metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Di­chlorido­bis­­[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate

aDepartment of Chemistry and Biochemistry, University of Lethbridge, 4401, University Drive Lethbridge, AB, T1K 3M4, Canada, bDepartment of Chemistry, South Eastern University of Kenya, Kitui, Kenya, and cSchool of Chemistry & Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
*Correspondence e-mail: cmacneil@princeton.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 October 2019; accepted 13 January 2020; online 28 January 2020)

In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octa­hedral environment defined by four N donors of two N,N′-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water mol­ecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions, links the complex mol­ecules and the water mol­ecules to form a supra­molecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011[Das, S., Guha, S., Banerjee, A., Lohar, S., Sahana, A. & Das, D. (2011). Org. Biomol. Chem. 9, 7097-7104.]). Org. Biomol. Chem. 9, 7097–7107].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition-metal-catalyzed transfer hydrogenation (TH) is an effective method of reducing ketones to the corresponding secondary alcohols (Zhu et al., 2014[Zhu, X.-H., Cai, L., Wang, C., Wang, Y., Guo, X. & Hou, X. (2014). J. Mol. Catal. A Chem. 393, 134-141.]). Generally, the method is operationally simple, selective, and sources hydrogen from alcohols, thus avoiding high pressures of H2 gas (Zhu et al., 2014[Zhu, M. (2014). Appl. Catal. Gen. 479, 45-48.]). Several transition-metal complexes have been studied in catalytic TH and have been used on laboratory and industrial scales. Complexes of precious metals (Rh, Ir, and Ru) have been the preferred catalysts for TH owing to their high activity and commercial availability (Raja et al., 2012[Raja, N. & Ramesh, R. (2012). Tetrahedron Lett. 53, 4770-4774.]; Wang et al., 2015[Wang, D. & Astruc, D. (2015). Chem. Rev. 115, 6621-6686.]; Li et al., 2015[Li, Y. Y., Yu, S. L., Shen, W. Y. & Gao, J. X. (2015). Acc. Chem. Res. 48, 2587-2598.]). With growing concern surrounding the economic and environmental impact of using precious metals in chemistry, a renewed inter­est in Earth-abundant metal catalysis has prompted our research into TH catalysts featuring first-row transition metals, such as iron, cobalt, or nickel (Morris, 2009[Morris, R. H. (2009). Chem. Soc. Rev. 38, 2282-2291.]; Garduño & García, 2017[Garduño, J. A. & García, J. J. (2017). ACS Omega, 2, 2337-2343.]; Abubakar et al., 2018[Abubakar, S. & Bala, M. D. (2018). J. Coord. Chem. 71, 2913-2923.]; Chen et al., 2010[Chen, Z., Zeng, M., Zhang, Y., Zhang, Z. & Liang, F. (2010). Appl. Organomet. Chem. 24, 625-630.]). Recognizing that nickel(II) complexes of chiral bis­(phosphines) have been utilized in asymmetric TH, we turned our attention to nickel(II) complexes of the commercially available ligand 2-(pyridin-2-yl)-1H-benzimidazole.

The asymmetric unit of the title complex consists of a NiII ion coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands bound in a κ2-N,N arrangement, along with two cis-oriented anionic chloride donors (Fig. 1[link]). The complex crystallized as a monohydrate with the water mol­ecule disordered over two sites (Fig. 1[link]). The metal center adopts a slightly distorted octa­hedral geometry. The pyridyl N-donor atoms are trans-disposed [N1—Ni1—N4 = 170.66 (8)°], while the chloride ligands are cis-disposed [Cl2—Ni1—Cl1 = 93.04 (2)°]. The disordered water mol­ecules are linked to the complex mol­ecule by O—H⋯Cl hydrogen bonds, and water H atom H2B is directed to the centroid of the C7–C12 ring (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C7–C12, N5/N6/C18/C19/C24, N1/C1–C5, N4/C13–C17 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.95 2.75 3.378 (2) 124
O1—H1A⋯Cl1 0.85 2.37 3.221 (4) 174
O2—H2B⋯Cl1 0.85 2.41 3.239 (4) 165
O2—H2A⋯O1i 0.85 1.97 2.806 (6) 167
N3—H3⋯Cl2ii 0.88 2.29 3.162 (2) 171
N6—H6⋯Cl1iii 0.88 2.23 3.069 (2) 160
C2—H2⋯O2iv 0.95 2.56 3.400 (5) 147
C20—H20⋯O2iii 0.95 2.54 3.317 (5) 139
O1—H1BCg1 0.85 3.11 3.869 (3) 150
C3—H3ACg5ii 0.95 2.97 3.738 (3) 139
C8—H8⋯Cg2v 0.95 2.69 3.579 (3) 155
C9—H9⋯Cg5v 0.95 2.88 3.542 (3) 128
C11—H11⋯Cg4 0.95 2.93 3.810 (3) 155
C23—H23⋯Cg3 0.95 2.94 3.733 (3) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as orange dashed lines and the O—H⋯π inter­action as a red arrow (Table 1[link]).

In the crystal, extensive hydrogen bonding is observed involving the disordered water mol­ecule, the ligand NH groups and the chloride ions (Fig. 2[link]a and 2b and Table 1[link]). The result is the formation of a supra­molecular three-dimensional network (Fig. 3[link]). There are also C—H⋯O and C—H⋯π inter­actions present (Table 1[link]) consolidating the packing.

[Figure 2]
Figure 2
Hydrogen-bonding networks involving, (a) the discorded water mol­ecule, and (b) the N—H⋯Cl hydrogen bonds. For clarity, only the H atoms involved in hydrogen bonding (dashed lines; Table 1[link]) have been included.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title complex. For clarity, only the H atoms involved in hydrogen bonding (dashed lines; Table 1[link]) have been included.

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the title compound is isostructural with the cobalt(II) complex di­chlorido­bis-[2-(pyridin-2-yl)-1H-benzimidazole]­cobalt(II) monohydrate (CSD refcode DACRIK; Das et al., 2011[Das, S., Guha, S., Banerjee, A., Lohar, S., Sahana, A. & Das, D. (2011). Org. Biomol. Chem. 9, 7097-7104.]). The later was reported in space group C2/c but transformation of the unit cell gives space group I2/a (ADDSYMM in PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) with almost identical cell parameters to those of the title complex – see Fig. 4[link].

[Figure 4]
Figure 4
A view of the ADDSYM (PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) transformation of the cell dimensions of the isostructural compound di­chlorido­bis­[2-(pyridin-2-yl)-1H-benzimidazole]­cobalt(II) monohydrate (CSD refcode DACRIK; Das et al., 2011[Das, S., Guha, S., Banerjee, A., Lohar, S., Sahana, A. & Das, D. (2011). Org. Biomol. Chem. 9, 7097-7104.]).

Synthesis and crystallization

The reaction scheme for the synthesis of the title complex is given in Fig. 5[link]. A solution of 2-(pyridin-2-yl)-1H-benzimidazole (0.15 g, 0.78 mmol) in ethanol (5 ml) was added dropwise to a stirring ethano­lic solution of bis­(tri­phenyl­phosphine)nickel(II) dichloride (0.50 g, 0.76 mmol). The mixture was stirred at room temperature for 24 h. The resulting mixture was concentrated and the product isolated by addition of diethyl ether (5 ml) giving a light-brown solid. Yield: 0.27 g (68%). Analysis calculated for C24H18Cl2N6Ni: C, 55.43; H, 3.49; N, 16.16%. Found: C, 55.23; H, 3.59; N, 16.25%. Light-blue plate-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a concentrated ethanol solution.

[Figure 5]
Figure 5
Reaction scheme for the synthesis of the title complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The complex crystallized as a monohydrate with the water mol­ecule disordered over two sites (O1 and O2); occupancies fixed at 0.5 each.

Table 2
Experimental details

Crystal data
Chemical formula [NiCl2(C12H9N3)2]·H2O
Mr 538.07
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 15.9019 (6), 14.7008 (7), 20.0039 (7)
β (°) 95.924 (4)
V3) 4651.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.10
Crystal size (mm) 0.21 × 0.15 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.])
Tmin, Tmax 0.785, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29773, 6268, 5296
Rint 0.046
(sin θ/λ)max−1) 0.734
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.06
No. of reflections 6268
No. of parameters 322
H-atom treatment H-atom parameters constrained
   
Δρmax, Δρmin (e Å−3) 1.16, −0.64
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])'.

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010)'.

Dichloridobis[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate top
Crystal data top
[NiCl2(C12H9N3)2]·H2OF(000) = 2208
Mr = 538.07Dx = 1.537 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 15.9019 (6) ÅCell parameters from 13739 reflections
b = 14.7008 (7) Åθ = 3.8–30.9°
c = 20.0039 (7) ŵ = 1.10 mm1
β = 95.924 (4)°T = 100 K
V = 4651.4 (3) Å3Plate, clear light blue
Z = 80.21 × 0.15 × 0.1 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K
diffractometer
5296 reflections with I > 2σ(I)
ω scansRint = 0.046
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
θmax = 31.4°, θmin = 3.4°
Tmin = 0.785, Tmax = 1.000h = 2221
29773 measured reflectionsk = 1919
6268 independent reflectionsl = 2926
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 11.2375P]
where P = (Fo2 + 2Fc2)/3
6268 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The O-, N- and C-bound H atoms were included in calculated positions and treated as riding on the parent atom: O—H = 0.85 Å, N—H = 0.88 Å, C—H = 0.95 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.41587 (2)0.53396 (2)0.26342 (2)0.01946 (9)
Cl20.51535 (3)0.65004 (4)0.30400 (2)0.02048 (12)
Cl10.34436 (3)0.63357 (5)0.17809 (3)0.02851 (14)
N10.32601 (11)0.56738 (14)0.32888 (9)0.0206 (4)
N40.50259 (11)0.47857 (14)0.20265 (9)0.0223 (4)
N30.19362 (11)0.38608 (14)0.25224 (9)0.0214 (4)
H30.14590.38000.27040.026*
N50.47605 (11)0.43649 (14)0.32845 (9)0.0216 (4)
N20.32190 (11)0.43767 (14)0.23554 (9)0.0230 (4)
N60.54931 (12)0.30631 (15)0.33216 (10)0.0251 (4)
H60.57960.26100.31880.030*
C10.33068 (14)0.63587 (16)0.37299 (11)0.0220 (4)
H10.37710.67670.37400.026*
C60.25743 (13)0.44376 (16)0.27227 (10)0.0197 (4)
C20.27009 (14)0.64957 (17)0.41747 (11)0.0239 (5)
H20.27410.69960.44770.029*
C130.52147 (14)0.50999 (18)0.14323 (12)0.0260 (5)
H130.49310.56270.12500.031*
C70.21767 (13)0.33846 (16)0.19770 (11)0.0220 (4)
C50.25879 (13)0.51099 (16)0.32589 (10)0.0200 (4)
C30.20350 (14)0.58805 (18)0.41653 (11)0.0251 (5)
H3A0.16280.59390.44790.030*
C40.19672 (13)0.51814 (17)0.36966 (11)0.0232 (5)
H40.15090.47640.36760.028*
C120.29871 (14)0.37186 (17)0.18758 (11)0.0239 (5)
C170.54399 (13)0.40452 (16)0.22848 (11)0.0229 (4)
C190.52027 (14)0.31581 (18)0.39437 (11)0.0266 (5)
C180.52220 (13)0.38021 (17)0.29551 (11)0.0229 (4)
C240.47421 (14)0.39799 (17)0.39175 (11)0.0247 (5)
C80.17716 (14)0.27144 (18)0.15768 (12)0.0273 (5)
H80.12320.24880.16580.033*
C90.21903 (16)0.23914 (19)0.10533 (12)0.0305 (5)
H90.19280.19420.07610.037*
C160.60480 (15)0.35909 (18)0.19622 (12)0.0285 (5)
H160.63290.30710.21590.034*
C100.29967 (16)0.2715 (2)0.09461 (13)0.0335 (6)
H100.32660.24770.05820.040*
C140.58124 (16)0.46814 (19)0.10720 (13)0.0320 (6)
H140.59290.49150.06480.038*
C110.34100 (15)0.3368 (2)0.13516 (13)0.0319 (6)
H110.39600.35720.12790.038*
C230.43824 (16)0.42902 (19)0.44841 (11)0.0290 (5)
H230.40700.48420.44760.035*
C220.45004 (18)0.3760 (2)0.50589 (12)0.0345 (6)
H220.42700.39590.54530.041*
C200.53109 (16)0.2614 (2)0.45225 (13)0.0335 (6)
H200.56140.20570.45340.040*
C210.49486 (17)0.2940 (2)0.50755 (12)0.0362 (6)
H210.50060.25960.54790.043*
C150.62325 (16)0.3922 (2)0.13411 (13)0.0320 (5)
H150.66440.36270.11050.038*
O10.3180 (3)0.5134 (3)0.0429 (2)0.0440 (10)0.5
H1A0.32680.54130.08020.066*0.5
H1B0.30850.45750.05020.066*0.5
O20.2882 (3)0.6487 (3)0.01818 (18)0.0429 (10)0.5
H2A0.26020.60190.00420.064*0.5
H2B0.31130.63910.05780.064*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01005 (13)0.03529 (17)0.01374 (13)0.00391 (10)0.00448 (10)0.00355 (11)
Cl20.0109 (2)0.0340 (3)0.0169 (2)0.00172 (18)0.00350 (17)0.00279 (19)
Cl10.0169 (2)0.0491 (4)0.0188 (2)0.0029 (2)0.00126 (19)0.0018 (2)
N10.0130 (8)0.0355 (10)0.0141 (8)0.0013 (7)0.0049 (6)0.0016 (7)
N40.0129 (8)0.0379 (11)0.0165 (8)0.0066 (7)0.0038 (7)0.0047 (8)
N30.0098 (7)0.0387 (11)0.0162 (8)0.0036 (7)0.0033 (6)0.0001 (8)
N50.0154 (8)0.0346 (10)0.0153 (8)0.0064 (7)0.0036 (7)0.0023 (7)
N20.0133 (8)0.0401 (11)0.0166 (8)0.0052 (8)0.0059 (7)0.0046 (8)
N60.0167 (8)0.0376 (11)0.0208 (9)0.0022 (8)0.0007 (7)0.0010 (8)
C10.0172 (10)0.0334 (12)0.0158 (9)0.0009 (8)0.0035 (8)0.0014 (8)
C60.0114 (9)0.0319 (11)0.0159 (9)0.0005 (8)0.0020 (7)0.0000 (8)
C20.0196 (10)0.0384 (13)0.0143 (9)0.0055 (9)0.0048 (8)0.0004 (9)
C130.0179 (10)0.0420 (13)0.0192 (10)0.0054 (9)0.0064 (8)0.0015 (9)
C70.0141 (9)0.0351 (12)0.0163 (9)0.0028 (8)0.0000 (8)0.0011 (9)
C50.0113 (9)0.0368 (12)0.0120 (8)0.0018 (8)0.0020 (7)0.0007 (8)
C30.0149 (9)0.0445 (14)0.0166 (9)0.0053 (9)0.0049 (8)0.0013 (9)
C40.0111 (9)0.0423 (13)0.0163 (9)0.0005 (8)0.0022 (8)0.0036 (9)
C120.0160 (10)0.0385 (13)0.0172 (9)0.0054 (9)0.0025 (8)0.0057 (9)
C170.0129 (9)0.0362 (12)0.0196 (10)0.0059 (8)0.0021 (8)0.0051 (9)
C190.0190 (10)0.0422 (13)0.0178 (10)0.0096 (9)0.0019 (8)0.0011 (9)
C180.0128 (9)0.0383 (12)0.0173 (9)0.0046 (8)0.0002 (8)0.0024 (9)
C240.0174 (10)0.0386 (13)0.0176 (10)0.0094 (9)0.0009 (8)0.0009 (9)
C80.0180 (10)0.0414 (14)0.0216 (10)0.0077 (9)0.0025 (9)0.0010 (10)
C90.0255 (11)0.0430 (14)0.0219 (11)0.0073 (10)0.0036 (9)0.0077 (10)
C160.0179 (10)0.0418 (14)0.0264 (11)0.0009 (9)0.0053 (9)0.0049 (10)
C100.0252 (12)0.0514 (16)0.0245 (11)0.0056 (11)0.0050 (9)0.0140 (11)
C140.0236 (12)0.0501 (16)0.0242 (11)0.0064 (11)0.0123 (10)0.0039 (11)
C110.0204 (11)0.0509 (15)0.0260 (12)0.0089 (10)0.0098 (9)0.0165 (11)
C230.0253 (11)0.0434 (14)0.0182 (10)0.0138 (10)0.0021 (9)0.0041 (10)
C220.0358 (14)0.0520 (16)0.0158 (10)0.0193 (12)0.0023 (10)0.0037 (10)
C200.0270 (12)0.0454 (15)0.0263 (12)0.0106 (11)0.0057 (10)0.0043 (11)
C210.0362 (14)0.0533 (17)0.0174 (10)0.0191 (12)0.0048 (10)0.0042 (11)
C150.0201 (11)0.0511 (15)0.0268 (12)0.0027 (10)0.0114 (9)0.0093 (11)
O10.057 (3)0.048 (2)0.0260 (19)0.009 (2)0.0008 (18)0.0042 (17)
O20.052 (3)0.057 (3)0.0188 (17)0.022 (2)0.0026 (17)0.0022 (16)
Geometric parameters (Å, º) top
Ni1—Cl22.4101 (6)C3—C41.388 (3)
Ni1—Cl12.4394 (6)C4—H40.9500
Ni1—N12.0937 (18)C12—C111.401 (3)
Ni1—N42.0949 (19)C17—C181.463 (3)
Ni1—N52.099 (2)C17—C161.388 (3)
Ni1—N22.0918 (19)C19—C241.411 (4)
N1—C11.336 (3)C19—C201.403 (3)
N1—C51.349 (3)C24—C231.398 (3)
N4—C131.338 (3)C8—H80.9500
N4—C171.347 (3)C8—C91.382 (4)
N3—H30.8800C9—H90.9500
N3—C61.351 (3)C9—C101.405 (4)
N3—C71.383 (3)C16—H160.9500
N5—C181.326 (3)C16—C151.393 (4)
N5—C241.390 (3)C10—H100.9500
N2—C61.325 (3)C10—C111.378 (3)
N2—C121.385 (3)C14—H140.9500
N6—H60.8800C14—C151.382 (4)
N6—C191.378 (3)C11—H110.9500
N6—C181.356 (3)C23—H230.9500
C1—H10.9500C23—C221.386 (4)
C1—C21.392 (3)C22—H220.9500
C6—C51.457 (3)C22—C211.398 (4)
C2—H20.9500C20—H200.9500
C2—C31.391 (3)C20—C211.385 (4)
C13—H130.9500C21—H210.9500
C13—C141.394 (3)C15—H150.9500
C7—C121.413 (3)O1—H1A0.8505
C7—C81.386 (3)O1—H1B0.8503
C5—C41.389 (3)O2—H2A0.8507
C3—H3A0.9500O2—H2B0.8498
Cl2—Ni1—Cl193.04 (2)C5—C4—H4120.9
N1—Ni1—Cl295.15 (5)C3—C4—C5118.1 (2)
N1—Ni1—Cl189.87 (5)C3—C4—H4120.9
N1—Ni1—N4170.66 (8)N2—C12—C7108.96 (19)
N1—Ni1—N593.99 (7)N2—C12—C11131.4 (2)
N4—Ni1—Cl291.27 (5)C11—C12—C7119.6 (2)
N4—Ni1—Cl196.57 (6)N4—C17—C18113.3 (2)
N4—Ni1—N578.99 (8)N4—C17—C16123.1 (2)
N5—Ni1—Cl291.90 (5)C16—C17—C18123.4 (2)
N5—Ni1—Cl1173.44 (6)N6—C19—C24105.9 (2)
N2—Ni1—Cl2174.23 (5)N6—C19—C20131.6 (3)
N2—Ni1—Cl187.19 (6)C20—C19—C24122.5 (2)
N2—Ni1—N179.09 (7)N5—C18—N6113.1 (2)
N2—Ni1—N494.43 (7)N5—C18—C17119.9 (2)
N2—Ni1—N588.32 (8)N6—C18—C17126.8 (2)
C1—N1—Ni1126.52 (15)N5—C24—C19108.8 (2)
C1—N1—C5118.82 (18)N5—C24—C23130.9 (2)
C5—N1—Ni1114.63 (15)C23—C24—C19120.2 (2)
C13—N4—Ni1127.08 (17)C7—C8—H8121.6
C13—N4—C17118.3 (2)C9—C8—C7116.8 (2)
C17—N4—Ni1114.60 (15)C9—C8—H8121.6
C6—N3—H3126.5C8—C9—H9119.4
C6—N3—C7106.94 (17)C8—C9—C10121.2 (2)
C7—N3—H3126.5C10—C9—H9119.4
C18—N5—Ni1111.00 (15)C17—C16—H16121.1
C18—N5—C24105.3 (2)C17—C16—C15117.9 (2)
C24—N5—Ni1142.33 (16)C15—C16—H16121.1
C6—N2—Ni1112.26 (15)C9—C10—H10118.9
C6—N2—C12105.40 (18)C11—C10—C9122.2 (2)
C12—N2—Ni1142.08 (15)C11—C10—H10118.9
C19—N6—H6126.6C13—C14—H14120.6
C18—N6—H6126.6C15—C14—C13118.9 (2)
C18—N6—C19106.8 (2)C15—C14—H14120.6
N1—C1—H1118.8C12—C11—H11121.3
N1—C1—C2122.4 (2)C10—C11—C12117.4 (2)
C2—C1—H1118.8C10—C11—H11121.3
N3—C6—C5126.71 (19)C24—C23—H23121.4
N2—C6—N3113.18 (19)C22—C23—C24117.2 (3)
N2—C6—C5120.04 (19)C22—C23—H23121.4
C1—C2—H2120.9C23—C22—H22119.0
C3—C2—C1118.3 (2)C23—C22—C21122.0 (2)
C3—C2—H2120.9C21—C22—H22119.0
N4—C13—H13118.8C19—C20—H20122.1
N4—C13—C14122.3 (2)C21—C20—C19115.9 (3)
C14—C13—H13118.8C21—C20—H20122.1
N3—C7—C12105.53 (19)C22—C21—H21118.9
N3—C7—C8131.7 (2)C20—C21—C22122.1 (2)
C8—C7—C12122.7 (2)C20—C21—H21118.9
N1—C5—C6113.64 (18)C16—C15—H15120.3
N1—C5—C4122.5 (2)C14—C15—C16119.5 (2)
C4—C5—C6123.9 (2)C14—C15—H15120.3
C2—C3—H3A120.1H1A—O1—H1B109.4
C4—C3—C2119.8 (2)H2A—O2—H2B109.5
C4—C3—H3A120.1
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C7–C12, N5/N6/C18/C19/C24, N1/C1–C5, N4/C13–C17 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.952.753.378 (2)124
O1—H1A···Cl10.852.373.221 (4)174
O2—H2B···Cl10.852.413.239 (4)165
O2—H2A···O1i0.851.972.806 (6)167
N3—H3···Cl2ii0.882.293.162 (2)171
N6—H6···Cl1iii0.882.233.069 (2)160
C2—H2···O2iv0.952.563.400 (5)147
C20—H20···O2iii0.952.543.317 (5)139
O1—H1B···Cg10.853.113.869 (3)150
C3—H3A···Cg5ii0.952.973.738 (3)139
C8—H8···Cg2v0.952.693.579 (3)155
C9—H9···Cg5v0.952.883.542 (3)128
C11—H11···Cg40.952.933.810 (3)155
C23—H23···Cg30.952.943.733 (3)142
Symmetry codes: (i) x+1/2, y, z; (ii) x1/2, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

CSM is grateful to Professor Paul J. Chirik of Princeton University for hosting during the submission of the manuscript.

Funding information

The authors thank the NSERC of Canada for funding. CSM is grateful to NSERC for a CGS-D fellowship. PGH thanks NSERC for a Discovery Grant and the University of Lethbridge for a Tier I Board of Governors Research Chair in Organometallic Chemistry. SOO is grateful to the University of KwaZulu-Natal and National Research Foundation–South Africa (grant No. CPRR98938) for financial support.

References

First citationAbubakar, S. & Bala, M. D. (2018). J. Coord. Chem. 71, 2913–2923.  CSD CrossRef CAS Google Scholar
First citationChen, Z., Zeng, M., Zhang, Y., Zhang, Z. & Liang, F. (2010). Appl. Organomet. Chem. 24, 625–630.  CSD CrossRef CAS Google Scholar
First citationDas, S., Guha, S., Banerjee, A., Lohar, S., Sahana, A. & Das, D. (2011). Org. Biomol. Chem. 9, 7097–7104.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarduño, J. A. & García, J. J. (2017). ACS Omega, 2, 2337–2343.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, Y. Y., Yu, S. L., Shen, W. Y. & Gao, J. X. (2015). Acc. Chem. Res. 48, 2587–2598.  CrossRef CAS PubMed Google Scholar
First citationMorris, R. H. (2009). Chem. Soc. Rev. 38, 2282–2291.  CrossRef PubMed CAS Google Scholar
First citationRaja, N. & Ramesh, R. (2012). Tetrahedron Lett. 53, 4770–4774.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, D. & Astruc, D. (2015). Chem. Rev. 115, 6621–6686.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, M. (2014). Appl. Catal. Gen. 479, 45–48.  CrossRef CAS Google Scholar
First citationZhu, X.-H., Cai, L., Wang, C., Wang, Y., Guo, X. & Hou, X. (2014). J. Mol. Catal. A Chem. 393, 134–141.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds