organic compounds
2,2′-[Methylenebis(sulfanediyl)]bis(pyridine 1-oxide)
aDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, FL, 33965, USA, bAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA, and cPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, 47907, USA
*Correspondence e-mail: amirjafari@fgcu.edu
The title compound, C11H10N2O2S2, crystallizes with one complete molecule in the In the crystal, weak hydrogen bonding is observed between the N-oxide moieties and several C—H units.
Keywords: crystal structure; N-oxide; hydrogen bonding.
CCDC reference: 1982242
Structure description
The title compound (Fig. 1) crystallizes in the P21 with a single molecule in the The two nitrogen–oxygen bonds in the N-oxide moiety exhibit similar lengths [1.307 (3) and 1.309 (3). The two pyridine N-oxide rings exist in a with respect to each other, forming a dihedral angle of 66.55 (9)° (Fig. 2).
In the extended network, molecules are arranged in a zigzag pattern when viewed along [101] (Fig. 3); this arrangement facilitates weak hydrogen-bonding interactions between adjacent molecules (Table 1). Both oxygen atoms participate in hydrogen bonding, interacting with hydrogen atoms bound to the aromatic rings of the N-oxide moieties. In addition to the interactions with aromatic H atoms, O1 is involved in hydrogen bonding with the methylene H atoms from the thioether moiety. As a result of the zigzag arrangement of molecules, no π–π stacking is observed.
|
For related N-oxide crystal structures, see: Rybarczyk-Pirek et al. (2018), Amoedo-Portela et al. (2002), and de Castro et al. (2002)
Synthesis and crystallization
An oven-dried 100 ml, 24/40 single-necked, round-bottomed flask was charged with a 4 cm oval Teflon-coated stir bar and 2-mercaptopyridine N-oxide sodium salt (1.00 g, 1 equiv.). Dry CH2Cl2 (4.24 ml, 10 equiv.) was then added to the flask via syringe. The flask neck was equipped with a water-jacketed reflux condenser (30.0 cm height, 24/40 joint) with a constant flow of water. The reaction vessel was placed in a pre-heated oil bath and refluxed for an hour under stirring. After the allotted time, the reaction vessel was removed from the oil bath and cooled to room temperature and colorless plates of 2,2′-[methylenebis(sulfanediyl)]bis(pyridine-1-oxide) formed over 5 d. The crystals were vacuum filtered and the residual solvent was removed under vacuum (1.40 mm H g) for 12 h to afford 2,2′-[methylenebis(sulfanediyl)]bis(pyridine-1-oxide) in high yield (89%).
Crystals suitable for diffraction formed slowly from a CD2Cl2 solution in an NMR tube.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1982242
https://doi.org/10.1107/S2414314620001716/bv4026sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620001716/bv4026Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620001716/bv4026Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015, 2018), SHELXLE (Hübschle et al., 2011) and PLATON (Spek, 2020); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).C11H10N2O2S2 | F(000) = 276 |
Mr = 266.33 | Dx = 1.598 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.1658 (2) Å | Cell parameters from 9929 reflections |
b = 10.4706 (6) Å | θ = 2.5–33.3° |
c = 12.7624 (7) Å | µ = 0.47 mm−1 |
β = 95.958 (2)° | T = 150 K |
V = 553.67 (5) Å3 | Plate, colourless |
Z = 2 | 0.55 × 0.16 × 0.04 mm |
Bruker AXS D8 Quest CMOS diffractometer | 4262 independent reflections |
Radiation source: fine focus sealed tube X-ray source | 3794 reflections with I > 2σ(I) |
Triumph curved graphite crystal monochromator | Rint = 0.070 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 33.3°, θmin = 2.5° |
ω and phi scans | h = −6→5 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.528, Tmax = 0.747 | l = −19→19 |
17033 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0424P)2 + 0.1658P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4262 reflections | Δρmax = 0.56 e Å−3 |
154 parameters | Δρmin = −0.48 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1650 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.05 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. C—H bond distances were constrained to 0.95 Å for aromatic C—H moieties. Uiso(H) values were set to 1.2 times Ueq(C). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.81710 (15) | 0.68956 (6) | 0.58939 (4) | 0.01584 (13) | |
S2 | 0.86177 (15) | 0.83538 (6) | 0.79102 (4) | 0.01541 (13) | |
O1 | 0.8980 (5) | 0.5371 (2) | 0.42557 (17) | 0.0230 (4) | |
O2 | 1.0430 (5) | 0.7815 (2) | 0.99221 (16) | 0.0224 (4) | |
N1 | 0.7052 (5) | 0.6307 (2) | 0.39242 (17) | 0.0162 (4) | |
N2 | 0.8365 (5) | 0.6943 (2) | 0.95562 (16) | 0.0162 (4) | |
C1 | 0.6300 (6) | 0.7213 (2) | 0.46299 (19) | 0.0152 (4) | |
C2 | 0.4276 (6) | 0.8217 (3) | 0.43009 (19) | 0.0178 (5) | |
H2 | 0.373352 | 0.884463 | 0.479079 | 0.021* | |
C3 | 0.3049 (7) | 0.8300 (3) | 0.3252 (2) | 0.0221 (5) | |
H3 | 0.167937 | 0.899069 | 0.301822 | 0.026* | |
C4 | 0.3825 (8) | 0.7369 (3) | 0.2540 (2) | 0.0241 (6) | |
H4 | 0.299597 | 0.741896 | 0.181928 | 0.029* | |
C5 | 0.5806 (8) | 0.6380 (3) | 0.2897 (2) | 0.0225 (5) | |
H5 | 0.631713 | 0.573381 | 0.241816 | 0.027* | |
C6 | 0.7073 (6) | 0.7022 (3) | 0.85309 (18) | 0.0139 (4) | |
C7 | 0.4827 (6) | 0.6128 (3) | 0.8125 (2) | 0.0169 (5) | |
H7 | 0.391355 | 0.618626 | 0.741250 | 0.020* | |
C8 | 0.3922 (7) | 0.5152 (3) | 0.8762 (2) | 0.0197 (5) | |
H8 | 0.236511 | 0.454000 | 0.849241 | 0.024* | |
C9 | 0.5303 (7) | 0.5072 (3) | 0.9797 (2) | 0.0223 (5) | |
H9 | 0.471354 | 0.440113 | 1.024029 | 0.027* | |
C10 | 0.7527 (7) | 0.5969 (3) | 1.0173 (2) | 0.0209 (5) | |
H10 | 0.849794 | 0.590692 | 1.087870 | 0.025* | |
C11 | 0.6603 (6) | 0.8234 (3) | 0.65943 (18) | 0.0150 (4) | |
H11A | 0.692061 | 0.903548 | 0.620641 | 0.018* | |
H11B | 0.425731 | 0.811823 | 0.662873 | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0192 (3) | 0.0155 (3) | 0.0129 (2) | 0.0026 (2) | 0.00225 (19) | 0.0004 (2) |
S2 | 0.0194 (3) | 0.0138 (3) | 0.0131 (2) | −0.0019 (2) | 0.00204 (19) | 0.0002 (2) |
O1 | 0.0299 (10) | 0.0159 (9) | 0.0243 (10) | 0.0048 (8) | 0.0075 (8) | −0.0012 (7) |
O2 | 0.0259 (10) | 0.0239 (10) | 0.0165 (9) | −0.0057 (8) | −0.0023 (7) | −0.0028 (7) |
N1 | 0.0205 (10) | 0.0149 (10) | 0.0141 (9) | −0.0027 (8) | 0.0061 (8) | −0.0010 (7) |
N2 | 0.0176 (9) | 0.0173 (9) | 0.0140 (8) | 0.0023 (9) | 0.0029 (7) | −0.0005 (8) |
C1 | 0.0188 (11) | 0.0143 (11) | 0.0129 (9) | −0.0018 (9) | 0.0038 (8) | −0.0002 (8) |
C2 | 0.0214 (11) | 0.0162 (11) | 0.0159 (10) | −0.0005 (9) | 0.0030 (8) | −0.0001 (9) |
C3 | 0.0259 (12) | 0.0223 (12) | 0.0171 (10) | −0.0003 (11) | −0.0020 (9) | 0.0022 (11) |
C4 | 0.0302 (14) | 0.0280 (14) | 0.0135 (11) | −0.0070 (12) | −0.0004 (9) | 0.0016 (10) |
C5 | 0.0315 (14) | 0.0230 (13) | 0.0139 (11) | −0.0070 (11) | 0.0060 (10) | −0.0028 (9) |
C6 | 0.0151 (10) | 0.0138 (10) | 0.0131 (9) | 0.0021 (9) | 0.0035 (7) | 0.0007 (8) |
C7 | 0.0183 (11) | 0.0168 (11) | 0.0159 (11) | 0.0004 (9) | 0.0031 (9) | −0.0006 (8) |
C8 | 0.0212 (12) | 0.0148 (11) | 0.0237 (12) | −0.0018 (10) | 0.0053 (9) | 0.0003 (9) |
C9 | 0.0259 (13) | 0.0190 (12) | 0.0235 (13) | 0.0030 (10) | 0.0093 (10) | 0.0070 (10) |
C10 | 0.0248 (13) | 0.0229 (12) | 0.0154 (11) | 0.0031 (11) | 0.0044 (9) | 0.0063 (9) |
C11 | 0.0186 (11) | 0.0148 (11) | 0.0119 (9) | 0.0012 (9) | 0.0022 (8) | −0.0006 (9) |
S1—C1 | 1.749 (3) | C3—H3 | 0.9500 |
S1—C11 | 1.820 (3) | C4—C5 | 1.373 (4) |
S2—C6 | 1.759 (3) | C4—H4 | 0.9500 |
S2—C11 | 1.802 (2) | C5—H5 | 0.9500 |
O1—N1 | 1.309 (3) | C6—C7 | 1.385 (4) |
O2—N2 | 1.307 (3) | C7—C8 | 1.383 (4) |
N1—C5 | 1.361 (3) | C7—H7 | 0.9500 |
N1—C1 | 1.366 (3) | C8—C9 | 1.388 (4) |
N2—C10 | 1.356 (3) | C8—H8 | 0.9500 |
N2—C6 | 1.365 (3) | C9—C10 | 1.371 (4) |
C1—C2 | 1.386 (4) | C9—H9 | 0.9500 |
C2—C3 | 1.385 (3) | C10—H10 | 0.9500 |
C2—H2 | 0.9500 | C11—H11A | 0.9900 |
C3—C4 | 1.393 (4) | C11—H11B | 0.9900 |
C1—S1—C11 | 99.12 (11) | C4—C5—H5 | 119.4 |
C6—S2—C11 | 102.00 (12) | N2—C6—C7 | 120.1 (2) |
O1—N1—C5 | 120.8 (2) | N2—C6—S2 | 110.72 (19) |
O1—N1—C1 | 118.8 (2) | C7—C6—S2 | 129.16 (18) |
C5—N1—C1 | 120.4 (2) | C8—C7—C6 | 119.6 (2) |
O2—N2—C10 | 121.2 (2) | C8—C7—H7 | 120.2 |
O2—N2—C6 | 118.6 (2) | C6—C7—H7 | 120.2 |
C10—N2—C6 | 120.2 (2) | C7—C8—C9 | 119.5 (3) |
N1—C1—C2 | 120.1 (2) | C7—C8—H8 | 120.2 |
N1—C1—S1 | 111.44 (18) | C9—C8—H8 | 120.2 |
C2—C1—S1 | 128.50 (19) | C10—C9—C8 | 119.4 (3) |
C3—C2—C1 | 119.5 (2) | C10—C9—H9 | 120.3 |
C3—C2—H2 | 120.3 | C8—C9—H9 | 120.3 |
C1—C2—H2 | 120.3 | N2—C10—C9 | 121.1 (2) |
C2—C3—C4 | 120.0 (3) | N2—C10—H10 | 119.4 |
C2—C3—H3 | 120.0 | C9—C10—H10 | 119.4 |
C4—C3—H3 | 120.0 | S2—C11—S1 | 110.79 (14) |
C5—C4—C3 | 119.0 (3) | S2—C11—H11A | 109.5 |
C5—C4—H4 | 120.5 | S1—C11—H11A | 109.5 |
C3—C4—H4 | 120.5 | S2—C11—H11B | 109.5 |
N1—C5—C4 | 121.2 (3) | S1—C11—H11B | 109.5 |
N1—C5—H5 | 119.4 | H11A—C11—H11B | 108.1 |
O1—N1—C1—C2 | 179.7 (2) | C10—N2—C6—C7 | 1.9 (3) |
C5—N1—C1—C2 | −0.4 (4) | O2—N2—C6—S2 | 0.4 (3) |
O1—N1—C1—S1 | −0.4 (3) | C10—N2—C6—S2 | −179.0 (2) |
C5—N1—C1—S1 | 179.46 (19) | C11—S2—C6—N2 | 179.53 (17) |
C11—S1—C1—N1 | −179.00 (19) | C11—S2—C6—C7 | −1.5 (3) |
C11—S1—C1—C2 | 0.9 (3) | N2—C6—C7—C8 | −0.5 (4) |
N1—C1—C2—C3 | −0.5 (4) | S2—C6—C7—C8 | −179.4 (2) |
S1—C1—C2—C3 | 179.6 (2) | C6—C7—C8—C9 | −0.7 (4) |
C1—C2—C3—C4 | 0.7 (4) | C7—C8—C9—C10 | 0.5 (4) |
C2—C3—C4—C5 | 0.1 (4) | O2—N2—C10—C9 | 178.4 (3) |
O1—N1—C5—C4 | −179.0 (3) | C6—N2—C10—C9 | −2.2 (4) |
C1—N1—C5—C4 | 1.2 (4) | C8—C9—C10—N2 | 0.9 (4) |
C3—C4—C5—N1 | −1.0 (4) | C6—S2—C11—S1 | −71.09 (14) |
O2—N2—C6—C7 | −178.7 (2) | C1—S1—C11—S2 | −170.31 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.37 | 3.292 (3) | 165 |
C9—H9···O2ii | 0.95 | 2.70 | 3.405 (4) | 131 |
C11—H11A···O1iii | 0.99 | 2.33 | 3.159 (3) | 141 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+2; (iii) −x+2, y+1/2, −z+1. |
Funding information
This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Amoedo-Portela, A., Carballo, R., Casas, J. S., García-Martínez, E., Gómez-Alonso, C., Sánchez-González, A., Sordo, J. & Vázquez-López, E. M. (2002). Z. Anorg. Allg. Chem. 628, 939–950. CAS Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castro, V. D. de, de Lima, G. M., Filgueiras, C. A. L. & Gambardella, M. T. P. (2002). J. Mol. Struct. 609, 199–203. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rybarczyk-Pirek, A. J., Łukomska-Rogala, M., Wzgarda-Raj, K., Wojtulewski, S. & Palusiak, M. (2018). Cryst. Growth Des. 18, 7373–7382. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2018). University of Göttingen, Germany. Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.