metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(4-phenyl-2-sulfanyl­­idene-2,3-di­hydro-1,3-thia­zol-3-ido-κ2S2,N)(4-phenyl-1,3-thia­zole-2-thiol­ato-κS2)bis­­muth

aDepartment of Chemistry, University of Bielefeld, PO Box 100131, 33501 Bielefeld, Germany, and bInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: imran.hons@pu.edu.pk

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 November 2019; accepted 20 January 2020; online 28 January 2020)

The title compound, [Bi(C9H6NS2)3], was prepared by reacting BiCl3 and 2-mercapto-4-phenyl­thia­zole (LH) at room temperature in a stoichiometric ratio of 1:4. The mol­ecular structure reveals a slightly distorted square-pyramidal environment around the BiIII atom. Two of the three monoanionic ligands L coordinate in an N,S-bidentate mode, while one shows a monodentate mode through an S atom. There are no significant inter­molecular inter­actions present in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

For general background on this type of bis­muth chemistry with S- or (N,S)-donor ligands, see: Diemer et al. (1995[Diemer, R., Dittes, U., Nuber, B., Seifried, V., Opferkuch, W. & Keppler, B. K. (1995). Met.-Based Drugs, 2, 271-292.]); Stavila et al. (2006[Stavila, V., Davidovich, V. L., Gulea, A. & Whitmire, K. H. (2006). Coord. Chem. Rev. 250, 2782-2810.]); Briand et al. (2000[Briand, G. G., Burford, N. & Cameron, T. S. (2000). Chem. Commun. pp. 13-14.]). The coordination chemistry of bis­muth with thio­urea or thio­semicarbazide ligands has been studied in detail (Battaglia & Corradi, 1981[Battaglia, L. P. & Corradi, A. B. (1981). J. Chem. Soc. Dalton Trans. pp. 23-26.],1983[Battaglia, L. P. & Corradi, A. B. (1983). J. Chem. Soc. Dalton Trans. pp. 2425-2428.]; Battaglia et al., 1992[Battaglia, L. P., Corradi, A. B. & Pelosi, G. (1992). J. Crystallogr. Spectrosc. Res. 22, 275-279.]). While thio­urea ligands have been found to be S-donor ligands only, thio­semicarbazide shows an (N,S)-coordination mode. Recently, we have reported the coordination modes of three heterocyclic ligands derived from 3-mercapto-4-methyl-1,2,4-triazole (L1H), 2-mercapto-benzimidazole (L2H) and 2-mercapto-4-methyl­thia­zole (L3H), respectively, towards bis­muth(III). In the corresponding three bis­muth complexes [Bi(L1)4(Cl)2]Cl, [Bi(L2)4Cl2]+[Bi(L2)2Cl4] and [Bi(L3)2Cl2(μ-Cl)]2 (Imran et al., 2013[Imran, M., Neumann, B., Stammler, H.-G., Monkowius, U., Ertl, M. & Mitzel, N. W. (2013). Dalton Trans. 42, 15785-15795.], 2014[Imran, M., Neumann, B., Stammler, H.-G., Monkowius, U., Ertl, M. & Mitzel, N. W. (2014). Dalton Trans. 43, 1267-1278.]), all these ligands coordinate solely via their S-donor atoms despite a possible (N,S) coordination.

In the title compound, the deprotonated ligand L (LH is 2-mercapto-4-phenyl thia­zole) exhibits both monodentate S- and bidentate (N,S)-coordination modes (Fig. 1[link]). Two ligands coordinate in a bidentate fashion (via N1, S1, and via N2, S3) while the third one exhibits a monodentate mode via the S5 donor atom, resulting in a slightly distorted square-pyramidal coordination environment. The Bi—N and Bi—S bonds differ in lengths with the Bi—S bonds shorter by ≃ 0.2 Å (Table 1[link]) but the index parameter (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of τ5 = 0 indicates an ideal value for a square-pyramidal coordination (ideal value for trigonal–bipyramidal coordination is τ5 = 1).

Table 1
Selected geometric parameters (Å, °)

Bi1—S1 2.6078 (5) Bi1—N1 2.7970 (17)
Bi1—S3 2.5938 (5) Bi1—N2 2.7342 (17)
Bi1—S5 2.5550 (6)    
       
S1—Bi1—N1 59.71 (4) S5—Bi1—S1 94.838 (18)
S1—Bi1—N2 146.17 (4) S5—Bi1—S3 87.489 (17)
S3—Bi1—S1 88.679 (16) S5—Bi1—N1 105.90 (4)
S3—Bi1—N1 146.06 (4) S5—Bi1—N2 96.58 (4)
S3—Bi1—N2 60.22 (4) N2—Bi1—N1 144.35 (5)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with anisotropic displacement ellipsoids shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

In the crystal packing (Fig. 2[link]), no significant inter­molecular inter­actions are found, except a short S⋯S contact between S2 and S5(x + 1, y, z) with a distance of 3.473 (1) Å.

[Figure 2]
Figure 2
A packing plot of the title compound in a view along the b axis.

Synthesis and crystallization

The title compound was prepared by reacting BiCl3 (1 mmol, 0.315 g) and 2-mercapto-4-phenyl thia­zole (LH) (4 mmol, 0.773 g) in THF at room temperature. After stirring for 4 h, the resulting yellow solution was concentrated, yielding a yellow solid that was separated by deca­ntation and washed with small amounts of THF followed by diethyl ether. The solid was dried and recrystallized from a mixture of THF/pentane (ratio v:v = 1:3). Yellow to orange crystals suitable for X-ray diffraction were obtained by slow evaporation of the THF solution of the complex. Yield 76%; m.p. 507 K. 1H NMR (CDCl3): δ 7.58–7.60 (dd, 2H, C2H, C6H), 7.42–7.49 (m, 3H, C3H—C5H), 6.78, CH-thia­zole ring); 13C NMR (CDCl3): δ 188.5 (C9), 142.5 (C8), 129.9 (C2,6), 129.4 (C3,5), 128.1 (C4), 125.9 (C1), 108.9 (C7).

Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Bi(C9H6NS2)3]
Mr 785.78
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.19758 (16), 10.8904 (2), 14.6041 (2)
α, β, γ (°) 82.0966 (15), 78.5197 (14), 70.9346 (17)
V3) 1350.77 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 17.34
Crystal size (mm) 0.12 × 0.06 × 0.03
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.085, 0.532
No. of measured, independent and observed [I > 2σ(I)] reflections 25693, 5325, 5322
Rint 0.021
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.036, 1.11
No. of reflections 5325
No. of parameters 406
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.49, −0.62
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(4-phenyl-2-sulfanylidene-2,3-dihydro-1,3-thiazol-3-ido-κ2S2,N)(4-phenyl-1,3-thiazole-2-thiolato-κS2)bismuth top
Crystal data top
[Bi(C9H6NS2)3]Z = 2
Mr = 785.78F(000) = 760
Triclinic, P1Dx = 1.932 Mg m3
a = 9.19758 (16) ÅCu Kα radiation, λ = 1.5418 Å
b = 10.8904 (2) ÅCell parameters from 24519 reflections
c = 14.6041 (2) Åθ = 4.3–76.1°
α = 82.0966 (15)°µ = 17.34 mm1
β = 78.5197 (14)°T = 100 K
γ = 70.9346 (17)°Needle, orange
V = 1350.77 (4) Å30.12 × 0.06 × 0.03 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
5325 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5322 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 5.3114 pixels mm-1θmax = 72.0°, θmin = 3.1°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
k = 1213
Tmin = 0.085, Tmax = 0.532l = 1818
25693 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014All H-atom parameters refined
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0178P)2 + 1.2762P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.006
5325 reflectionsΔρmax = 0.49 e Å3
406 parametersΔρmin = 0.62 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.04854 (2)0.79732 (2)0.82325 (2)0.01547 (3)
S10.20152 (6)0.96640 (5)0.79684 (4)0.02075 (11)
S20.55560 (6)0.85161 (5)0.76213 (4)0.02079 (11)
S30.18891 (6)0.96840 (5)0.90975 (3)0.01687 (10)
S40.41485 (6)0.85142 (5)1.04776 (3)0.01725 (10)
S50.07429 (6)0.87655 (6)0.67505 (4)0.02366 (11)
S60.19538 (7)0.79159 (6)0.51708 (4)0.02644 (12)
N10.3712 (2)0.71876 (17)0.76281 (12)0.0160 (3)
N20.1935 (2)0.72176 (17)0.92834 (12)0.0144 (3)
N30.0621 (2)0.6322 (2)0.61607 (12)0.0203 (4)
C10.3717 (2)0.8368 (2)0.77210 (14)0.0166 (4)
C20.6356 (3)0.6878 (2)0.74564 (16)0.0199 (4)
H20.741 (4)0.655 (3)0.734 (2)0.039 (9)*
C30.5213 (2)0.6322 (2)0.74932 (13)0.0151 (4)
C40.5433 (2)0.4935 (2)0.74129 (13)0.0153 (4)
C50.6842 (2)0.3977 (2)0.75534 (14)0.0172 (4)
H50.765 (3)0.424 (3)0.7721 (18)0.021 (6)*
C60.7044 (3)0.2675 (2)0.74796 (15)0.0195 (4)
H60.801 (3)0.202 (3)0.759 (2)0.025 (7)*
C70.5851 (3)0.2296 (2)0.72688 (14)0.0198 (4)
H70.602 (3)0.139 (3)0.720 (2)0.029 (7)*
C80.4447 (3)0.3232 (2)0.71348 (14)0.0189 (4)
H80.364 (4)0.297 (3)0.702 (2)0.029 (7)*
C90.4235 (2)0.4543 (2)0.72059 (14)0.0169 (4)
H90.328 (3)0.515 (3)0.7120 (17)0.014 (6)*
C100.2588 (2)0.8389 (2)0.95742 (14)0.0143 (4)
C110.3889 (2)0.6881 (2)1.04507 (15)0.0165 (4)
H110.451 (3)0.648 (3)1.087 (2)0.026 (7)*
C120.2661 (2)0.6341 (2)0.97873 (14)0.0145 (4)
C130.2010 (2)0.4953 (2)0.95995 (14)0.0149 (4)
C140.0570 (2)0.4502 (2)0.90157 (15)0.0179 (4)
H140.004 (3)0.506 (3)0.8737 (18)0.020 (6)*
C150.0088 (3)0.3187 (2)0.88689 (16)0.0198 (4)
H150.103 (4)0.290 (3)0.850 (2)0.029 (7)*
C160.0690 (3)0.2307 (2)0.92946 (15)0.0193 (4)
H160.025 (3)0.141 (3)0.9200 (18)0.020 (6)*
C170.2140 (3)0.2748 (2)0.98625 (15)0.0193 (4)
H170.269 (3)0.214 (3)1.0171 (18)0.016 (6)*
C180.2798 (2)0.4065 (2)1.00132 (15)0.0174 (4)
H180.377 (3)0.433 (3)1.0409 (18)0.018 (6)*
C190.0574 (3)0.7542 (2)0.60642 (15)0.0223 (5)
C200.2623 (3)0.6324 (2)0.49126 (16)0.0239 (5)
H200.344 (4)0.605 (3)0.440 (2)0.032 (8)*
C210.1787 (3)0.5610 (2)0.55003 (14)0.0201 (4)
C220.2029 (3)0.4211 (2)0.54815 (15)0.0208 (4)
C230.3385 (3)0.3415 (3)0.49685 (16)0.0257 (5)
H230.414 (3)0.379 (3)0.4648 (19)0.024 (7)*
C240.3624 (3)0.2088 (3)0.49678 (18)0.0317 (5)
H240.455 (4)0.155 (3)0.460 (2)0.038 (8)*
C250.2526 (3)0.1534 (3)0.54776 (19)0.0335 (6)
H250.272 (4)0.058 (3)0.548 (2)0.040 (9)*
C260.1176 (3)0.2311 (3)0.59860 (19)0.0314 (5)
H260.042 (4)0.191 (3)0.632 (2)0.039 (9)*
C270.0928 (3)0.3639 (3)0.59854 (17)0.0255 (5)
H270.008 (4)0.415 (3)0.634 (2)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01146 (4)0.01291 (5)0.02127 (5)0.00430 (3)0.00139 (3)0.00338 (3)
S10.0142 (2)0.0136 (2)0.0332 (3)0.00434 (19)0.0004 (2)0.0026 (2)
S20.0136 (2)0.0185 (2)0.0324 (3)0.00687 (19)0.0033 (2)0.0052 (2)
S30.0153 (2)0.0113 (2)0.0222 (2)0.00482 (18)0.00260 (18)0.00209 (18)
S40.0160 (2)0.0128 (2)0.0199 (2)0.00403 (18)0.00428 (18)0.00268 (18)
S50.0182 (2)0.0281 (3)0.0238 (3)0.0052 (2)0.0023 (2)0.0057 (2)
S60.0263 (3)0.0305 (3)0.0244 (3)0.0150 (2)0.0043 (2)0.0055 (2)
N10.0140 (8)0.0163 (9)0.0178 (8)0.0054 (7)0.0020 (6)0.0010 (7)
N20.0136 (8)0.0131 (8)0.0164 (8)0.0042 (7)0.0020 (6)0.0016 (6)
N30.0161 (9)0.0288 (10)0.0161 (8)0.0074 (8)0.0020 (7)0.0019 (7)
C10.0128 (9)0.0198 (10)0.0179 (9)0.0074 (8)0.0004 (7)0.0009 (8)
C20.0144 (10)0.0188 (11)0.0260 (11)0.0041 (8)0.0029 (8)0.0036 (8)
C30.0129 (9)0.0185 (10)0.0134 (9)0.0042 (8)0.0015 (7)0.0017 (7)
C40.0157 (10)0.0169 (10)0.0122 (9)0.0048 (8)0.0001 (7)0.0006 (7)
C50.0151 (10)0.0210 (11)0.0147 (9)0.0049 (8)0.0016 (7)0.0023 (8)
C60.0195 (11)0.0187 (11)0.0169 (10)0.0030 (9)0.0013 (8)0.0000 (8)
C70.0259 (11)0.0169 (11)0.0158 (9)0.0074 (9)0.0003 (8)0.0015 (8)
C80.0206 (10)0.0219 (11)0.0165 (9)0.0101 (9)0.0020 (8)0.0017 (8)
C90.0153 (10)0.0196 (11)0.0151 (9)0.0054 (8)0.0019 (7)0.0000 (8)
C100.0106 (9)0.0150 (10)0.0163 (9)0.0043 (7)0.0006 (7)0.0016 (7)
C110.0171 (10)0.0134 (10)0.0186 (10)0.0060 (8)0.0009 (8)0.0002 (8)
C120.0145 (9)0.0142 (10)0.0161 (9)0.0064 (8)0.0031 (7)0.0002 (7)
C130.0159 (10)0.0141 (10)0.0155 (9)0.0043 (8)0.0052 (7)0.0011 (7)
C140.0164 (10)0.0158 (10)0.0235 (10)0.0068 (8)0.0035 (8)0.0033 (8)
C150.0152 (10)0.0185 (11)0.0254 (11)0.0022 (8)0.0048 (8)0.0065 (8)
C160.0216 (11)0.0121 (10)0.0249 (11)0.0020 (8)0.0092 (8)0.0037 (8)
C170.0245 (11)0.0164 (10)0.0201 (10)0.0092 (9)0.0072 (8)0.0009 (8)
C180.0174 (10)0.0171 (10)0.0181 (10)0.0060 (8)0.0023 (8)0.0019 (8)
C190.0172 (10)0.0311 (13)0.0202 (10)0.0092 (9)0.0029 (8)0.0030 (9)
C200.0225 (11)0.0300 (13)0.0190 (10)0.0093 (10)0.0006 (9)0.0049 (9)
C210.0159 (10)0.0290 (12)0.0153 (9)0.0060 (9)0.0038 (8)0.0018 (8)
C220.0184 (10)0.0276 (12)0.0171 (10)0.0065 (9)0.0063 (8)0.0006 (8)
C230.0227 (11)0.0329 (13)0.0203 (11)0.0077 (10)0.0024 (9)0.0024 (9)
C240.0314 (13)0.0329 (14)0.0268 (12)0.0037 (11)0.0037 (10)0.0058 (10)
C250.0375 (15)0.0262 (13)0.0375 (14)0.0082 (11)0.0112 (11)0.0014 (11)
C260.0286 (13)0.0312 (14)0.0361 (13)0.0128 (11)0.0073 (11)0.0037 (11)
C270.0208 (11)0.0295 (13)0.0250 (11)0.0066 (10)0.0047 (9)0.0008 (10)
Geometric parameters (Å, º) top
Bi1—S12.6078 (5)C8—H80.93 (3)
Bi1—S32.5938 (5)C8—C91.391 (3)
Bi1—S52.5550 (6)C9—H90.93 (3)
Bi1—N12.7970 (17)C11—H110.92 (3)
Bi1—N22.7342 (17)C11—C121.359 (3)
S1—C11.744 (2)C12—C131.475 (3)
S2—C11.727 (2)C13—C141.401 (3)
S2—C21.724 (2)C13—C181.396 (3)
S3—C101.741 (2)C14—H140.90 (3)
S4—C101.728 (2)C14—C151.389 (3)
S4—C111.721 (2)C15—H150.91 (3)
S5—C191.754 (2)C15—C161.387 (3)
S6—C191.735 (2)C16—H160.95 (3)
S6—C201.708 (3)C16—C171.396 (3)
N1—C11.313 (3)C17—H170.97 (3)
N1—C31.388 (3)C17—C181.392 (3)
N2—C101.310 (3)C18—H180.94 (3)
N2—C121.388 (3)C20—H200.95 (3)
N3—C191.304 (3)C20—C211.370 (3)
N3—C211.389 (3)C21—C221.470 (3)
C2—H20.91 (3)C22—C231.403 (3)
C2—C31.363 (3)C22—C271.394 (3)
C3—C41.475 (3)C23—H230.93 (3)
C4—C51.405 (3)C23—C241.388 (4)
C4—C91.401 (3)C24—H240.96 (3)
C5—H50.96 (3)C24—C251.383 (4)
C5—C61.385 (3)C25—H250.99 (3)
C6—H60.96 (3)C25—C261.389 (4)
C6—C71.391 (3)C26—H260.95 (3)
C7—H70.97 (3)C26—C271.388 (4)
C7—C81.390 (3)C27—H270.91 (3)
S1—Bi1—N159.71 (4)N2—C10—S4114.33 (15)
S1—Bi1—N2146.17 (4)S4—C11—H11120.4 (18)
S3—Bi1—S188.679 (16)C12—C11—S4110.94 (16)
S3—Bi1—N1146.06 (4)C12—C11—H11128.6 (18)
S3—Bi1—N260.22 (4)N2—C12—C13118.96 (18)
S5—Bi1—S194.838 (18)C11—C12—N2114.04 (18)
S5—Bi1—S387.489 (17)C11—C12—C13126.91 (19)
S5—Bi1—N1105.90 (4)C14—C13—C12120.24 (19)
S5—Bi1—N296.58 (4)C18—C13—C12120.76 (19)
N2—Bi1—N1144.35 (5)C18—C13—C14118.98 (19)
C1—S1—Bi187.45 (7)C13—C14—H14120.6 (17)
C2—S2—C189.48 (11)C15—C14—C13120.7 (2)
C10—S3—Bi186.69 (7)C15—C14—H14118.7 (17)
C11—S4—C1089.19 (10)C14—C15—H15120.4 (19)
C19—S5—Bi195.96 (8)C16—C15—C14120.0 (2)
C20—S6—C1989.33 (12)C16—C15—H15119.6 (19)
C1—N1—Bi189.15 (12)C15—C16—H16120.8 (17)
C1—N1—C3111.55 (17)C15—C16—C17119.8 (2)
C3—N1—Bi1156.38 (14)C17—C16—H16119.4 (17)
C10—N2—Bi190.38 (12)C16—C17—H17120.7 (15)
C10—N2—C12111.48 (17)C18—C17—C16120.3 (2)
C12—N2—Bi1155.75 (13)C18—C17—H17119.0 (16)
C19—N3—C21110.92 (19)C13—C18—H18121.5 (16)
S2—C1—S1122.72 (13)C17—C18—C13120.2 (2)
N1—C1—S1123.07 (16)C17—C18—H18118.2 (16)
N1—C1—S2114.17 (16)S6—C19—S5120.09 (14)
S2—C2—H2117 (2)N3—C19—S5125.26 (17)
C3—C2—S2110.56 (16)N3—C19—S6114.65 (17)
C3—C2—H2132 (2)S6—C20—H20120.4 (19)
N1—C3—C4119.18 (18)C21—C20—S6110.71 (18)
C2—C3—N1114.21 (19)C21—C20—H20128.8 (19)
C2—C3—C4126.61 (19)N3—C21—C22119.7 (2)
C5—C4—C3120.68 (19)C20—C21—N3114.4 (2)
C9—C4—C3120.76 (19)C20—C21—C22125.9 (2)
C9—C4—C5118.6 (2)C23—C22—C21120.8 (2)
C4—C5—H5119.0 (16)C27—C22—C21120.8 (2)
C6—C5—C4120.6 (2)C27—C22—C23118.4 (2)
C6—C5—H5120.4 (16)C22—C23—H23118.3 (18)
C5—C6—H6120.1 (17)C24—C23—C22120.7 (2)
C5—C6—C7120.4 (2)C24—C23—H23121.0 (18)
C7—C6—H6119.4 (17)C23—C24—H24120 (2)
C6—C7—H7119.4 (17)C25—C24—C23120.2 (2)
C8—C7—C6119.6 (2)C25—C24—H24120 (2)
C8—C7—H7121.0 (17)C24—C25—H25119.3 (19)
C7—C8—H8119.5 (19)C24—C25—C26119.7 (3)
C7—C8—C9120.3 (2)C26—C25—H25121.0 (19)
C9—C8—H8120.1 (19)C25—C26—H26118 (2)
C4—C9—H9120.8 (16)C27—C26—C25120.3 (2)
C8—C9—C4120.5 (2)C27—C26—H26121 (2)
C8—C9—H9118.7 (16)C22—C27—H27118 (2)
S4—C10—S3123.72 (12)C26—C27—C22120.7 (2)
N2—C10—S3121.93 (15)C26—C27—H27121 (2)
 

Funding information

MI acknowledges with special thanks the Deutscher Akademischer Austausch Dienst (DAAD) for providing a PhD stipend.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBattaglia, L. P. & Corradi, A. B. (1981). J. Chem. Soc. Dalton Trans. pp. 23–26.  CSD CrossRef Google Scholar
First citationBattaglia, L. P. & Corradi, A. B. (1983). J. Chem. Soc. Dalton Trans. pp. 2425–2428.  CSD CrossRef Google Scholar
First citationBattaglia, L. P., Corradi, A. B. & Pelosi, G. (1992). J. Crystallogr. Spectrosc. Res. 22, 275–279.  CSD CrossRef CAS Google Scholar
First citationBriand, G. G., Burford, N. & Cameron, T. S. (2000). Chem. Commun. pp. 13–14.  CSD CrossRef Google Scholar
First citationDiemer, R., Dittes, U., Nuber, B., Seifried, V., Opferkuch, W. & Keppler, B. K. (1995). Met.-Based Drugs, 2, 271–292.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationImran, M., Neumann, B., Stammler, H.-G., Monkowius, U., Ertl, M. & Mitzel, N. W. (2013). Dalton Trans. 42, 15785–15795.  CSD CrossRef CAS PubMed Google Scholar
First citationImran, M., Neumann, B., Stammler, H.-G., Monkowius, U., Ertl, M. & Mitzel, N. W. (2014). Dalton Trans. 43, 1267–1278.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStavila, V., Davidovich, V. L., Gulea, A. & Whitmire, K. H. (2006). Coord. Chem. Rev. 250, 2782–2810.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds