inorganic compounds
Redetermination of the
of caesium tetrafluoridobromate(III) from single-crystal X-ray diffraction dataaNational Research Tomsk Polytechnic University, 30 Lenina avenue, 634050 Tomsk, Russian Federation, and bFachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de
Caesium tetrafluoridobromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF4 is isotypic with CsAuF4.
Keywords: crystal structure; caesium; tetrafluoridobromate(III); redetermination.
CCDC reference: 1980292
Structure description
The first report of unit-cell parameters of CsBrF4 from powder X-ray diffraction data was given by Popov et al. (1987). They indexed the powder pattern using a primitive tetragonal with lattice parameters of a = 9.828 (3), c = 7.166 (5) Å, V = 692.2 (3) Å3 (temperature not given). These lattice parameters are quite different compared to those of other known alkali metal tetrafluoridobromates(III) that crystallize in the KBrF4 structure type [KBrF4, I4/mcm (No. 140), a = 6.174 (2), c = 11.103 (2) Å, V = 423 Å3; Siegel, 1956], and consequently CsBrF4 is not isotypic with KBrF4 on basis of the data provided by Popov et al. (1987). However, neither the nor other crystallographic details of CsBrF4 were given at that time.
Recently, we have determined the 4 from powder X-ray diffraction (PXRD) data where we could only refine the F atoms isotropically (Ivlev et al., 2013). We have shown that CsBrF4 is isotypic with CsAuF4 (Schmidt & Müller, 2004) and crystallizes in the Immm (No. 71) with lattice parameters a = 5.6413 (8), b = 6.8312 (9), c = 12.2687 (17) Å, V = 472.79 (11) Å3, Z = 4 at 293 K. These lattice parameters are not related to the reported by Popov et al. (1987). We assume that their powder pattern probably contained impurity lines, e.g. from possible hydrolysis products, which led to erroneous indexing. Here we present the results of a redetermination of the of CsBrF4 from single-crystal X-ray diffraction data at 100 K, leading to bond lengths and angles with higher precision, and with all atoms refined with anisotropic displacement parameters.
of CsBrFThe unit-cell parameters of CsBrF4 obtained from single-crystal X-ray diffraction data (Table 1) are expectedly smaller than those from the PXRD data at 293 K. The contains two different square-planar [BrF4]− anions, the planes of which are parallel and rotated by about 45° with respect to each other. The first anion consists of one bromine(III) atom (Br1) on the special 2d (mmm) and two fluorine atoms F1 and F3 on the special 4j (mm2) and 4g (m2m) Wyckoff positions, respectively. As a result of symmetry restrictions, the F—Br—F angle is exactly 90°. The Br1—F bond lengths are 1.8852 (13) and 1.9020 (15) Å [cf. 1.94 (4) and 1.97 (4) Å from PXRD data]. The second [BrF4]− anion contains one bromine(III) atom (Br2) on the special 2b (mmm) and one fluorine atom (F2) on the special 8l (m..) The anion is slightly distorted in-plane, resulting in an almost rectangular structure with F2—Br2—F2 angles of 87.96 (7) and 92.04 (7)° and a Br2—F2 bond length of 1.8907 (10) Å [cf. 87.6 (13) and 92.4 (13)°, 1.96 (3) Å from PXRD data]. In general, the bond lengths and angles of the [BrF4]− anions in CsBrF4 are in good correspondence with other known tetrafluoridobromates(III) [see Table 2 in Ivlev & Kraus (2018), and references therein]. The caesium cation occupies the special 4i (mm2) and is coordinated by twelve fluorine atoms. The resulting is an anticuboctahedron (Fig. 1). The Cs⋯F distances are in the range 2.9615 (11) to 3.4784 (4) Å [cf. 3.011 (1) to 3.605 (1) from PXRD data].
Synthesis and crystallization
Caesium tetrafluoridobromate(III) was synthesized by direct reaction of bromine trifluoride with caesium chloride. The reaction was carried out under Freon-113, which acted as a protective layer against hydrolysis and as a heat absorber. The mixture of CsCl and BrF3 was kept in a closed Teflon vessel. After three days the Freon was removed by vacuum distillation and CsBrF4 was obtained as a solid white residue. The powder was melted at 483 K and cooled down to room temperature. Single crystals of CsBrF4 were obtained as small blocks after crushing the solid lumps.
Refinement
Details of data collection and structure . Coordinates and atom labelling were taken from the previous from PXRD data (Ivlev et al., 2013).
are given in Table 1Structural data
CCDC reference: 1980292
https://doi.org/10.1107/S2414314620001145/wm4121sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620001145/wm4121Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker 2018); program(s) used to solve structure: coordinates taken from previous program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).CsBrF4 | Dx = 4.186 Mg m−3 |
Mr = 288.82 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Immm | Cell parameters from 2913 reflections |
a = 5.5075 (3) Å | θ = 3.3–36.8° |
b = 6.7890 (3) Å | µ = 16.75 mm−1 |
c = 12.2572 (6) Å | T = 100 K |
V = 458.30 (4) Å3 | Block, colorless |
Z = 4 | 0.11 × 0.09 × 0.06 mm |
F(000) = 504 |
Bruker D8 QUEST diffractometer | 622 reflections with I > 2σ(I) |
Radiation source: microfocus X-ray tube | Rint = 0.029 |
ω and φ scans | θmax = 36.4°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→9 |
Tmin = 0.330, Tmax = 0.558 | k = −11→11 |
8570 measured reflections | l = −20→20 |
669 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0065P)2 + 0.5686P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.012 | (Δ/σ)max = 0.001 |
wR(F2) = 0.022 | Δρmax = 1.20 e Å−3 |
S = 1.12 | Δρmin = −0.88 e Å−3 |
669 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
26 parameters | Extinction coefficient: 0.00232 (16) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.500000 | 0.500000 | 0.71714 (2) | 0.01008 (4) | |
Br1 | 0.500000 | 0.000000 | 0.500000 | 0.00720 (6) | |
Br2 | 0.500000 | 0.000000 | 0.000000 | 0.00760 (6) | |
F1 | 0.500000 | 0.000000 | 0.34482 (12) | 0.0155 (3) | |
F2 | 0.500000 | 0.19339 (16) | 0.11100 (9) | 0.0169 (2) | |
F3 | 0.500000 | 0.2777 (2) | 0.500000 | 0.0141 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.01130 (6) | 0.01075 (6) | 0.00821 (7) | 0.000 | 0.000 | 0.000 |
Br1 | 0.00756 (12) | 0.00827 (11) | 0.00578 (13) | 0.000 | 0.000 | 0.000 |
Br2 | 0.00816 (12) | 0.00841 (11) | 0.00624 (13) | 0.000 | 0.000 | 0.000 |
F1 | 0.0179 (7) | 0.0216 (7) | 0.0069 (6) | 0.000 | 0.000 | 0.000 |
F2 | 0.0201 (5) | 0.0160 (4) | 0.0146 (5) | 0.000 | 0.000 | −0.0073 (4) |
F3 | 0.0164 (6) | 0.0087 (6) | 0.0172 (7) | 0.000 | 0.000 | 0.000 |
Cs1—F2i | 2.9615 (11) | Cs1—F1vii | 3.4784 (4) |
Cs1—F2ii | 2.9615 (11) | Cs1—F1i | 3.4784 (4) |
Cs1—F3i | 3.0597 (7) | Br1—F3 | 1.8852 (13) |
Cs1—F3 | 3.0597 (7) | Br1—F3vii | 1.8853 (13) |
Cs1—F1iii | 3.1674 (8) | Br1—F1vii | 1.9020 (15) |
Cs1—F1iv | 3.1674 (8) | Br1—F1 | 1.9020 (15) |
Cs1—F2v | 3.3166 (7) | Br2—F2viii | 1.8907 (10) |
Cs1—F2iii | 3.3166 (7) | Br2—F2ix | 1.8907 (10) |
Cs1—F2iv | 3.3166 (7) | Br2—F2x | 1.8907 (10) |
Cs1—F2vi | 3.3166 (7) | Br2—F2 | 1.8907 (10) |
F2i—Cs1—F2ii | 89.32 (4) | F1iv—Cs1—F1i | 96.194 (16) |
F2i—Cs1—F3i | 105.79 (3) | F2v—Cs1—F1i | 107.50 (2) |
F2ii—Cs1—F3i | 164.90 (3) | F2iii—Cs1—F1i | 61.838 (19) |
F2i—Cs1—F3 | 164.90 (3) | F2iv—Cs1—F1i | 61.838 (19) |
F2ii—Cs1—F3 | 105.79 (3) | F2vi—Cs1—F1i | 107.50 (2) |
F3i—Cs1—F3 | 59.11 (4) | F1vii—Cs1—F1i | 154.77 (5) |
F2i—Cs1—F1iii | 69.423 (18) | F3—Br1—F3vii | 180.0 |
F2ii—Cs1—F1iii | 69.423 (18) | F3—Br1—F1vii | 90.0 |
F3i—Cs1—F1iii | 115.46 (2) | F3vii—Br1—F1vii | 90.0 |
F3—Cs1—F1iii | 115.46 (2) | F3—Br1—F1 | 90.0 |
F2i—Cs1—F1iv | 69.423 (18) | F3vii—Br1—F1 | 90.0 |
F2ii—Cs1—F1iv | 69.423 (18) | F1vii—Br1—F1 | 180.0 |
F3i—Cs1—F1iv | 115.46 (2) | F2viii—Br2—F2ix | 87.96 (7) |
F3—Cs1—F1iv | 115.46 (2) | F2viii—Br2—F2x | 92.04 (7) |
F1iii—Cs1—F1iv | 120.78 (5) | F2ix—Br2—F2x | 180.00 (6) |
F2i—Cs1—F2v | 123.869 (16) | F2viii—Br2—F2 | 180.0 |
F2ii—Cs1—F2v | 90.05 (2) | F2ix—Br2—F2 | 92.04 (7) |
F3i—Cs1—F2v | 81.61 (2) | F2x—Br2—F2 | 87.96 (7) |
F3—Cs1—F2v | 57.553 (17) | F2viii—Br2—Cs1xi | 120.01 (2) |
F1iii—Cs1—F2v | 156.305 (19) | F2ix—Br2—Cs1xi | 120.005 (19) |
F1iv—Cs1—F2v | 58.13 (3) | F2x—Br2—Cs1xi | 59.995 (19) |
F2i—Cs1—F2iii | 90.05 (2) | F2—Br2—Cs1xi | 59.99 (2) |
F2ii—Cs1—F2iii | 123.868 (16) | F2viii—Br2—Cs1xii | 59.99 (2) |
F3i—Cs1—F2iii | 57.553 (17) | F2ix—Br2—Cs1xii | 59.995 (19) |
F3—Cs1—F2iii | 81.61 (2) | F2x—Br2—Cs1xii | 120.005 (19) |
F1iii—Cs1—F2iii | 58.13 (3) | F2—Br2—Cs1xii | 120.01 (2) |
F1iv—Cs1—F2iii | 156.305 (19) | Cs1xi—Br2—Cs1xii | 180.0 |
F2v—Cs1—F2iii | 133.81 (3) | F2viii—Br2—Cs1xiii | 120.01 (2) |
F2i—Cs1—F2iv | 90.05 (2) | F2ix—Br2—Cs1xiii | 120.005 (19) |
F2ii—Cs1—F2iv | 123.868 (17) | F2x—Br2—Cs1xiii | 59.995 (19) |
F3i—Cs1—F2iv | 57.553 (17) | F2—Br2—Cs1xiii | 59.99 (2) |
F3—Cs1—F2iv | 81.61 (2) | Cs1xi—Br2—Cs1xiii | 91.951 (5) |
F1iii—Cs1—F2iv | 156.305 (19) | Cs1xii—Br2—Cs1xiii | 88.049 (5) |
F1iv—Cs1—F2iv | 58.13 (3) | F2viii—Br2—Cs1xiv | 59.99 (2) |
F2v—Cs1—F2iv | 46.64 (4) | F2ix—Br2—Cs1xiv | 59.995 (19) |
F2iii—Cs1—F2iv | 112.26 (3) | F2x—Br2—Cs1xiv | 120.005 (19) |
F2i—Cs1—F2vi | 123.868 (17) | F2—Br2—Cs1xiv | 120.01 (2) |
F2ii—Cs1—F2vi | 90.05 (2) | Cs1xi—Br2—Cs1xiv | 88.049 (5) |
F3i—Cs1—F2vi | 81.61 (2) | Cs1xii—Br2—Cs1xiv | 91.951 (5) |
F3—Cs1—F2vi | 57.553 (17) | Cs1xiii—Br2—Cs1xiv | 180.0 |
F1iii—Cs1—F2vi | 58.13 (3) | Br1—F1—Cs1xiii | 119.61 (2) |
F1iv—Cs1—F2vi | 156.305 (19) | Br1—F1—Cs1xi | 119.61 (2) |
F2v—Cs1—F2vi | 112.26 (3) | Cs1xiii—F1—Cs1xi | 120.78 (5) |
F2iii—Cs1—F2vi | 46.64 (4) | Br1—F1—Cs1vii | 102.61 (2) |
F2iv—Cs1—F2vi | 133.81 (3) | Cs1xiii—F1—Cs1vii | 83.807 (16) |
F2i—Cs1—F1vii | 147.27 (3) | Cs1xi—F1—Cs1vii | 83.807 (16) |
F2ii—Cs1—F1vii | 57.95 (3) | Br1—F1—Cs1i | 102.61 (2) |
F3i—Cs1—F1vii | 106.94 (3) | Cs1xiii—F1—Cs1i | 83.807 (16) |
F3—Cs1—F1vii | 47.83 (3) | Cs1xi—F1—Cs1i | 83.807 (16) |
F1iii—Cs1—F1vii | 96.194 (16) | Cs1vii—F1—Cs1i | 154.78 (5) |
F1iv—Cs1—F1vii | 96.194 (16) | Br2—F2—Cs1i | 179.32 (6) |
F2v—Cs1—F1vii | 61.838 (19) | Br2—F2—Cs1xiii | 90.42 (3) |
F2iii—Cs1—F1vii | 107.50 (2) | Cs1i—F2—Cs1xiii | 89.95 (2) |
F2iv—Cs1—F1vii | 107.50 (2) | Br2—F2—Cs1xi | 90.42 (3) |
F2vi—Cs1—F1vii | 61.838 (19) | Cs1i—F2—Cs1xi | 89.95 (2) |
F2i—Cs1—F1i | 57.95 (3) | Cs1xiii—F2—Cs1xi | 112.26 (3) |
F2ii—Cs1—F1i | 147.27 (3) | Br1—F3—Cs1i | 119.56 (2) |
F3i—Cs1—F1i | 47.83 (3) | Br1—F3—Cs1 | 119.56 (2) |
F3—Cs1—F1i | 106.94 (3) | Cs1i—F3—Cs1 | 120.89 (4) |
F1iii—Cs1—F1i | 96.194 (16) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, −z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x−1/2, y+1/2, z+1/2; (v) −x+1/2, −y+1/2, z+1/2; (vi) −x+3/2, −y+1/2, z+1/2; (vii) −x+1, −y, −z+1; (viii) −x+1, −y, −z; (ix) x, y, −z; (x) −x+1, −y, z; (xi) x+1/2, y−1/2, z−1/2; (xii) −x+1/2, −y+1/2, −z+1/2; (xiii) x−1/2, y−1/2, z−1/2; (xiv) −x+3/2, −y+1/2, −z+1/2. |
Acknowledgements
We thank the Russian Governmental Program `Nauka' N 4.3967.2017/PCh for support. We thank the Deutsche Forschungsgemeinschaft for generous funding.
References
Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ivlev, S., Woidy, P., Sobolev, V., Gerin, I., Ostvald, R. & Kraus, F. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850. Web of Science CrossRef ICSD CAS Google Scholar
Ivlev, S. I. & Kraus, F. (2018). IUCrData, 3, x180646. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Popov, A. I., Kiselev, Y. M., Sukhoverkhov, V. F., Chumaevskii, N. A., Krasnyanskaya, O. A. & Sadikova, A. T. (1987). Russ. J. Inorg. Chem. 32, 619–622. Google Scholar
Schmidt, R. & Müller, B. G. (2004). Z. Anorg. Allg. Chem. 630, 2393–2397. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegel, S. (1956). Acta Cryst. 9, 493–495. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.