organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-[(tert-Butyl­di­methyl­sil­yl)­­oxy]-3-ethenyl-7-meth­­oxy-4-[(tri­methyl­sil­yl)ethyn­yl]naphtho­[2,3-c]furan-1(3H)-one

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 15 February 2020; accepted 18 February 2020; online 21 February 2020)

The tricyclic core in the title compound, C26H34O4Si2, shows disorder of the furan ring and deviates slightly from planarity, with the largest displacement from the least-squares plane [0.166 (2) Å] for the major disordered part of the methine C atom. To this C atom the likewise disordered vinyl group is attached, lying nearly perpendicular to the tricyclic core. In the crystal, mutual C—H⋯π inter­actions between the methine group of the furan ring and the central ring of the tricyclic core of an adjacent mol­ecule lead to inversion-related dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Notoincisol B is a naturally occurring polyenyne-hybrid compound, which was found to act as a promising partial agonist at the nuclear receptor PPARγ (Liu et al., 2014[Liu, X., Kunert, O., Blunder, M., Fakhrudin, N., Noha, S. M., Malainer, C., Schinkovitz, A., Heiss, E. H., Atanasov, A. G., Kollroser, M., Schuster, D., Dirsch, V. M. & Bauer, R. (2014). J. Nat. Prod. 77, 2513-2521.]). Attempting to make this novel scaffold synthetically accessible, a biomimetic pathway towards notoincisol B has been investigated (Kremsmayr, 2017[Kremsmayr, T. (2017). Diploma thesis, TU Wien, Vienna, Austria.]). Within the proposed synthetic route, the lactone analogue of the characteristic tricyclic notoincisol B core structure was obtained via an intra­molecular de­hydro-inverse-electron-demand Diels–Alder-type cyclization reaction between a styrene and an alkyne moiety. Cyclization of a simplified notoincisol B model precursor substrate afforded the title compound, along with equal qu­anti­ties of a regioisomer and proved the synthetic feasibility of this key-step reaction (Fig. 1[link]).

[Figure 1]
Figure 1
Reaction scheme to afford the title compound along with its regioisomer.

The mol­ecular structure of the title compound is displayed in Fig. 2[link]. A naphthalene entity to which a furan ring is fused makes up the tricyclic core of the mol­ecule, consisting of twelve C atoms (C1–C12) and one O atom (O1). Parts of the furan ring (O1, C12) and the attached vinyl group (C13, C14) are disordered over two sets of sites. The tricyclic core is non-planar, with an r.m.s. deviation of fitted atoms from the least-squares plane of 0.0778 Å. The highest deviation is 0.166 (2) Å for C12 (considering the major disordered part), which is also the atom to which the vinyl group (—C13=C14) is attached. The latter is nearly perpendicular to the tricyclic core, with a dihedral angle of 85.2 (2)° between the two moieties. The angle between the C10 atom of the tricyclic core and the attached ethynyl group (—C15≡C16—) is slightly bent [175.98 (16)°], just like the angle between the ethynyl group and the Si1 atom of the tri­methyl­silyl (TMS) group [178.46 (16)°]. Fig. 3[link] shows the packing of individual mol­ecules in the crystal. The bulky tert-(butyl­dimethyl­sil­yl)­oxy (TBDMSO) and tri­methyl­silyl (TMS) groups prevent ππ stacking, and the only remarkable inter­molecular inter­action between two adjacent mol­ecules are mutual weak C—H⋯π contacts. This involves the methine group (C12—H12) of the furan ring and the centroid of the central ring (C2,–C11; Cg1) of the tricyclic core [C12—H12⋯Cg1(1 − x, 1 − y, 1 − z); H12⋯Cg1 = 2.63 Å, C12⋯Cg1 = 3.622 (3) Å, C12—H12⋯Cg1 = 171°]. In this way, inversion-related dimers are formed (Fig. 3[link]).

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids at the 50% probability level. The disordered part with a minor contribution is shown with open bonds.
[Figure 3]
Figure 3
View of the crystal packing along [100]. Mutual C—H⋯π inter­actions (green lines) lead to the formation of inversion-related dimers, as emphasized in the middle of the unit cell. For clarity, only the disordered part with major contribution is shown.

Synthesis and crystallization

The synthesis followed a reported procedure (Kocsis & Brummond, 2014[Kocsis, L. S. & Brummond, K. M. (2014). Org. Lett. 16, 4158-4161.]). A 20 ml microwave vial, equipped with a stirring bar, was charged with 7-(tri­methyl­sil­yl)hepta-1-en-4,6-diyn-3-yl (E)-3-{4-[(tert-butyl­dimethyl­sil­yl)­oxy]-3-meth­oxy­phen­yl}acrylate (0.400 g, 0.85 mmol, 1.00 equiv.), m-xylene (12.6 ml) and PhNO2 (1.4 ml 10% (v/v%) in m-xylene, final molarity c = 0.06 M). The vial was sealed and heated via microwave irradiation to 453 K for 15 min, resulting in a colour change from a light-green to a dark-brown solution (reaction progress was checked with TLC, Lp: EtOAc = 10:1). Upon completion, the crude mixture was transferred into a flask and solvents were evaporated under high vacuum at 333–343 K. The two resulting regioisomers were separated via flash chromatography (180 g SiO2, flow rate 50 ml min−1, using gradient Lp to Lp: EtOAc = 10:1 in 30 min, then 10:1 isocratically 10 min), affording 0.160 g (40%) of the title compound as a beige solid and 0.151 g (38%) of its regioisomer as a yellow oil. The title compound was recrystallized from ligroin, affording colourless material.

1H NMR (400 MHz, CDCl3). δ = 0.27 (s, 6H, TBDMS [–Si(CH3)2]}, 0.32 (s, 9H, TMS [–Si(CH3)3]}, 1.05 {s, 9H, TBDMS [–SiC(CH3)3]}, 3.97 (s, 3H, –OCH3), 5.37–5.51 (m, 1H, H1cis), 5.59–5.77 (m, 1H, H1trans), 5.92–6.12 (m, 2H, H2, H3), 7.23 (s, 1H, HAr), 7.80 (s, 1H, HAr), 8.23 (s, 1H, HAr) p.p.m.

13C NMR (150 MHz, CDCl3). δ = −4.44 [q, TBDMS (–SiCH3)], −4.43 [q, TBDMS [–SiCH3)], 0.0 {q, TMS [–Si(CH3)3]}, 18.8 {s, TBDMS [–SiC(CH3)3]}, 25.8 {q, TBDMS [–SiC(CH3)3]}, 55.8 (q, –OCH3), 82.2 (d, C3), 98.5 (s, CAr or Calkyne), 106.8 (s, CAr or Calkyne), 108.3 (d, CAr), 113.5 (s, CAr or Calkyne), 114.6 (d, CAr), 119.8 (t, C1), 121.5 (s, CAr), 125.3 (d, CAr), 129.9 (s, CAr), 132.0 (d, C2), 133.5 (s, CAr), 143.3 (s, CAr), 149.7 (s, CAr), 152.9 (s, CAr), 170.3 (s, C9′) p.p.m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Parts of the furan ring (O1, C12) and the attached vinyl group (C13, C14) are disordered over two sets of sites, with a refined occupancy ratio of 0.793 (5):0.207 (5). The disordered part with the minor contribution is assigned a prime character.

Table 1
Experimental details

Crystal data
Chemical formula C26H34O4Si2
Mr 466.71
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.2628 (6), 20.5653 (13), 13.3923 (8)
β (°) 111.6378 (15)
V3) 2627.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.20 × 0.20 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29229, 6339, 4923
Rint 0.038
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.02
No. of reflections 6339
No. of parameters 326
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

6-[(tert-Butyldimethylsilyl)oxy]-3-ethenyl-7-methoxy-4-[(trimethylsilyl)ethynyl]naphtho[2,3-c]furan-1(3H)-one top
Crystal data top
C26H34O4Si2F(000) = 1000
Mr = 466.71Dx = 1.180 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.2628 (6) ÅCell parameters from 8947 reflections
b = 20.5653 (13) Åθ = 2.4–28.1°
c = 13.3923 (8) ŵ = 0.16 mm1
β = 111.6378 (15)°T = 100 K
V = 2627.4 (3) Å3Block, colourless
Z = 40.20 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4923 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.0°, θmin = 2.4°
Tmin = 0.691, Tmax = 0.746h = 1313
29229 measured reflectionsk = 2727
6339 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.0291P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6339 reflectionsΔρmax = 0.42 e Å3
326 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.20791 (5)0.30679 (2)0.57403 (3)0.02248 (11)
C10.7133 (2)0.48696 (8)0.37326 (13)0.0302 (4)
Si20.67617 (4)0.34083 (2)0.98331 (3)0.01647 (10)
O20.79449 (14)0.51514 (6)0.34281 (9)0.0338 (3)
C20.73267 (18)0.46099 (7)0.48068 (12)0.0231 (3)
O30.81087 (11)0.36239 (6)0.94866 (8)0.0237 (2)
C30.84777 (17)0.46481 (7)0.57425 (13)0.0217 (3)
H30.9312270.4855390.5758250.026*
O41.03876 (11)0.42083 (5)0.96159 (9)0.0237 (2)
C40.83931 (16)0.43714 (7)0.66845 (12)0.0184 (3)
C50.95276 (16)0.44210 (7)0.76950 (12)0.0206 (3)
H51.0375760.4625290.7735250.025*
C60.94047 (16)0.41766 (7)0.86068 (12)0.0193 (3)
C70.81345 (16)0.38558 (7)0.85467 (11)0.0183 (3)
C80.70463 (16)0.37984 (7)0.75858 (12)0.0181 (3)
H80.6216200.3580990.7556370.022*
C90.71283 (16)0.40565 (7)0.66304 (11)0.0168 (3)
C100.59432 (17)0.40258 (7)0.56348 (12)0.0203 (3)
C110.60720 (18)0.43166 (8)0.47435 (12)0.0256 (4)
C140.2766 (2)0.38807 (11)0.27074 (15)0.0403 (5)
H14A0.2283590.4235270.2869080.048*0.793 (5)
H14B0.2254960.3518330.2315920.048*0.793 (5)
H14C0.2997810.3445580.2601540.048*0.207 (5)
H14D0.1811400.4010440.2473640.048*0.207 (5)
C150.46697 (17)0.37325 (8)0.56158 (12)0.0230 (3)
C160.36373 (18)0.34782 (8)0.56664 (12)0.0260 (4)
C170.0501 (2)0.34828 (10)0.47995 (15)0.0389 (5)
H17A0.0483490.3933620.5031550.058*
H17B0.0341780.3256130.4794670.058*
H17C0.0525070.3478050.4074970.058*
C180.2142 (2)0.22140 (9)0.53083 (16)0.0364 (4)
H18A0.2141090.2209510.4576130.055*
H18B0.1321650.1977430.5324490.055*
H18C0.2998190.2004660.5796190.055*
C190.21649 (19)0.31364 (9)0.71450 (13)0.0318 (4)
H19A0.2957370.2880430.7618740.048*
H19B0.1292370.2971480.7190130.048*
H19C0.2290340.3593290.7367940.048*
C200.54271 (18)0.40670 (8)0.94724 (13)0.0282 (4)
H20A0.5849160.4466260.9854850.042*
H20B0.4640020.3937370.9676050.042*
H20C0.5088640.4144660.8696240.042*
C210.59902 (19)0.26318 (8)0.91747 (13)0.0282 (4)
H21A0.5558770.2697480.8396370.042*
H21B0.5275920.2485660.9448500.042*
H21C0.6728160.2302060.9331280.042*
C220.6523 (2)0.31159 (11)1.17885 (15)0.0403 (5)
H22A0.6064960.2708531.1464640.060*
H22B0.5820550.3462681.1633240.060*
H22C0.6975120.3060431.2567770.060*
C230.76275 (17)0.32974 (8)1.13195 (12)0.0214 (3)
C240.87241 (19)0.27524 (9)1.15756 (14)0.0316 (4)
H24A0.9432820.2862811.1273940.047*
H24B0.8264620.2343721.1260240.047*
H24C0.9175110.2702851.2356070.047*
C250.8359 (2)0.39328 (9)1.18330 (14)0.0378 (5)
H25A0.8787080.3878411.2613930.057*
H25B0.7668400.4285331.1663390.057*
H25C0.9086570.4039701.1549170.057*
C261.16625 (17)0.45412 (9)0.97460 (14)0.0316 (4)
H26A1.2107890.4335900.9292640.047*
H26B1.2296760.4518591.0499760.047*
H26C1.1456900.4997280.9534630.047*
O10.5726 (3)0.47723 (11)0.30613 (17)0.0254 (5)0.793 (5)
C120.4924 (3)0.44639 (12)0.36387 (16)0.0206 (5)0.793 (5)
H120.4248500.4786210.3731990.025*0.793 (5)
C130.4132 (2)0.38915 (10)0.30236 (14)0.0227 (6)0.793 (5)
H130.4618110.3537860.2863460.027*0.793 (5)
O1'0.6138 (9)0.4537 (4)0.3060 (6)0.0201 (16)0.207 (5)
C12'0.5382 (9)0.4140 (4)0.3596 (6)0.018 (2)0.207 (5)
H12'0.5439410.3663600.3468030.022*0.207 (5)
C13'0.3928 (10)0.4372 (4)0.3254 (6)0.023 (2)0.207 (5)
H13'0.3718720.4809280.3367290.028*0.207 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0213 (2)0.0254 (2)0.0191 (2)0.00752 (18)0.00542 (17)0.00023 (17)
C10.0448 (11)0.0291 (9)0.0220 (8)0.0110 (8)0.0187 (8)0.0028 (7)
Si20.0167 (2)0.0190 (2)0.01550 (19)0.00173 (16)0.00805 (16)0.00036 (15)
O20.0491 (8)0.0330 (7)0.0283 (6)0.0114 (6)0.0250 (6)0.0016 (5)
C20.0345 (9)0.0204 (8)0.0206 (8)0.0043 (7)0.0175 (7)0.0002 (6)
O30.0188 (6)0.0348 (6)0.0182 (5)0.0029 (5)0.0077 (4)0.0081 (5)
C30.0254 (8)0.0190 (7)0.0273 (8)0.0009 (6)0.0176 (7)0.0015 (6)
O40.0158 (5)0.0290 (6)0.0247 (6)0.0021 (4)0.0058 (4)0.0078 (5)
C40.0225 (8)0.0158 (7)0.0222 (7)0.0009 (6)0.0145 (6)0.0011 (6)
C50.0173 (7)0.0197 (7)0.0280 (8)0.0004 (6)0.0119 (6)0.0041 (6)
C60.0167 (7)0.0185 (7)0.0235 (7)0.0031 (6)0.0082 (6)0.0036 (6)
C70.0199 (7)0.0196 (7)0.0189 (7)0.0017 (6)0.0113 (6)0.0043 (6)
C80.0197 (7)0.0185 (7)0.0198 (7)0.0026 (6)0.0116 (6)0.0006 (6)
C90.0216 (8)0.0144 (6)0.0186 (7)0.0004 (6)0.0124 (6)0.0006 (5)
C100.0283 (8)0.0183 (7)0.0182 (7)0.0051 (6)0.0129 (6)0.0022 (6)
C110.0351 (10)0.0261 (8)0.0175 (7)0.0088 (7)0.0118 (7)0.0030 (6)
C140.0319 (10)0.0516 (12)0.0354 (10)0.0004 (9)0.0103 (8)0.0008 (9)
C150.0316 (9)0.0249 (8)0.0125 (7)0.0071 (7)0.0081 (6)0.0014 (6)
C160.0310 (9)0.0302 (9)0.0160 (7)0.0090 (7)0.0078 (7)0.0001 (6)
C170.0307 (10)0.0473 (12)0.0315 (10)0.0019 (9)0.0030 (8)0.0040 (8)
C180.0412 (11)0.0298 (9)0.0421 (11)0.0103 (8)0.0199 (9)0.0053 (8)
C190.0276 (9)0.0456 (11)0.0222 (8)0.0134 (8)0.0092 (7)0.0010 (7)
C200.0246 (9)0.0318 (9)0.0262 (8)0.0051 (7)0.0068 (7)0.0001 (7)
C210.0359 (10)0.0259 (8)0.0241 (8)0.0076 (7)0.0126 (7)0.0044 (7)
C220.0421 (11)0.0612 (13)0.0272 (9)0.0061 (10)0.0239 (9)0.0098 (9)
C230.0260 (8)0.0239 (8)0.0164 (7)0.0010 (6)0.0104 (6)0.0017 (6)
C240.0342 (10)0.0336 (9)0.0274 (9)0.0094 (8)0.0118 (8)0.0089 (7)
C250.0518 (12)0.0310 (10)0.0190 (8)0.0006 (9)0.0004 (8)0.0029 (7)
C260.0177 (8)0.0393 (10)0.0333 (9)0.0071 (7)0.0041 (7)0.0079 (8)
O10.0336 (13)0.0260 (11)0.0198 (8)0.0034 (8)0.0135 (8)0.0048 (8)
C120.0278 (14)0.0183 (11)0.0186 (10)0.0009 (10)0.0119 (10)0.0021 (8)
C130.0338 (13)0.0223 (11)0.0141 (9)0.0017 (8)0.0113 (9)0.0005 (8)
O1'0.023 (4)0.029 (4)0.016 (3)0.004 (3)0.016 (3)0.002 (3)
C12'0.028 (5)0.015 (4)0.018 (4)0.002 (3)0.016 (3)0.006 (3)
C13'0.029 (5)0.020 (4)0.022 (4)0.002 (3)0.011 (4)0.001 (3)
Geometric parameters (Å, º) top
Si1—C161.8427 (17)C17—H17A0.9800
Si1—C171.8533 (19)C17—H17B0.9800
Si1—C191.8559 (17)C17—H17C0.9800
Si1—C181.8575 (19)C18—H18A0.9800
C1—O21.203 (2)C18—H18B0.9800
C1—O1'1.282 (8)C18—H18C0.9800
C1—O11.405 (3)C19—H19A0.9800
C1—C21.478 (2)C19—H19B0.9800
Si2—O31.6721 (11)C19—H19C0.9800
Si2—C211.8546 (17)C20—H20A0.9800
Si2—C201.8592 (17)C20—H20B0.9800
Si2—C231.8708 (15)C20—H20C0.9800
C2—C31.371 (2)C21—H21A0.9800
C2—C111.396 (2)C21—H21B0.9800
O3—C71.3554 (17)C21—H21C0.9800
C3—C41.415 (2)C22—C231.531 (2)
C3—H30.9500C22—H22A0.9800
O4—C61.3574 (18)C22—H22B0.9800
O4—C261.4293 (19)C22—H22C0.9800
C4—C51.427 (2)C23—C241.535 (2)
C4—C91.428 (2)C23—C251.537 (2)
C5—C61.369 (2)C24—H24A0.9800
C5—H50.9500C24—H24B0.9800
C6—C71.437 (2)C24—H24C0.9800
C7—C81.363 (2)C25—H25A0.9800
C8—C91.4162 (19)C25—H25B0.9800
C8—H80.9500C25—H25C0.9800
C9—C101.437 (2)C26—H26A0.9800
C10—C111.384 (2)C26—H26B0.9800
C10—C151.431 (2)C26—H26C0.9800
C11—C12'1.481 (8)O1—C121.465 (3)
C11—C121.544 (3)C12—C131.494 (3)
C14—C131.307 (3)C12—H121.0000
C14—C13'1.528 (9)C13—H130.9500
C14—H14A0.9500O1'—C12'1.481 (10)
C14—H14B0.9500C12'—C13'1.470 (13)
C14—H14C0.9500C12'—H12'1.0000
C14—H14D0.9500C13'—H13'0.9500
C15—C161.206 (2)
C16—Si1—C17108.12 (9)H18B—C18—H18C109.5
C16—Si1—C19107.58 (7)Si1—C19—H19A109.5
C17—Si1—C19110.92 (9)Si1—C19—H19B109.5
C16—Si1—C18106.58 (8)H19A—C19—H19B109.5
C17—Si1—C18110.23 (9)Si1—C19—H19C109.5
C19—Si1—C18113.17 (9)H19A—C19—H19C109.5
O2—C1—O1'119.4 (3)H19B—C19—H19C109.5
O2—C1—O1121.90 (16)Si2—C20—H20A109.5
O2—C1—C2129.99 (17)Si2—C20—H20B109.5
O1'—C1—C2106.1 (4)H20A—C20—H20B109.5
O1—C1—C2108.01 (15)Si2—C20—H20C109.5
O3—Si2—C21110.37 (7)H20A—C20—H20C109.5
O3—Si2—C20109.88 (7)H20B—C20—H20C109.5
C21—Si2—C20111.06 (8)Si2—C21—H21A109.5
O3—Si2—C23102.17 (6)Si2—C21—H21B109.5
C21—Si2—C23110.66 (7)H21A—C21—H21B109.5
C20—Si2—C23112.38 (7)Si2—C21—H21C109.5
C3—C2—C11123.00 (14)H21A—C21—H21C109.5
C3—C2—C1129.09 (15)H21B—C21—H21C109.5
C11—C2—C1107.88 (14)C23—C22—H22A109.5
C7—O3—Si2130.71 (10)C23—C22—H22B109.5
C2—C3—C4118.44 (14)H22A—C22—H22B109.5
C2—C3—H3120.8C23—C22—H22C109.5
C4—C3—H3120.8H22A—C22—H22C109.5
C6—O4—C26117.07 (12)H22B—C22—H22C109.5
C3—C4—C5121.33 (14)C22—C23—C24108.86 (14)
C3—C4—C9119.35 (14)C22—C23—C25109.68 (15)
C5—C4—C9119.28 (13)C24—C23—C25108.91 (15)
C6—C5—C4120.57 (14)C22—C23—Si2109.46 (12)
C6—C5—H5119.7C24—C23—Si2110.38 (11)
C4—C5—H5119.7C25—C23—Si2109.53 (11)
O4—C6—C5126.26 (14)C23—C24—H24A109.5
O4—C6—C7113.81 (13)C23—C24—H24B109.5
C5—C6—C7119.92 (14)H24A—C24—H24B109.5
O3—C7—C8123.82 (13)C23—C24—H24C109.5
O3—C7—C6115.95 (13)H24A—C24—H24C109.5
C8—C7—C6120.23 (13)H24B—C24—H24C109.5
C7—C8—C9121.31 (14)C23—C25—H25A109.5
C7—C8—H8119.3C23—C25—H25B109.5
C9—C8—H8119.3H25A—C25—H25B109.5
C8—C9—C4118.67 (13)C23—C25—H25C109.5
C8—C9—C10120.66 (13)H25A—C25—H25C109.5
C4—C9—C10120.63 (13)H25B—C25—H25C109.5
C11—C10—C15122.94 (14)O4—C26—H26A109.5
C11—C10—C9117.63 (14)O4—C26—H26B109.5
C15—C10—C9119.34 (13)H26A—C26—H26B109.5
C10—C11—C2120.90 (15)O4—C26—H26C109.5
C10—C11—C12'128.9 (3)H26A—C26—H26C109.5
C2—C11—C12'104.3 (3)H26B—C26—H26C109.5
C10—C11—C12129.02 (16)C1—O1—C12111.62 (18)
C2—C11—C12109.51 (14)O1—C12—C13110.33 (17)
C13—C14—H14A120.0O1—C12—C11102.26 (18)
C13—C14—H14B120.0C13—C12—C11116.20 (18)
H14A—C14—H14B120.0O1—C12—H12109.2
C13'—C14—H14C120.0C13—C12—H12109.2
C13'—C14—H14D120.0C11—C12—H12109.2
H14C—C14—H14D120.0C14—C13—C12119.5 (2)
C16—C15—C10175.98 (16)C14—C13—H13120.2
C15—C16—Si1178.46 (16)C12—C13—H13120.2
Si1—C17—H17A109.5C1—O1'—C12'112.2 (6)
Si1—C17—H17B109.5C13'—C12'—O1'108.9 (7)
H17A—C17—H17B109.5C13'—C12'—C11106.6 (7)
Si1—C17—H17C109.5O1'—C12'—C11103.4 (6)
H17A—C17—H17C109.5C13'—C12'—H12'112.5
H17B—C17—H17C109.5O1'—C12'—H12'112.5
Si1—C18—H18A109.5C11—C12'—H12'112.5
Si1—C18—H18B109.5C12'—C13'—C14117.3 (6)
H18A—C18—H18B109.5C12'—C13'—H13'121.4
Si1—C18—H18C109.5C14—C13'—H13'121.4
H18A—C18—H18C109.5
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for financial support and providing access to the single-crystal diffractometer.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKocsis, L. S. & Brummond, K. M. (2014). Org. Lett. 16, 4158–4161.  CrossRef CAS PubMed Google Scholar
First citationKremsmayr, T. (2017). Diploma thesis, TU Wien, Vienna, Austria.  Google Scholar
First citationLiu, X., Kunert, O., Blunder, M., Fakhrudin, N., Noha, S. M., Malainer, C., Schinkovitz, A., Heiss, E. H., Atanasov, A. G., Kollroser, M., Schuster, D., Dirsch, V. M. & Bauer, R. (2014). J. Nat. Prod. 77, 2513–2521.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds