organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2′-[Methyl­enebis(sulfanedi­yl)]bis­­(pyridine 1-oxide)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, FL, 33965, USA, bAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA, and cPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, 47907, USA
*Correspondence e-mail: amirjafari@fgcu.edu

Edited by R. J. Butcher, Howard University, USA (Received 13 December 2019; accepted 5 February 2020; online 11 February 2020)

The title compound, C11H10N2O2S2, crystallizes with one complete mol­ecule in the asymmetric unit. In the crystal, weak hydrogen bonding is observed between the N-oxide moieties and several C—H units.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) crystallizes in the P21 space group with a single mol­ecule in the asymmetric unit. The two nitro­gen–oxygen bonds in the N-oxide moiety exhibit similar lengths [1.307 (3) and 1.309 (3). The two pyridine N-oxide rings exist in a staggered conformation with respect to each other, forming a dihedral angle of 66.55 (9)° (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound shown with 50% probability ellipsoids.
[Figure 2]
Figure 2
Depiction of the dihedral plane angle of the two pyridine N-oxide moieties visualized within Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

In the extended network, mol­ecules are arranged in a zigzag pattern when viewed along [101] (Fig. 3[link]); this arrangement facilitates weak hydrogen-bonding inter­actions between adjacent mol­ecules (Table 1[link]). Both oxygen atoms participate in hydrogen bonding, inter­acting with hydrogen atoms bound to the aromatic rings of the N-oxide moieties. In addition to the inter­actions with aromatic H atoms, O1 is involved in hydrogen bonding with the methyl­ene H atoms from the thio­ether moiety. As a result of the zigzag arrangement of mol­ecules, no ππ stacking is observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.37 3.292 (3) 165
C9—H9⋯O2ii 0.95 2.70 3.405 (4) 131
C11—H11A⋯O1iii 0.99 2.33 3.159 (3) 141
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
Packing diagram for the title compound as viewed from the [101] direction. Dotted red lines depict the weak hydrogen bonds.

For related N-oxide crystal structures, see: Rybarczyk-Pirek et al. (2018[Rybarczyk-Pirek, A. J., Łukomska-Rogala, M., Wzgarda-Raj, K., Wojtulewski, S. & Palusiak, M. (2018). Cryst. Growth Des. 18, 7373-7382.]), Amoedo-Portela et al. (2002[Amoedo-Portela, A., Carballo, R., Casas, J. S., García-Martínez, E., Gómez-Alonso, C., Sánchez-González, A., Sordo, J. & Vázquez-López, E. M. (2002). Z. Anorg. Allg. Chem. 628, 939-950.]), and de Castro et al. (2002[Castro, V. D. de, de Lima, G. M., Filgueiras, C. A. L. & Gambardella, M. T. P. (2002). J. Mol. Struct. 609, 199-203.])

Synthesis and crystallization

An oven-dried 100 ml, 24/40 single-necked, round-bottomed flask was charged with a 4 cm oval Teflon-coated stir bar and 2-mercapto­pyridine N-oxide sodium salt (1.00 g, 1 equiv.). Dry CH2Cl2 (4.24 ml, 10 equiv.) was then added to the flask via syringe. The flask neck was equipped with a water-jacketed reflux condenser (30.0 cm height, 24/40 joint) with a constant flow of water. The reaction vessel was placed in a pre-heated oil bath and refluxed for an hour under stirring. After the allotted time, the reaction vessel was removed from the oil bath and cooled to room temperature and colorless plates of 2,2′-[methyl­enebis(sulfanedi­yl)]bis­(pyridine-1-oxide) formed over 5 d. The crystals were vacuum filtered and the residual solvent was removed under vacuum (1.40 mm H g) for 12 h to afford 2,2′-[methyl­enebis(sulfanedi­yl)]bis­(pyridine-1-oxide) in high yield (89%).

Crystals suitable for diffraction formed slowly from a CD2Cl2 solution in an NMR tube.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H10N2O2S2
Mr 266.33
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 4.1658 (2), 10.4706 (6), 12.7624 (7)
β (°) 95.958 (2)
V3) 553.67 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.55 × 0.16 × 0.04
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.528, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 17033, 4262, 3794
Rint 0.070
(sin θ/λ)max−1) 0.772
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.06
No. of reflections 4262
No. of parameters 154
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.48
Absolute structure Flack x determined using 1650 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (4)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.], 2018[Sheldrick, G. M. (2018). University of Göttingen, Germany.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015, 2018), SHELXLE (Hübschle et al., 2011) and PLATON (Spek, 2020); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

2,2'-[Methylenebis(sulfanediyl)]bis(pyridine 1-oxide) top
Crystal data top
C11H10N2O2S2F(000) = 276
Mr = 266.33Dx = 1.598 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.1658 (2) ÅCell parameters from 9929 reflections
b = 10.4706 (6) Åθ = 2.5–33.3°
c = 12.7624 (7) ŵ = 0.47 mm1
β = 95.958 (2)°T = 150 K
V = 553.67 (5) Å3Plate, colourless
Z = 20.55 × 0.16 × 0.04 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
4262 independent reflections
Radiation source: fine focus sealed tube X-ray source3794 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.070
Detector resolution: 10.4167 pixels mm-1θmax = 33.3°, θmin = 2.5°
ω and phi scansh = 65
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.528, Tmax = 0.747l = 1919
17033 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.1658P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4262 reflectionsΔρmax = 0.56 e Å3
154 parametersΔρmin = 0.48 e Å3
1 restraintAbsolute structure: Flack x determined using 1650 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C—H bond distances were constrained to 0.95 Å for aromatic C—H moieties. Uiso(H) values were set to 1.2 times Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81710 (15)0.68956 (6)0.58939 (4)0.01584 (13)
S20.86177 (15)0.83538 (6)0.79102 (4)0.01541 (13)
O10.8980 (5)0.5371 (2)0.42557 (17)0.0230 (4)
O21.0430 (5)0.7815 (2)0.99221 (16)0.0224 (4)
N10.7052 (5)0.6307 (2)0.39242 (17)0.0162 (4)
N20.8365 (5)0.6943 (2)0.95562 (16)0.0162 (4)
C10.6300 (6)0.7213 (2)0.46299 (19)0.0152 (4)
C20.4276 (6)0.8217 (3)0.43009 (19)0.0178 (5)
H20.3733520.8844630.4790790.021*
C30.3049 (7)0.8300 (3)0.3252 (2)0.0221 (5)
H30.1679370.8990690.3018220.026*
C40.3825 (8)0.7369 (3)0.2540 (2)0.0241 (6)
H40.2995970.7418960.1819280.029*
C50.5806 (8)0.6380 (3)0.2897 (2)0.0225 (5)
H50.6317130.5733810.2418160.027*
C60.7073 (6)0.7022 (3)0.85309 (18)0.0139 (4)
C70.4827 (6)0.6128 (3)0.8125 (2)0.0169 (5)
H70.3913550.6186260.7412500.020*
C80.3922 (7)0.5152 (3)0.8762 (2)0.0197 (5)
H80.2365110.4540000.8492410.024*
C90.5303 (7)0.5072 (3)0.9797 (2)0.0223 (5)
H90.4713540.4401131.0240290.027*
C100.7527 (7)0.5969 (3)1.0173 (2)0.0209 (5)
H100.8497940.5906921.0878700.025*
C110.6603 (6)0.8234 (3)0.65943 (18)0.0150 (4)
H11A0.6920610.9035480.6206410.018*
H11B0.4257310.8118230.6628730.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0192 (3)0.0155 (3)0.0129 (2)0.0026 (2)0.00225 (19)0.0004 (2)
S20.0194 (3)0.0138 (3)0.0131 (2)0.0019 (2)0.00204 (19)0.0002 (2)
O10.0299 (10)0.0159 (9)0.0243 (10)0.0048 (8)0.0075 (8)0.0012 (7)
O20.0259 (10)0.0239 (10)0.0165 (9)0.0057 (8)0.0023 (7)0.0028 (7)
N10.0205 (10)0.0149 (10)0.0141 (9)0.0027 (8)0.0061 (8)0.0010 (7)
N20.0176 (9)0.0173 (9)0.0140 (8)0.0023 (9)0.0029 (7)0.0005 (8)
C10.0188 (11)0.0143 (11)0.0129 (9)0.0018 (9)0.0038 (8)0.0002 (8)
C20.0214 (11)0.0162 (11)0.0159 (10)0.0005 (9)0.0030 (8)0.0001 (9)
C30.0259 (12)0.0223 (12)0.0171 (10)0.0003 (11)0.0020 (9)0.0022 (11)
C40.0302 (14)0.0280 (14)0.0135 (11)0.0070 (12)0.0004 (9)0.0016 (10)
C50.0315 (14)0.0230 (13)0.0139 (11)0.0070 (11)0.0060 (10)0.0028 (9)
C60.0151 (10)0.0138 (10)0.0131 (9)0.0021 (9)0.0035 (7)0.0007 (8)
C70.0183 (11)0.0168 (11)0.0159 (11)0.0004 (9)0.0031 (9)0.0006 (8)
C80.0212 (12)0.0148 (11)0.0237 (12)0.0018 (10)0.0053 (9)0.0003 (9)
C90.0259 (13)0.0190 (12)0.0235 (13)0.0030 (10)0.0093 (10)0.0070 (10)
C100.0248 (13)0.0229 (12)0.0154 (11)0.0031 (11)0.0044 (9)0.0063 (9)
C110.0186 (11)0.0148 (11)0.0119 (9)0.0012 (9)0.0022 (8)0.0006 (9)
Geometric parameters (Å, º) top
S1—C11.749 (3)C3—H30.9500
S1—C111.820 (3)C4—C51.373 (4)
S2—C61.759 (3)C4—H40.9500
S2—C111.802 (2)C5—H50.9500
O1—N11.309 (3)C6—C71.385 (4)
O2—N21.307 (3)C7—C81.383 (4)
N1—C51.361 (3)C7—H70.9500
N1—C11.366 (3)C8—C91.388 (4)
N2—C101.356 (3)C8—H80.9500
N2—C61.365 (3)C9—C101.371 (4)
C1—C21.386 (4)C9—H90.9500
C2—C31.385 (3)C10—H100.9500
C2—H20.9500C11—H11A0.9900
C3—C41.393 (4)C11—H11B0.9900
C1—S1—C1199.12 (11)C4—C5—H5119.4
C6—S2—C11102.00 (12)N2—C6—C7120.1 (2)
O1—N1—C5120.8 (2)N2—C6—S2110.72 (19)
O1—N1—C1118.8 (2)C7—C6—S2129.16 (18)
C5—N1—C1120.4 (2)C8—C7—C6119.6 (2)
O2—N2—C10121.2 (2)C8—C7—H7120.2
O2—N2—C6118.6 (2)C6—C7—H7120.2
C10—N2—C6120.2 (2)C7—C8—C9119.5 (3)
N1—C1—C2120.1 (2)C7—C8—H8120.2
N1—C1—S1111.44 (18)C9—C8—H8120.2
C2—C1—S1128.50 (19)C10—C9—C8119.4 (3)
C3—C2—C1119.5 (2)C10—C9—H9120.3
C3—C2—H2120.3C8—C9—H9120.3
C1—C2—H2120.3N2—C10—C9121.1 (2)
C2—C3—C4120.0 (3)N2—C10—H10119.4
C2—C3—H3120.0C9—C10—H10119.4
C4—C3—H3120.0S2—C11—S1110.79 (14)
C5—C4—C3119.0 (3)S2—C11—H11A109.5
C5—C4—H4120.5S1—C11—H11A109.5
C3—C4—H4120.5S2—C11—H11B109.5
N1—C5—C4121.2 (3)S1—C11—H11B109.5
N1—C5—H5119.4H11A—C11—H11B108.1
O1—N1—C1—C2179.7 (2)C10—N2—C6—C71.9 (3)
C5—N1—C1—C20.4 (4)O2—N2—C6—S20.4 (3)
O1—N1—C1—S10.4 (3)C10—N2—C6—S2179.0 (2)
C5—N1—C1—S1179.46 (19)C11—S2—C6—N2179.53 (17)
C11—S1—C1—N1179.00 (19)C11—S2—C6—C71.5 (3)
C11—S1—C1—C20.9 (3)N2—C6—C7—C80.5 (4)
N1—C1—C2—C30.5 (4)S2—C6—C7—C8179.4 (2)
S1—C1—C2—C3179.6 (2)C6—C7—C8—C90.7 (4)
C1—C2—C3—C40.7 (4)C7—C8—C9—C100.5 (4)
C2—C3—C4—C50.1 (4)O2—N2—C10—C9178.4 (3)
O1—N1—C5—C4179.0 (3)C6—N2—C10—C92.2 (4)
C1—N1—C5—C41.2 (4)C8—C9—C10—N20.9 (4)
C3—C4—C5—N11.0 (4)C6—S2—C11—S171.09 (14)
O2—N2—C6—C7178.7 (2)C1—S1—C11—S2170.31 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.373.292 (3)165
C9—H9···O2ii0.952.703.405 (4)131
C11—H11A···O1iii0.992.333.159 (3)141
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+2; (iii) x+2, y+1/2, z+1.
 

Funding information

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmoedo-Portela, A., Carballo, R., Casas, J. S., García-Martínez, E., Gómez-Alonso, C., Sánchez-González, A., Sordo, J. & Vázquez-López, E. M. (2002). Z. Anorg. Allg. Chem. 628, 939–950.  CAS Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, V. D. de, de Lima, G. M., Filgueiras, C. A. L. & Gambardella, M. T. P. (2002). J. Mol. Struct. 609, 199–203.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRybarczyk-Pirek, A. J., Łukomska-Rogala, M., Wzgarda-Raj, K., Wojtulewski, S. & Palusiak, M. (2018). Cryst. Growth Des. 18, 7373–7382.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2018). University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds