metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(1-do­decyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane)tetra­iso­thio­cyanato­cobalt(II)

CROSSMARK_Color_square_no_text.svg

aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany, and bDepartment Life, Light and Matter, Universität Rostock, 18051 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 December 2019; accepted 9 January 2020; online 28 January 2020)

The title compound, [Co(C18H37N2)2(NCS)4], consists of a cobalt(II) ion positioned on the origin of the triclinic unit cell. It is coordinated by the N atoms of two trans-oriented 1-dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane (DABCO+) cations, which carry n-dodecyl chains at the non-coordinating N atoms. The distorted octa­hedral coordination environment of the CoII ion is completed through four N atoms of iso­thio­cyanate ions, which are arranged within the equatorial plane. Non-classical hydrogen bonding of the types C—H⋯N and C—H⋯S between the filamentous mol­ecules lead to the formation of layers parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ionic liquids (IL) are known as designer solvents for their special applications and properties (Santos et al., 2014[Santos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008-40018.]; Clark et al., 2016[Clark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9-21.]), and such systems have been widely investigated over the past few years. The title compound has a low melting point and can be considered as a magnetic IL in the molten state.

The asymmetric unit consists of a Co0.5(NCS)2 moiety and one 1-dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane cation (Fig. 1[link]), with the cobalt(II) atom located on the origin of the unit cell. Four iso­thio­cyanate groups are arranged in a twisted square plane around the CoII ion. Corresponding N—Co—N bond angles are 88.95 (7)° for N1—Co1—N2(−x, 2 − y, −z) and 91.05 (7)° for N1—Co1—N2. The N1—C1 distance measures 1.162 (3), Å indicating a strong π-inter­action, and the C1—S1 distance is 1.629 (2) Å. The coordination polyhedron around the CoII ion consists of the four N atoms of the NCS groups and two further N atoms of the positively charged DABCO ligands, leading to filamentous mol­ecules (Fig. 2[link]). The Co—N1 and Co—N2 distances are, at 2.072 (2) and 2.090 (2) Å, in the expected range for a six-coordinate CoII atom (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]). With the Co—N(DABCO) distances of 2.350 (2) Å, the octa­hedron is considerably elongated. This can be explained through the steric demand of the DABCO+ units.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with atom labelling.
[Figure 2]
Figure 2
Structure of the centrosymmetric, neutral, filamentous complex mol­ecule of the title compound with the atoms being presented as 50% displacement ellipsoids.

In the crystal, the filamentous mol­ecules are stacked with the long n-dodecyl chains aligned parallel to each other (Fig. 3[link]). Because the complex mol­ecule has no acidic H atoms, only weak, non-classical hydrogen bonds are present. Those with N as acceptor atoms are intra- and inter­molecular, those with S atoms as acceptors bridge between the filamentous mol­ecules, leading to a layer-like arrangement parallel to (001). Hydrogen-bonding parameters up to a H⋯A distance of 3.0 Å are listed in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N1 0.99 2.48 3.060 (3) 117
C5—H5A⋯S1i 0.99 2.70 3.467 (2) 134
C7—H7A⋯S1ii 0.99 3.00 3.755 (2) 134
C7—H7A⋯N2iii 0.99 2.58 3.244 (3) 124
C8—H8B⋯S1ii 0.99 2.89 3.695 (2) 139
C9—H9B⋯S1iv 0.99 2.78 3.580 (2) 138
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x, -y+2, -z; (iv) -x, -y+1, -z.
[Figure 3]
Figure 3
Stacking of the filamentous mol­ecules in the crystal. Hydrogen-bonding inter­actions are omitted for clarity.

Examples of CoN6 coordination with four iso­thio­cyanato ligands can be found in, for example, Adach & Daszkiewicz (2016[Adach, A. & Daszkiewicz, M. (2016). Inorg. Chim. Acta, 445, 87-95.]) and Wang et al. (2018[Wang, J., Zhang, F., Pan, Q. & Zheng, A. (2018). J. Coord. Chem. 71, 35-45.]). 1,4-Di­aza­bicylco[2.2.2]octane (DABCO) is a standard chemical in organic synthesis and catalysis, and overviews of its chemistry can be found in Baghernejad (2010[Baghernejad, B. (2010). Eur. J. Chem. 1, 54-60.]), Banerjee (2018[Banerjee, B. (2018). Curr. Org. Chem. 22, 208-233.]) and Yang et al. (2007[Yang, H., Tian, R. & Li, Y. (2007). Huaxue Tongbao, 70, 759-765.]).

Synthesis and crystallization

The compound is accessible through the reaction of 1-dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane chloride with K2[(Co(NCS)4]. 1-Dodecyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane chloride (Dodeca-DABCO-Cl) was prepared by the reaction of DABCO (1.4 g, 12.5 mmol) with 1-chloro­dodecane (3.6 g, 12.5 mmol) in 20 ml of aceto­nitrile. The mixture was refluxed for 10 h and the solvent removed under reduced pressure. Potassium tetra-(iso­thio­cyanato)­cobaltate(II) was prepared through the reaction of potassium iso­thio­cyanate (15 g, 154.0 mmol) with cobalt(II) chloride (5.0 g, 38.5 mmol) in 250 ml of acetone. The mixture was refluxed for 2 h, the solvent removed and the raw product extracted with ethyl acetate in a soxhlet extractor. Dodeca-DABCO-Cl (0.374 g, 1.18 mmol) and K2[(Co(NCS)4] (0.218 g, 0.59 mmol) were mixed in 10 ml of aceto­nitrile and stirred for 1 d at ambient temperature. The mixture was filtered and the solvent removed under reduced pressure. The resulting blue solid was washed several times with acetone. Large blue crystals were grown by leaving the flask open and allowing the solvent aceto­nitrile to evaporate over the course of three days. The melting point is 331 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Some low-angle reflections were omitted from the structure refinement because their intensities were affected by the beam stop (001, 002, 411, 311, 010, 323).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C18H37N2)2(NCS)4]
Mr 854.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 7.484 (1), 8.587 (1), 18.523 (2)
α, β, γ (°) 83.782 (4), 81.868 (4), 71.189 (4)
V3) 1112.9 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.61
Crystal size (mm) 0.17 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 35032, 6802, 4509
Rint 0.084
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.106, 1.04
No. of reflections 6802
No. of parameters 241
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.65
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXS (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1-dodecyl-4-aza-1-azoniabicyclo[2.2.2]octane)tetraisothiocyanatocobalt(II) top
Crystal data top
[Co(C18H37N2)2(NCS)4]F(000) = 461
Mr = 854.24Dx = 1.275 Mg m3
Triclinic, P1Melting point: 331 K
a = 7.484 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.587 (1) ÅCell parameters from 4916 reflections
c = 18.523 (2) Åθ = 2.5–23.6°
α = 83.782 (4)°µ = 0.61 mm1
β = 81.868 (4)°T = 123 K
γ = 71.189 (4)°Leaf, blue
V = 1112.9 (2) Å30.17 × 0.10 × 0.05 mm
Z = 1
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4509 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.084
φ and ω scansθmax = 30.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1010
k = 1212
35032 measured reflectionsl = 2626
6802 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.289P]
where P = (Fo2 + 2Fc2)/3
6802 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00001.00000.00000.01303 (10)
C10.3937 (3)0.7311 (2)0.0519 (1)0.0148 (4)
N10.2432 (2)0.8063 (2)0.0267 (1)0.0184 (4)
S10.60623 (7)0.63024 (7)0.08753 (3)0.0220 (1)
C20.1513 (3)1.0644 (3)0.1446 (1)0.0175 (4)
N20.1189 (2)1.0506 (2)0.0868 (1)0.0191 (4)
S20.19619 (9)1.07863 (8)0.22694 (3)0.0323 (2)
N30.1489 (2)0.8338 (2)0.07881 (9)0.0134 (3)
C30.1506 (3)0.8560 (3)0.1567 (1)0.0236 (5)
H3A0.20290.97480.16540.028*
H3B0.01880.81570.16980.028*
C40.2714 (3)0.7615 (3)0.2057 (1)0.0216 (5)
H4A0.20660.70720.24910.026*
H4B0.39640.83920.22290.026*
N40.2984 (2)0.6345 (2)0.16244 (9)0.0146 (3)
C50.0444 (3)0.6600 (3)0.0655 (1)0.0242 (5)
H5A0.09330.64070.06560.029*
H5B0.06500.63660.01670.029*
C60.1092 (3)0.5418 (3)0.1239 (1)0.0226 (5)
H6A0.12030.44740.10060.027*
H6B0.01470.49860.15940.027*
C70.3483 (3)0.8618 (2)0.0661 (1)0.0167 (4)
H7A0.35570.86650.01290.020*
H7B0.42880.96930.08430.020*
C80.4249 (3)0.7243 (3)0.1047 (1)0.0182 (4)
H8A0.55680.77250.12750.022*
H8B0.42510.64680.06890.022*
C90.3746 (3)0.5126 (3)0.2108 (1)0.0193 (4)
H9A0.28600.46090.24780.023*
H9B0.37460.42440.18050.023*
C100.5729 (3)0.5808 (3)0.2504 (1)0.0222 (5)
H10A0.66640.62230.21440.027*
H10B0.57860.67390.27880.027*
C110.6218 (3)0.4455 (3)0.3016 (1)0.0225 (5)
H11A0.59440.34620.27410.027*
H11B0.53860.41620.34130.027*
C120.8274 (3)0.4935 (3)0.3352 (1)0.0239 (5)
H12A0.91050.51350.29590.029*
H12B0.85810.59780.35940.029*
C130.8697 (3)0.3628 (3)0.3908 (1)0.0222 (5)
H13A0.79090.34780.43120.027*
H13B0.83010.25700.36720.027*
C141.0763 (3)0.3994 (3)0.4232 (1)0.0236 (5)
H14A1.15600.41090.38330.028*
H14B1.11790.50560.44650.028*
C151.1072 (3)0.2649 (3)0.4796 (1)0.0231 (5)
H15A1.05460.15760.45710.028*
H15B1.03440.25980.52090.028*
C161.3133 (3)0.2878 (3)0.5096 (1)0.0238 (5)
H16A1.36160.38770.53760.029*
H16B1.38950.30620.46810.029*
C171.3421 (3)0.1423 (3)0.5586 (1)0.0230 (5)
H17A1.27240.12860.60170.028*
H17B1.28570.04120.53160.028*
C181.5491 (3)0.1587 (3)0.5851 (1)0.0232 (5)
H18A1.60220.25310.61640.028*
H18B1.62170.18320.54230.028*
C191.5760 (3)0.0051 (3)0.6280 (1)0.0250 (5)
H19A1.51080.01480.67260.030*
H19B1.51460.09080.59800.030*
C201.7843 (3)0.0161 (3)0.6502 (1)0.0291 (5)
H20A1.79140.08650.67760.044*
H20B1.84940.03280.60630.044*
H20C1.84570.10890.68100.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0092 (2)0.0119 (2)0.0172 (2)0.0013 (2)0.0026 (2)0.0027 (2)
C10.020 (1)0.011 (1)0.017 (1)0.0075 (8)0.0064 (8)0.0014 (8)
N10.0135 (8)0.0145 (9)0.025 (1)0.0016 (7)0.0012 (7)0.0015 (7)
S10.0133 (3)0.0218 (3)0.0299 (3)0.0033 (2)0.0022 (2)0.0099 (2)
C20.018 (1)0.017 (1)0.020 (1)0.0100 (8)0.0006 (8)0.0008 (8)
N20.0179 (9)0.021 (1)0.021 (1)0.0089 (7)0.0026 (7)0.0018 (7)
S20.0414 (4)0.0447 (4)0.0188 (3)0.0227 (3)0.0072 (3)0.0023 (3)
N30.0098 (7)0.0124 (8)0.0172 (9)0.0015 (6)0.0027 (6)0.0020 (7)
C30.029 (1)0.031 (1)0.018 (1)0.020 (1)0.0030 (9)0.0015 (9)
C40.026 (1)0.026 (1)0.019 (1)0.014 (1)0.0029 (9)0.0047 (9)
N40.0134 (8)0.0138 (9)0.0166 (9)0.0050 (7)0.0017 (7)0.0007 (7)
C50.020 (1)0.014 (1)0.031 (1)0.0015 (9)0.0048 (9)0.0006 (9)
C60.016 (1)0.017 (1)0.028 (1)0.0009 (8)0.0028 (9)0.0025 (9)
C70.0131 (9)0.016 (1)0.021 (1)0.0047 (8)0.0064 (8)0.0031 (8)
C80.019 (1)0.020 (1)0.018 (1)0.0089 (9)0.0081 (8)0.0051 (8)
C90.022 (1)0.020 (1)0.018 (1)0.0096 (9)0.0036 (8)0.0038 (8)
C100.022 (1)0.021 (1)0.024 (1)0.0084 (9)0.0003 (9)0.0009 (9)
C110.024 (1)0.023 (1)0.022 (1)0.0095 (9)0.0020 (9)0.0025 (9)
C120.022 (1)0.023 (1)0.025 (1)0.0073 (9)0.0015 (9)0.0034 (9)
C130.022 (1)0.023 (1)0.022 (1)0.0078 (9)0.0005 (9)0.0004 (9)
C140.020 (1)0.024 (1)0.027 (1)0.0075 (9)0.0021 (9)0.0009 (9)
C150.018 (1)0.022 (1)0.028 (1)0.0050 (9)0.0009 (9)0.0001 (9)
C160.020 (1)0.020 (1)0.029 (1)0.0050 (9)0.0018 (9)0.0017 (9)
C170.020 (1)0.021 (1)0.025 (1)0.0044 (9)0.0004 (9)0.0026 (9)
C180.019 (1)0.021 (1)0.028 (1)0.0049 (9)0.0007 (9)0.0013 (9)
C190.025 (1)0.026 (1)0.024 (1)0.010 (1)0.0016 (9)0.001 (1)
C200.028 (1)0.034 (1)0.029 (1)0.015 (1)0.000 (1)0.003 (1)
Geometric parameters (Å, º) top
Co1—N1i2.072 (2)C9—H9B0.9900
Co1—N12.073 (2)C10—C111.523 (3)
Co1—N22.090 (2)C10—H10A0.9900
Co1—N2i2.090 (2)C10—H10B0.9900
Co1—N32.350 (2)C11—C121.517 (3)
Co1—N3i2.350 (2)C11—H11A0.9900
C1—N11.162 (3)C11—H11B0.9900
C1—S11.629 (2)C12—C131.518 (3)
C2—N21.158 (3)C12—H12A0.9900
C2—S21.633 (2)C12—H12B0.9900
N3—C31.474 (3)C13—C141.521 (3)
N3—C51.475 (2)C13—H13A0.9900
N3—C71.482 (2)C13—H13B0.9900
C3—C41.543 (3)C14—C151.524 (3)
C3—H3A0.9900C14—H14A0.9900
C3—H3B0.9900C14—H14B0.9900
C4—N41.500 (3)C15—C161.521 (3)
C4—H4A0.9900C15—H15A0.9900
C4—H4B0.9900C15—H15B0.9900
N4—C61.503 (2)C16—C171.518 (3)
N4—C91.504 (2)C16—H16A0.9900
N4—C81.507 (2)C16—H16B0.9900
C5—C61.538 (3)C17—C181.523 (3)
C5—H5A0.9900C17—H17A0.9900
C5—H5B0.9900C17—H17B0.9900
C6—H6A0.9900C18—C191.520 (3)
C6—H6B0.9900C18—H18A0.9900
C7—C81.540 (3)C18—H18B0.9900
C7—H7A0.9900C19—C201.530 (3)
C7—H7B0.9900C19—H19A0.9900
C8—H8A0.9900C19—H19B0.9900
C8—H8B0.9900C20—H20A0.9800
C9—C101.519 (3)C20—H20B0.9800
C9—H9A0.9900C20—H20C0.9800
N1i—Co1—N1180.0N4—C9—H9B108.2
N1i—Co1—N288.95 (7)C10—C9—H9B108.2
N1—Co1—N291.05 (7)H9A—C9—H9B107.4
N1i—Co1—N2i91.05 (7)C9—C10—C11109.6 (2)
N1—Co1—N2i88.95 (7)C9—C10—H10A109.7
N2—Co1—N2i180.0C11—C10—H10A109.7
N1i—Co1—N385.89 (6)C9—C10—H10B109.7
N1—Co1—N394.11 (6)C11—C10—H10B109.7
N2—Co1—N390.94 (6)H10A—C10—H10B108.2
N2i—Co1—N389.06 (6)C12—C11—C10113.7 (2)
N1i—Co1—N3i94.11 (6)C12—C11—H11A108.8
N1—Co1—N3i85.89 (6)C10—C11—H11A108.8
N2—Co1—N3i89.06 (6)C12—C11—H11B108.8
N2i—Co1—N3i90.94 (6)C10—C11—H11B108.8
N3—Co1—N3i180.0H11A—C11—H11B107.7
N1—C1—S1178.5 (2)C11—C12—C13113.0 (2)
C1—N1—Co1162.0 (2)C11—C12—H12A109.0
N2—C2—S2178.3 (2)C13—C12—H12A109.0
C2—N2—Co1163.3 (2)C11—C12—H12B109.0
C3—N3—C5108.1 (2)C13—C12—H12B109.0
C3—N3—C7107.1 (2)H12A—C12—H12B107.8
C5—N3—C7106.8 (2)C12—C13—C14115.4 (2)
C3—N3—Co1113.2 (1)C12—C13—H13A108.4
C5—N3—Co1108.1 (1)C14—C13—H13A108.4
C7—N3—Co1113.3 (1)C12—C13—H13B108.4
N3—C3—C4111.1 (2)C14—C13—H13B108.4
N3—C3—H3A109.4H13A—C13—H13B107.5
C4—C3—H3A109.4C13—C14—C15112.5 (2)
N3—C3—H3B109.4C13—C14—H14A109.1
C4—C3—H3B109.4C15—C14—H14A109.1
H3A—C3—H3B108.0C13—C14—H14B109.1
N4—C4—C3108.9 (2)C15—C14—H14B109.1
N4—C4—H4A109.9H14A—C14—H14B107.8
C3—C4—H4A109.9C16—C15—C14114.9 (2)
N4—C4—H4B109.9C16—C15—H15A108.5
C3—C4—H4B109.9C14—C15—H15A108.5
H4A—C4—H4B108.3C16—C15—H15B108.5
C4—N4—C6108.7 (2)C14—C15—H15B108.5
C4—N4—C9111.6 (2)H15A—C15—H15B107.5
C6—N4—C9108.2 (2)C17—C16—C15113.7 (2)
C4—N4—C8107.7 (2)C17—C16—H16A108.8
C6—N4—C8107.5 (2)C15—C16—H16A108.8
C9—N4—C8113.0 (2)C17—C16—H16B108.8
N3—C5—C6111.6 (2)C15—C16—H16B108.8
N3—C5—H5A109.3H16A—C16—H16B107.7
C6—C5—H5A109.3C16—C17—C18114.3 (2)
N3—C5—H5B109.3C16—C17—H17A108.7
C6—C5—H5B109.3C18—C17—H17A108.7
H5A—C5—H5B108.0C16—C17—H17B108.7
N4—C6—C5108.7 (2)C18—C17—H17B108.7
N4—C6—H6A110.0H17A—C17—H17B107.6
C5—C6—H6A110.0C19—C18—C17113.4 (2)
N4—C6—H6B110.0C19—C18—H18A108.9
C5—C6—H6B110.0C17—C18—H18A108.9
H6A—C6—H6B108.3C19—C18—H18B108.9
N3—C7—C8111.7 (2)C17—C18—H18B108.9
N3—C7—H7A109.3H18A—C18—H18B107.7
C8—C7—H7A109.3C18—C19—C20113.7 (2)
N3—C7—H7B109.3C18—C19—H19A108.8
C8—C7—H7B109.3C20—C19—H19A108.8
H7A—C7—H7B107.9C18—C19—H19B108.8
N4—C8—C7108.3 (2)C20—C19—H19B108.8
N4—C8—H8A110.0H19A—C19—H19B107.7
C7—C8—H8A110.0C19—C20—H20A109.5
N4—C8—H8B110.0C19—C20—H20B109.5
C7—C8—H8B110.0H20A—C20—H20B109.5
H8A—C8—H8B108.4C19—C20—H20C109.5
N4—C9—C10116.2 (2)H20A—C20—H20C109.5
N4—C9—H9A108.2H20B—C20—H20C109.5
C10—C9—H9A108.2
C5—N3—C3—C467.5 (2)C4—N4—C8—C748.3 (2)
C7—N3—C3—C447.2 (2)C6—N4—C8—C768.7 (2)
Co1—N3—C3—C4172.8 (1)C9—N4—C8—C7172.1 (2)
N3—C3—C4—N418.0 (2)N3—C7—C8—N418.0 (2)
C3—C4—N4—C647.5 (2)C4—N4—C9—C1064.9 (2)
C3—C4—N4—C9166.7 (2)C6—N4—C9—C10175.6 (2)
C3—C4—N4—C868.7 (2)C8—N4—C9—C1056.7 (2)
C3—N3—C5—C646.8 (2)N4—C9—C10—C11175.2 (2)
C7—N3—C5—C668.0 (2)C9—C10—C11—C12171.3 (2)
Co1—N3—C5—C6169.7 (1)C10—C11—C12—C13175.3 (2)
C4—N4—C6—C567.5 (2)C11—C12—C13—C14176.5 (2)
C9—N4—C6—C5171.1 (2)C12—C13—C14—C15178.7 (2)
C8—N4—C6—C548.9 (2)C13—C14—C15—C16175.4 (2)
N3—C5—C6—N417.8 (3)C14—C15—C16—C17173.1 (2)
C3—N3—C7—C868.4 (2)C15—C16—C17—C18176.3 (2)
C5—N3—C7—C847.2 (2)C16—C17—C18—C19174.4 (2)
Co1—N3—C7—C8166.1 (1)C17—C18—C19—C20176.0 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N10.992.483.060 (3)117
C5—H5A···S1ii0.992.703.467 (2)134
C7—H7A···S1iii0.993.003.755 (2)134
C7—H7A···N2i0.992.583.244 (3)124
C8—H8B···S1iii0.992.893.695 (2)139
C9—H9B···S1iv0.992.783.580 (2)138
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

Funding for this research was provided by: DFG-SPP 1708, Material Synthesis Near Room Temperature.

References

First citationAdach, A. & Daszkiewicz, M. (2016). Inorg. Chim. Acta, 445, 87–95.  CSD CrossRef CAS Google Scholar
First citationBaghernejad, B. (2010). Eur. J. Chem. 1, 54–60.  CAS Google Scholar
First citationBanerjee, B. (2018). Curr. Org. Chem. 22, 208–233.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9–21.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CrossRef Web of Science Google Scholar
First citationSantos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008–40018.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Zhang, F., Pan, Q. & Zheng, A. (2018). J. Coord. Chem. 71, 35–45.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Tian, R. & Li, Y. (2007). Huaxue Tongbao, 70, 759–765.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds