B—S2B | 179.6 (7) |
C2A—N1A—C3A—S1A | 1.5 (12) | C2B—N1B—C3B—S1B | 1.3 (10) |
C4A—S2A—C3A—N1A | 5.9 (12) | C4B—S2B—C3B—N1B | 26.9 (10) |
C4A—S2A—C3A—S1A | −175.3 (6) | C4B—S2B—C3B—S1B | −154.9 (6) |
C1A—S1A—C3A—N1A | −1.6 (9) | C1B—S1B—C3B—N1B | 1.5 (8) |
C1A—S1A—C3A—S2A | 179.3 (6) | C1B—S1B—C3B—S2B | −176.9 (6) |
C3A—S2A—C4A—C5A | 177.9 (7) | C3B—S2B—C4B—C5B | 70.6 (8) |
S2A—C4A—C5A—C6A | −179.7 (7) | S2B—C4B—C5B—C6B | 178.1 (7) |
C4A—C5A—C6A—C7A | 179.7 (9) | C4B—C5B—C6B—C7B | −177.7 (8) |
C5A—C6A—C7A—C8A | −178.1 (9) | C5B—C6B—C7B—C8B | 179.6 (8) |
C6A—C7A—C8A—C9A | 178.3 (9) | C6B—C7B—C8B—C9B | −179.7 (8) |
C7A—C8A—C9A—C10A | 179.7 (10) | C7B—C8B—C9B—C10B | 179.5 (8) |
C8A—C9A—C10A—C11A | −178.9 (9) | C8B—C9B—C10B—C11B | 179.8 (9) |
C9A—C10A—C11A—C12A | −178.8 (11) | C9B—C10B—C11B—C12B | 180.0 (8) |
C10A—C11A—C12A—C13A | −178.4 (10) | C10B—C11B—C12B—C13B | −178.4 (9) |
C11A—C12A—C13A—C14A | −178.7 (12) | C11B—C12B—C13B—C14B | −178.9 (9) |
C12A—C13A—C14A—C15A | −179.4 (11) | C12B—C13B—C14B—C15B | 178.2 (10) |
C13A—C14A—C15A—C16A | −178.6 (13) | C13B—C14B—C15B—C16B | 178.8 (10) |
C14A—C15A—C16A—C17A | −179.3 (12) | C14B—C15B—C16B—C17B | 180.0 (11) |
C15A—C16A—C17A—C18A | −179.4 (14) | C15B—C16B—C17B—C18B | 178.6 (11) |
C16A—C17A—C18A—C19A | −178.2 (13) | C16B—C17B—C18B—C19B | −179.1 (13) |
C17A—C18A—C19A—C20A | −179.0 (19) | C17B—C18B—C19B—C20B | −178.3 (12) |
C18A—C19A—C20A—C21A | 178.8 (16) | C18B—C19B—C20B—C21B | 176.1 (14) |
Acknowledgements
This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (Funding for the single-crystal X-ray diffractometer).
Funding information
Funding for this research was provided by: National Science Foundation (grant No. CHE 1625543); American Chemical Society Petroleum Research Fund (grant No. PRF 58975-UR4); Ave Maria University Department of Chemistry and Physics. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Artem'ev, A. V., Samsonenko, D. G. & Antonova, O. V. (2018). Polyhedron, 151, 171–176. CAS Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Iwasaki, M., Topolovčan, N., Hu, H., Nishimura, Y., Gagnot, G., Na nakorn, R., Yuvacharaskul, R., Nakajima, K. & Nishihara, Y. (2016). Org. Lett. 18, 1642–1645. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nestor, S. T., Heinrich, B., Sykora, R. A., Zhang, X., McManus, G. J., Douce, L. & Mirjafari, A. (2017). Tetrahedron, 73, 5456–5460. Web of Science CSD CrossRef CAS Google Scholar
O'Brien, R. A., Zayas, M. S., Nestor, S. T., Gaitor, J. C., Paul, L. M., Edhegard, F. A., Minkowicz, S., Sykora, R. E., Sheng, Y., Michael, S. F., Isern, S. & Mirjafari, A. (2016). New J. Chem. 40, 7795–7803. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2018). University of Göttingen, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.