organic compounds
6-[(tert-Butyldimethylsilyl)oxy]-3-ethenyl-7-methoxy-4-[(trimethylsilyl)ethynyl]naphtho[2,3-c]furan-1(3H)-one
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
The tricyclic core in the title compound, C26H34O4Si2, shows disorder of the furan ring and deviates slightly from planarity, with the largest displacement from the least-squares plane [0.166 (2) Å] for the major disordered part of the methine C atom. To this C atom the likewise disordered vinyl group is attached, lying nearly perpendicular to the tricyclic core. In the crystal, mutual C—H⋯π interactions between the methine group of the furan ring and the central ring of the tricyclic core of an adjacent molecule lead to inversion-related dimers.
Keywords: crystal structure; notoincisol; ethynyl group.
CCDC reference: 1984687
Structure description
Notoincisol B is a naturally occurring polyenyne-hybrid compound, which was found to act as a promising partial agonist at the nuclear receptor PPARγ (Liu et al., 2014). Attempting to make this novel scaffold synthetically accessible, a biomimetic pathway towards notoincisol B has been investigated (Kremsmayr, 2017). Within the proposed synthetic route, the lactone analogue of the characteristic tricyclic notoincisol B core structure was obtained via an intramolecular dehydro-inverse-electron-demand Diels–Alder-type reaction between a styrene and an alkyne moiety. of a simplified notoincisol B model precursor substrate afforded the title compound, along with equal quantities of a regioisomer and proved the synthetic feasibility of this key-step reaction (Fig. 1).
The molecular structure of the title compound is displayed in Fig. 2. A naphthalene entity to which a furan ring is fused makes up the tricyclic core of the molecule, consisting of twelve C atoms (C1–C12) and one O atom (O1). Parts of the furan ring (O1, C12) and the attached vinyl group (C13, C14) are disordered over two sets of sites. The tricyclic core is non-planar, with an r.m.s. deviation of fitted atoms from the least-squares plane of 0.0778 Å. The highest deviation is 0.166 (2) Å for C12 (considering the major disordered part), which is also the atom to which the vinyl group (—C13=C14) is attached. The latter is nearly perpendicular to the tricyclic core, with a dihedral angle of 85.2 (2)° between the two moieties. The angle between the C10 atom of the tricyclic core and the attached ethynyl group (—C15≡C16—) is slightly bent [175.98 (16)°], just like the angle between the ethynyl group and the Si1 atom of the trimethylsilyl (TMS) group [178.46 (16)°]. Fig. 3 shows the packing of individual molecules in the crystal. The bulky tert-(butyldimethylsilyl)oxy (TBDMSO) and trimethylsilyl (TMS) groups prevent π–π stacking, and the only remarkable intermolecular interaction between two adjacent molecules are mutual weak C—H⋯π contacts. This involves the methine group (C12—H12) of the furan ring and the centroid of the central ring (C2,–C11; Cg1) of the tricyclic core [C12—H12⋯Cg1(1 − x, 1 − y, 1 − z); H12⋯Cg1 = 2.63 Å, C12⋯Cg1 = 3.622 (3) Å, C12—H12⋯Cg1 = 171°]. In this way, inversion-related dimers are formed (Fig. 3).
Synthesis and crystallization
The synthesis followed a reported procedure (Kocsis & Brummond, 2014). A 20 ml microwave vial, equipped with a stirring bar, was charged with 7-(trimethylsilyl)hepta-1-en-4,6-diyn-3-yl (E)-3-{4-[(tert-butyldimethylsilyl)oxy]-3-methoxyphenyl}acrylate (0.400 g, 0.85 mmol, 1.00 equiv.), m-xylene (12.6 ml) and PhNO2 (1.4 ml 10% (v/v%) in m-xylene, final molarity c = 0.06 M). The vial was sealed and heated via microwave irradiation to 453 K for 15 min, resulting in a colour change from a light-green to a dark-brown solution (reaction progress was checked with TLC, Lp: EtOAc = 10:1). Upon completion, the crude mixture was transferred into a flask and solvents were evaporated under high vacuum at 333–343 K. The two resulting regioisomers were separated via flash (180 g SiO2, flow rate 50 ml min−1, using gradient Lp to Lp: EtOAc = 10:1 in 30 min, then 10:1 isocratically 10 min), affording 0.160 g (40%) of the title compound as a beige solid and 0.151 g (38%) of its regioisomer as a yellow oil. The title compound was recrystallized from ligroin, affording colourless material.
1H NMR (400 MHz, CDCl3). δ = 0.27 (s, 6H, TBDMS [–Si(CH3)2]}, 0.32 (s, 9H, TMS [–Si(CH3)3]}, 1.05 {s, 9H, TBDMS [–SiC(CH3)3]}, 3.97 (s, 3H, –OCH3), 5.37–5.51 (m, 1H, H1cis), 5.59–5.77 (m, 1H, H1trans), 5.92–6.12 (m, 2H, H2, H3), 7.23 (s, 1H, HAr), 7.80 (s, 1H, HAr), 8.23 (s, 1H, HAr) p.p.m.
13C NMR (150 MHz, CDCl3). δ = −4.44 [q, TBDMS (–SiCH3)], −4.43 [q, TBDMS [–SiCH3)], 0.0 {q, TMS [–Si(CH3)3]}, 18.8 {s, TBDMS [–SiC(CH3)3]}, 25.8 {q, TBDMS [–SiC(CH3)3]}, 55.8 (q, –OCH3), 82.2 (d, C3), 98.5 (s, CAr or Calkyne), 106.8 (s, CAr or Calkyne), 108.3 (d, CAr), 113.5 (s, CAr or Calkyne), 114.6 (d, CAr), 119.8 (t, C1), 121.5 (s, CAr), 125.3 (d, CAr), 129.9 (s, CAr), 132.0 (d, C2), 133.5 (s, CAr), 143.3 (s, CAr), 149.7 (s, CAr), 152.9 (s, CAr), 170.3 (s, C9′) p.p.m.
Refinement
Crystal data, data collection and structure . Parts of the furan ring (O1, C12) and the attached vinyl group (C13, C14) are disordered over two sets of sites, with a refined occupancy ratio of 0.793 (5):0.207 (5). The disordered part with the minor contribution is assigned a prime character.
details are summarized in Table 1Structural data
CCDC reference: 1984687
https://doi.org/10.1107/S2414314620002242/bt4089sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620002242/bt4089Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C26H34O4Si2 | F(000) = 1000 |
Mr = 466.71 | Dx = 1.180 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2628 (6) Å | Cell parameters from 8947 reflections |
b = 20.5653 (13) Å | θ = 2.4–28.1° |
c = 13.3923 (8) Å | µ = 0.16 mm−1 |
β = 111.6378 (15)° | T = 100 K |
V = 2627.4 (3) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.20 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4923 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.0°, θmin = 2.4° |
Tmin = 0.691, Tmax = 0.746 | h = −13→13 |
29229 measured reflections | k = −27→27 |
6339 independent reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0483P)2 + 1.0291P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
6339 reflections | Δρmax = 0.42 e Å−3 |
326 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Si1 | 0.20791 (5) | 0.30679 (2) | 0.57403 (3) | 0.02248 (11) | |
C1 | 0.7133 (2) | 0.48696 (8) | 0.37326 (13) | 0.0302 (4) | |
Si2 | 0.67617 (4) | 0.34083 (2) | 0.98331 (3) | 0.01647 (10) | |
O2 | 0.79449 (14) | 0.51514 (6) | 0.34281 (9) | 0.0338 (3) | |
C2 | 0.73267 (18) | 0.46099 (7) | 0.48068 (12) | 0.0231 (3) | |
O3 | 0.81087 (11) | 0.36239 (6) | 0.94866 (8) | 0.0237 (2) | |
C3 | 0.84777 (17) | 0.46481 (7) | 0.57425 (13) | 0.0217 (3) | |
H3 | 0.931227 | 0.485539 | 0.575825 | 0.026* | |
O4 | 1.03876 (11) | 0.42083 (5) | 0.96159 (9) | 0.0237 (2) | |
C4 | 0.83931 (16) | 0.43714 (7) | 0.66845 (12) | 0.0184 (3) | |
C5 | 0.95276 (16) | 0.44210 (7) | 0.76950 (12) | 0.0206 (3) | |
H5 | 1.037576 | 0.462529 | 0.773525 | 0.025* | |
C6 | 0.94047 (16) | 0.41766 (7) | 0.86068 (12) | 0.0193 (3) | |
C7 | 0.81345 (16) | 0.38558 (7) | 0.85467 (11) | 0.0183 (3) | |
C8 | 0.70463 (16) | 0.37984 (7) | 0.75858 (12) | 0.0181 (3) | |
H8 | 0.621620 | 0.358099 | 0.755637 | 0.022* | |
C9 | 0.71283 (16) | 0.40565 (7) | 0.66304 (11) | 0.0168 (3) | |
C10 | 0.59432 (17) | 0.40258 (7) | 0.56348 (12) | 0.0203 (3) | |
C11 | 0.60720 (18) | 0.43166 (8) | 0.47435 (12) | 0.0256 (4) | |
C14 | 0.2766 (2) | 0.38807 (11) | 0.27074 (15) | 0.0403 (5) | |
H14A | 0.228359 | 0.423527 | 0.286908 | 0.048* | 0.793 (5) |
H14B | 0.225496 | 0.351833 | 0.231592 | 0.048* | 0.793 (5) |
H14C | 0.299781 | 0.344558 | 0.260154 | 0.048* | 0.207 (5) |
H14D | 0.181140 | 0.401044 | 0.247364 | 0.048* | 0.207 (5) |
C15 | 0.46697 (17) | 0.37325 (8) | 0.56158 (12) | 0.0230 (3) | |
C16 | 0.36373 (18) | 0.34782 (8) | 0.56664 (12) | 0.0260 (4) | |
C17 | 0.0501 (2) | 0.34828 (10) | 0.47995 (15) | 0.0389 (5) | |
H17A | 0.048349 | 0.393362 | 0.503155 | 0.058* | |
H17B | −0.034178 | 0.325613 | 0.479467 | 0.058* | |
H17C | 0.052507 | 0.347805 | 0.407497 | 0.058* | |
C18 | 0.2142 (2) | 0.22140 (9) | 0.53083 (16) | 0.0364 (4) | |
H18A | 0.214109 | 0.220951 | 0.457613 | 0.055* | |
H18B | 0.132165 | 0.197743 | 0.532449 | 0.055* | |
H18C | 0.299819 | 0.200466 | 0.579619 | 0.055* | |
C19 | 0.21649 (19) | 0.31364 (9) | 0.71450 (13) | 0.0318 (4) | |
H19A | 0.295737 | 0.288043 | 0.761874 | 0.048* | |
H19B | 0.129237 | 0.297148 | 0.719013 | 0.048* | |
H19C | 0.229034 | 0.359329 | 0.736794 | 0.048* | |
C20 | 0.54271 (18) | 0.40670 (8) | 0.94724 (13) | 0.0282 (4) | |
H20A | 0.584916 | 0.446626 | 0.985485 | 0.042* | |
H20B | 0.464002 | 0.393737 | 0.967605 | 0.042* | |
H20C | 0.508864 | 0.414466 | 0.869624 | 0.042* | |
C21 | 0.59902 (19) | 0.26318 (8) | 0.91747 (13) | 0.0282 (4) | |
H21A | 0.555877 | 0.269748 | 0.839637 | 0.042* | |
H21B | 0.527592 | 0.248566 | 0.944850 | 0.042* | |
H21C | 0.672816 | 0.230206 | 0.933128 | 0.042* | |
C22 | 0.6523 (2) | 0.31159 (11) | 1.17885 (15) | 0.0403 (5) | |
H22A | 0.606496 | 0.270853 | 1.146464 | 0.060* | |
H22B | 0.582055 | 0.346268 | 1.163324 | 0.060* | |
H22C | 0.697512 | 0.306043 | 1.256777 | 0.060* | |
C23 | 0.76275 (17) | 0.32974 (8) | 1.13195 (12) | 0.0214 (3) | |
C24 | 0.87241 (19) | 0.27524 (9) | 1.15756 (14) | 0.0316 (4) | |
H24A | 0.943282 | 0.286281 | 1.127394 | 0.047* | |
H24B | 0.826462 | 0.234372 | 1.126024 | 0.047* | |
H24C | 0.917511 | 0.270285 | 1.235607 | 0.047* | |
C25 | 0.8359 (2) | 0.39328 (9) | 1.18330 (14) | 0.0378 (5) | |
H25A | 0.878708 | 0.387841 | 1.261393 | 0.057* | |
H25B | 0.766840 | 0.428533 | 1.166339 | 0.057* | |
H25C | 0.908657 | 0.403970 | 1.154917 | 0.057* | |
C26 | 1.16625 (17) | 0.45412 (9) | 0.97460 (14) | 0.0316 (4) | |
H26A | 1.210789 | 0.433590 | 0.929264 | 0.047* | |
H26B | 1.229676 | 0.451859 | 1.049976 | 0.047* | |
H26C | 1.145690 | 0.499728 | 0.953463 | 0.047* | |
O1 | 0.5726 (3) | 0.47723 (11) | 0.30613 (17) | 0.0254 (5) | 0.793 (5) |
C12 | 0.4924 (3) | 0.44639 (12) | 0.36387 (16) | 0.0206 (5) | 0.793 (5) |
H12 | 0.424850 | 0.478621 | 0.373199 | 0.025* | 0.793 (5) |
C13 | 0.4132 (2) | 0.38915 (10) | 0.30236 (14) | 0.0227 (6) | 0.793 (5) |
H13 | 0.461811 | 0.353786 | 0.286346 | 0.027* | 0.793 (5) |
O1' | 0.6138 (9) | 0.4537 (4) | 0.3060 (6) | 0.0201 (16) | 0.207 (5) |
C12' | 0.5382 (9) | 0.4140 (4) | 0.3596 (6) | 0.018 (2) | 0.207 (5) |
H12' | 0.543941 | 0.366360 | 0.346803 | 0.022* | 0.207 (5) |
C13' | 0.3928 (10) | 0.4372 (4) | 0.3254 (6) | 0.023 (2) | 0.207 (5) |
H13' | 0.371872 | 0.480928 | 0.336729 | 0.028* | 0.207 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0213 (2) | 0.0254 (2) | 0.0191 (2) | −0.00752 (18) | 0.00542 (17) | −0.00023 (17) |
C1 | 0.0448 (11) | 0.0291 (9) | 0.0220 (8) | −0.0110 (8) | 0.0187 (8) | −0.0028 (7) |
Si2 | 0.0167 (2) | 0.0190 (2) | 0.01550 (19) | −0.00173 (16) | 0.00805 (16) | −0.00036 (15) |
O2 | 0.0491 (8) | 0.0330 (7) | 0.0283 (6) | −0.0114 (6) | 0.0250 (6) | 0.0016 (5) |
C2 | 0.0345 (9) | 0.0204 (8) | 0.0206 (8) | −0.0043 (7) | 0.0175 (7) | −0.0002 (6) |
O3 | 0.0188 (6) | 0.0348 (6) | 0.0182 (5) | −0.0029 (5) | 0.0077 (4) | 0.0081 (5) |
C3 | 0.0254 (8) | 0.0190 (7) | 0.0273 (8) | −0.0009 (6) | 0.0176 (7) | 0.0015 (6) |
O4 | 0.0158 (5) | 0.0290 (6) | 0.0247 (6) | −0.0021 (4) | 0.0058 (4) | 0.0078 (5) |
C4 | 0.0225 (8) | 0.0158 (7) | 0.0222 (7) | 0.0009 (6) | 0.0145 (6) | 0.0011 (6) |
C5 | 0.0173 (7) | 0.0197 (7) | 0.0280 (8) | 0.0004 (6) | 0.0119 (6) | 0.0041 (6) |
C6 | 0.0167 (7) | 0.0185 (7) | 0.0235 (7) | 0.0031 (6) | 0.0082 (6) | 0.0036 (6) |
C7 | 0.0199 (7) | 0.0196 (7) | 0.0189 (7) | 0.0017 (6) | 0.0113 (6) | 0.0043 (6) |
C8 | 0.0197 (7) | 0.0185 (7) | 0.0198 (7) | −0.0026 (6) | 0.0116 (6) | 0.0006 (6) |
C9 | 0.0216 (8) | 0.0144 (6) | 0.0186 (7) | 0.0004 (6) | 0.0124 (6) | −0.0006 (5) |
C10 | 0.0283 (8) | 0.0183 (7) | 0.0182 (7) | −0.0051 (6) | 0.0129 (6) | −0.0022 (6) |
C11 | 0.0351 (10) | 0.0261 (8) | 0.0175 (7) | −0.0088 (7) | 0.0118 (7) | −0.0030 (6) |
C14 | 0.0319 (10) | 0.0516 (12) | 0.0354 (10) | 0.0004 (9) | 0.0103 (8) | −0.0008 (9) |
C15 | 0.0316 (9) | 0.0249 (8) | 0.0125 (7) | −0.0071 (7) | 0.0081 (6) | −0.0014 (6) |
C16 | 0.0310 (9) | 0.0302 (9) | 0.0160 (7) | −0.0090 (7) | 0.0078 (7) | −0.0001 (6) |
C17 | 0.0307 (10) | 0.0473 (12) | 0.0315 (10) | 0.0019 (9) | 0.0030 (8) | 0.0040 (8) |
C18 | 0.0412 (11) | 0.0298 (9) | 0.0421 (11) | −0.0103 (8) | 0.0199 (9) | −0.0053 (8) |
C19 | 0.0276 (9) | 0.0456 (11) | 0.0222 (8) | −0.0134 (8) | 0.0092 (7) | 0.0010 (7) |
C20 | 0.0246 (9) | 0.0318 (9) | 0.0262 (8) | 0.0051 (7) | 0.0068 (7) | 0.0001 (7) |
C21 | 0.0359 (10) | 0.0259 (8) | 0.0241 (8) | −0.0076 (7) | 0.0126 (7) | −0.0044 (7) |
C22 | 0.0421 (11) | 0.0612 (13) | 0.0272 (9) | 0.0061 (10) | 0.0239 (9) | 0.0098 (9) |
C23 | 0.0260 (8) | 0.0239 (8) | 0.0164 (7) | 0.0010 (6) | 0.0104 (6) | 0.0017 (6) |
C24 | 0.0342 (10) | 0.0336 (9) | 0.0274 (9) | 0.0094 (8) | 0.0118 (8) | 0.0089 (7) |
C25 | 0.0518 (12) | 0.0310 (10) | 0.0190 (8) | −0.0006 (9) | −0.0004 (8) | −0.0029 (7) |
C26 | 0.0177 (8) | 0.0393 (10) | 0.0333 (9) | −0.0071 (7) | 0.0041 (7) | 0.0079 (8) |
O1 | 0.0336 (13) | 0.0260 (11) | 0.0198 (8) | −0.0034 (8) | 0.0135 (8) | 0.0048 (8) |
C12 | 0.0278 (14) | 0.0183 (11) | 0.0186 (10) | 0.0009 (10) | 0.0119 (10) | 0.0021 (8) |
C13 | 0.0338 (13) | 0.0223 (11) | 0.0141 (9) | 0.0017 (8) | 0.0113 (9) | 0.0005 (8) |
O1' | 0.023 (4) | 0.029 (4) | 0.016 (3) | −0.004 (3) | 0.016 (3) | 0.002 (3) |
C12' | 0.028 (5) | 0.015 (4) | 0.018 (4) | 0.002 (3) | 0.016 (3) | 0.006 (3) |
C13' | 0.029 (5) | 0.020 (4) | 0.022 (4) | 0.002 (3) | 0.011 (4) | 0.001 (3) |
Si1—C16 | 1.8427 (17) | C17—H17A | 0.9800 |
Si1—C17 | 1.8533 (19) | C17—H17B | 0.9800 |
Si1—C19 | 1.8559 (17) | C17—H17C | 0.9800 |
Si1—C18 | 1.8575 (19) | C18—H18A | 0.9800 |
C1—O2 | 1.203 (2) | C18—H18B | 0.9800 |
C1—O1' | 1.282 (8) | C18—H18C | 0.9800 |
C1—O1 | 1.405 (3) | C19—H19A | 0.9800 |
C1—C2 | 1.478 (2) | C19—H19B | 0.9800 |
Si2—O3 | 1.6721 (11) | C19—H19C | 0.9800 |
Si2—C21 | 1.8546 (17) | C20—H20A | 0.9800 |
Si2—C20 | 1.8592 (17) | C20—H20B | 0.9800 |
Si2—C23 | 1.8708 (15) | C20—H20C | 0.9800 |
C2—C3 | 1.371 (2) | C21—H21A | 0.9800 |
C2—C11 | 1.396 (2) | C21—H21B | 0.9800 |
O3—C7 | 1.3554 (17) | C21—H21C | 0.9800 |
C3—C4 | 1.415 (2) | C22—C23 | 1.531 (2) |
C3—H3 | 0.9500 | C22—H22A | 0.9800 |
O4—C6 | 1.3574 (18) | C22—H22B | 0.9800 |
O4—C26 | 1.4293 (19) | C22—H22C | 0.9800 |
C4—C5 | 1.427 (2) | C23—C24 | 1.535 (2) |
C4—C9 | 1.428 (2) | C23—C25 | 1.537 (2) |
C5—C6 | 1.369 (2) | C24—H24A | 0.9800 |
C5—H5 | 0.9500 | C24—H24B | 0.9800 |
C6—C7 | 1.437 (2) | C24—H24C | 0.9800 |
C7—C8 | 1.363 (2) | C25—H25A | 0.9800 |
C8—C9 | 1.4162 (19) | C25—H25B | 0.9800 |
C8—H8 | 0.9500 | C25—H25C | 0.9800 |
C9—C10 | 1.437 (2) | C26—H26A | 0.9800 |
C10—C11 | 1.384 (2) | C26—H26B | 0.9800 |
C10—C15 | 1.431 (2) | C26—H26C | 0.9800 |
C11—C12' | 1.481 (8) | O1—C12 | 1.465 (3) |
C11—C12 | 1.544 (3) | C12—C13 | 1.494 (3) |
C14—C13 | 1.307 (3) | C12—H12 | 1.0000 |
C14—C13' | 1.528 (9) | C13—H13 | 0.9500 |
C14—H14A | 0.9500 | O1'—C12' | 1.481 (10) |
C14—H14B | 0.9500 | C12'—C13' | 1.470 (13) |
C14—H14C | 0.9500 | C12'—H12' | 1.0000 |
C14—H14D | 0.9500 | C13'—H13' | 0.9500 |
C15—C16 | 1.206 (2) | ||
C16—Si1—C17 | 108.12 (9) | H18B—C18—H18C | 109.5 |
C16—Si1—C19 | 107.58 (7) | Si1—C19—H19A | 109.5 |
C17—Si1—C19 | 110.92 (9) | Si1—C19—H19B | 109.5 |
C16—Si1—C18 | 106.58 (8) | H19A—C19—H19B | 109.5 |
C17—Si1—C18 | 110.23 (9) | Si1—C19—H19C | 109.5 |
C19—Si1—C18 | 113.17 (9) | H19A—C19—H19C | 109.5 |
O2—C1—O1' | 119.4 (3) | H19B—C19—H19C | 109.5 |
O2—C1—O1 | 121.90 (16) | Si2—C20—H20A | 109.5 |
O2—C1—C2 | 129.99 (17) | Si2—C20—H20B | 109.5 |
O1'—C1—C2 | 106.1 (4) | H20A—C20—H20B | 109.5 |
O1—C1—C2 | 108.01 (15) | Si2—C20—H20C | 109.5 |
O3—Si2—C21 | 110.37 (7) | H20A—C20—H20C | 109.5 |
O3—Si2—C20 | 109.88 (7) | H20B—C20—H20C | 109.5 |
C21—Si2—C20 | 111.06 (8) | Si2—C21—H21A | 109.5 |
O3—Si2—C23 | 102.17 (6) | Si2—C21—H21B | 109.5 |
C21—Si2—C23 | 110.66 (7) | H21A—C21—H21B | 109.5 |
C20—Si2—C23 | 112.38 (7) | Si2—C21—H21C | 109.5 |
C3—C2—C11 | 123.00 (14) | H21A—C21—H21C | 109.5 |
C3—C2—C1 | 129.09 (15) | H21B—C21—H21C | 109.5 |
C11—C2—C1 | 107.88 (14) | C23—C22—H22A | 109.5 |
C7—O3—Si2 | 130.71 (10) | C23—C22—H22B | 109.5 |
C2—C3—C4 | 118.44 (14) | H22A—C22—H22B | 109.5 |
C2—C3—H3 | 120.8 | C23—C22—H22C | 109.5 |
C4—C3—H3 | 120.8 | H22A—C22—H22C | 109.5 |
C6—O4—C26 | 117.07 (12) | H22B—C22—H22C | 109.5 |
C3—C4—C5 | 121.33 (14) | C22—C23—C24 | 108.86 (14) |
C3—C4—C9 | 119.35 (14) | C22—C23—C25 | 109.68 (15) |
C5—C4—C9 | 119.28 (13) | C24—C23—C25 | 108.91 (15) |
C6—C5—C4 | 120.57 (14) | C22—C23—Si2 | 109.46 (12) |
C6—C5—H5 | 119.7 | C24—C23—Si2 | 110.38 (11) |
C4—C5—H5 | 119.7 | C25—C23—Si2 | 109.53 (11) |
O4—C6—C5 | 126.26 (14) | C23—C24—H24A | 109.5 |
O4—C6—C7 | 113.81 (13) | C23—C24—H24B | 109.5 |
C5—C6—C7 | 119.92 (14) | H24A—C24—H24B | 109.5 |
O3—C7—C8 | 123.82 (13) | C23—C24—H24C | 109.5 |
O3—C7—C6 | 115.95 (13) | H24A—C24—H24C | 109.5 |
C8—C7—C6 | 120.23 (13) | H24B—C24—H24C | 109.5 |
C7—C8—C9 | 121.31 (14) | C23—C25—H25A | 109.5 |
C7—C8—H8 | 119.3 | C23—C25—H25B | 109.5 |
C9—C8—H8 | 119.3 | H25A—C25—H25B | 109.5 |
C8—C9—C4 | 118.67 (13) | C23—C25—H25C | 109.5 |
C8—C9—C10 | 120.66 (13) | H25A—C25—H25C | 109.5 |
C4—C9—C10 | 120.63 (13) | H25B—C25—H25C | 109.5 |
C11—C10—C15 | 122.94 (14) | O4—C26—H26A | 109.5 |
C11—C10—C9 | 117.63 (14) | O4—C26—H26B | 109.5 |
C15—C10—C9 | 119.34 (13) | H26A—C26—H26B | 109.5 |
C10—C11—C2 | 120.90 (15) | O4—C26—H26C | 109.5 |
C10—C11—C12' | 128.9 (3) | H26A—C26—H26C | 109.5 |
C2—C11—C12' | 104.3 (3) | H26B—C26—H26C | 109.5 |
C10—C11—C12 | 129.02 (16) | C1—O1—C12 | 111.62 (18) |
C2—C11—C12 | 109.51 (14) | O1—C12—C13 | 110.33 (17) |
C13—C14—H14A | 120.0 | O1—C12—C11 | 102.26 (18) |
C13—C14—H14B | 120.0 | C13—C12—C11 | 116.20 (18) |
H14A—C14—H14B | 120.0 | O1—C12—H12 | 109.2 |
C13'—C14—H14C | 120.0 | C13—C12—H12 | 109.2 |
C13'—C14—H14D | 120.0 | C11—C12—H12 | 109.2 |
H14C—C14—H14D | 120.0 | C14—C13—C12 | 119.5 (2) |
C16—C15—C10 | 175.98 (16) | C14—C13—H13 | 120.2 |
C15—C16—Si1 | 178.46 (16) | C12—C13—H13 | 120.2 |
Si1—C17—H17A | 109.5 | C1—O1'—C12' | 112.2 (6) |
Si1—C17—H17B | 109.5 | C13'—C12'—O1' | 108.9 (7) |
H17A—C17—H17B | 109.5 | C13'—C12'—C11 | 106.6 (7) |
Si1—C17—H17C | 109.5 | O1'—C12'—C11 | 103.4 (6) |
H17A—C17—H17C | 109.5 | C13'—C12'—H12' | 112.5 |
H17B—C17—H17C | 109.5 | O1'—C12'—H12' | 112.5 |
Si1—C18—H18A | 109.5 | C11—C12'—H12' | 112.5 |
Si1—C18—H18B | 109.5 | C12'—C13'—C14 | 117.3 (6) |
H18A—C18—H18B | 109.5 | C12'—C13'—H13' | 121.4 |
Si1—C18—H18C | 109.5 | C14—C13'—H13' | 121.4 |
H18A—C18—H18C | 109.5 |
Acknowledgements
The X-ray centre of TU Wien is acknowledged for financial support and providing access to the single-crystal diffractometer.
References
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kocsis, L. S. & Brummond, K. M. (2014). Org. Lett. 16, 4158–4161. CrossRef CAS PubMed Google Scholar
Kremsmayr, T. (2017). Diploma thesis, TU Wien, Vienna, Austria. Google Scholar
Liu, X., Kunert, O., Blunder, M., Fakhrudin, N., Noha, S. M., Malainer, C., Schinkovitz, A., Heiss, E. H., Atanasov, A. G., Kollroser, M., Schuster, D., Dirsch, V. M. & Bauer, R. (2014). J. Nat. Prod. 77, 2513–2521. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.