metal-organic compounds
A correction has been published for this article. To view the correction, click here.
Dichloridobis[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate
aDepartment of Chemistry and Biochemistry, University of Lethbridge, 4401, University Drive Lethbridge, AB, T1K 3M4, Canada, bDepartment of Chemistry, South Eastern University of Kenya, Kitui, Kenya, and cSchool of Chemistry & Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
*Correspondence e-mail: cmacneil@princeton.edu
In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octahedral environment defined by four N donors of two N,N′-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water molecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π interactions, links the complex molecules and the water molecules to form a supramolecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107].
Keywords: crystal structure; nickel(II) complex; 2-(pyridin-2-yl)-1H-benzimidazole; hydrogen bonding; C—H⋯π interactions; transfer hydrogenation.
CCDC reference: 1946553
Structure description
Transition-metal-catalyzed transfer hydrogenation (TH) is an effective method of reducing et al., 2014). Generally, the method is operationally simple, selective, and sources hydrogen from thus avoiding high pressures of H2 gas (Zhu et al., 2014). Several transition-metal complexes have been studied in catalytic TH and have been used on laboratory and industrial scales. Complexes of precious metals (Rh, Ir, and Ru) have been the preferred catalysts for TH owing to their high activity and commercial availability (Raja et al., 2012; Wang et al., 2015; Li et al., 2015). With growing concern surrounding the economic and environmental impact of using precious metals in chemistry, a renewed interest in Earth-abundant metal catalysis has prompted our research into TH catalysts featuring first-row transition metals, such as iron, cobalt, or nickel (Morris, 2009; Garduño & García, 2017; Abubakar et al., 2018; Chen et al., 2010). Recognizing that nickel(II) complexes of chiral bis(phosphines) have been utilized in asymmetric TH, we turned our attention to nickel(II) complexes of the commercially available ligand 2-(pyridin-2-yl)-1H-benzimidazole.
to the corresponding secondary (ZhuThe II ion coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands bound in a κ2-N,N arrangement, along with two cis-oriented anionic chloride donors (Fig. 1). The complex crystallized as a monohydrate with the water molecule disordered over two sites (Fig. 1). The metal center adopts a slightly distorted octahedral geometry. The pyridyl N-donor atoms are trans-disposed [N1—Ni1—N4 = 170.66 (8)°], while the chloride ligands are cis-disposed [Cl2—Ni1—Cl1 = 93.04 (2)°]. The disordered water molecules are linked to the complex molecule by O—H⋯Cl hydrogen bonds, and water H atom H2B is directed to the centroid of the C7–C12 ring (Fig. 1, Table 1).
of the title complex consists of a NiIn the crystal, extensive hydrogen bonding is observed involving the disordered water molecule, the ligand NH groups and the chloride ions (Fig. 2a and 2b and Table 1). The result is the formation of a supramolecular three-dimensional network (Fig. 3). There are also C—H⋯O and C—H⋯π interactions present (Table 1) consolidating the packing.
A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016) revealed that the title compound is isostructural with the cobalt(II) complex dichloridobis-[2-(pyridin-2-yl)-1H-benzimidazole]cobalt(II) monohydrate (CSD refcode DACRIK; Das et al., 2011). The later was reported in C2/c but transformation of the gives I2/a (ADDSYMM in PLATON; Spek, 2020) with almost identical cell parameters to those of the title complex – see Fig. 4.
Synthesis and crystallization
The reaction scheme for the synthesis of the title complex is given in Fig. 5. A solution of 2-(pyridin-2-yl)-1H-benzimidazole (0.15 g, 0.78 mmol) in ethanol (5 ml) was added dropwise to a stirring ethanolic solution of bis(triphenylphosphine)nickel(II) dichloride (0.50 g, 0.76 mmol). The mixture was stirred at room temperature for 24 h. The resulting mixture was concentrated and the product isolated by addition of diethyl ether (5 ml) giving a light-brown solid. Yield: 0.27 g (68%). Analysis calculated for C24H18Cl2N6Ni: C, 55.43; H, 3.49; N, 16.16%. Found: C, 55.23; H, 3.59; N, 16.25%. Light-blue plate-like crystals, suitable for X-ray were obtained by slow evaporation of a concentrated ethanol solution.
Refinement
Crystal data, data collection and structure . The complex crystallized as a monohydrate with the water molecule disordered over two sites (O1 and O2); occupancies fixed at 0.5 each.
details are summarized in Table 2
|
Structural data
CCDC reference: 1946553
https://doi.org/10.1107/S2414314620000401/su4175sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620000401/su4175Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010)'.[NiCl2(C12H9N3)2]·H2O | F(000) = 2208 |
Mr = 538.07 | Dx = 1.537 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 15.9019 (6) Å | Cell parameters from 13739 reflections |
b = 14.7008 (7) Å | θ = 3.8–30.9° |
c = 20.0039 (7) Å | µ = 1.10 mm−1 |
β = 95.924 (4)° | T = 100 K |
V = 4651.4 (3) Å3 | Plate, clear light blue |
Z = 8 | 0.21 × 0.15 × 0.1 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K diffractometer | 5296 reflections with I > 2σ(I) |
ω scans | Rint = 0.046 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | θmax = 31.4°, θmin = 3.4° |
Tmin = 0.785, Tmax = 1.000 | h = −22→21 |
29773 measured reflections | k = −19→19 |
6268 independent reflections | l = −29→26 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: mixed |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0511P)2 + 11.2375P] where P = (Fo2 + 2Fc2)/3 |
6268 reflections | (Δ/σ)max = 0.001 |
322 parameters | Δρmax = 1.16 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The O-, N- and C-bound H atoms were included in calculated positions and treated as riding on the parent atom: O—H = 0.85 Å, N—H = 0.88 Å, C—H = 0.95 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.41587 (2) | 0.53396 (2) | 0.26342 (2) | 0.01946 (9) | |
Cl2 | 0.51535 (3) | 0.65004 (4) | 0.30400 (2) | 0.02048 (12) | |
Cl1 | 0.34436 (3) | 0.63357 (5) | 0.17809 (3) | 0.02851 (14) | |
N1 | 0.32601 (11) | 0.56738 (14) | 0.32888 (9) | 0.0206 (4) | |
N4 | 0.50259 (11) | 0.47857 (14) | 0.20265 (9) | 0.0223 (4) | |
N3 | 0.19362 (11) | 0.38608 (14) | 0.25224 (9) | 0.0214 (4) | |
H3 | 0.1459 | 0.3800 | 0.2704 | 0.026* | |
N5 | 0.47605 (11) | 0.43649 (14) | 0.32845 (9) | 0.0216 (4) | |
N2 | 0.32190 (11) | 0.43767 (14) | 0.23554 (9) | 0.0230 (4) | |
N6 | 0.54931 (12) | 0.30631 (15) | 0.33216 (10) | 0.0251 (4) | |
H6 | 0.5796 | 0.2610 | 0.3188 | 0.030* | |
C1 | 0.33068 (14) | 0.63587 (16) | 0.37299 (11) | 0.0220 (4) | |
H1 | 0.3771 | 0.6767 | 0.3740 | 0.026* | |
C6 | 0.25743 (13) | 0.44376 (16) | 0.27227 (10) | 0.0197 (4) | |
C2 | 0.27009 (14) | 0.64957 (17) | 0.41747 (11) | 0.0239 (5) | |
H2 | 0.2741 | 0.6996 | 0.4477 | 0.029* | |
C13 | 0.52147 (14) | 0.50999 (18) | 0.14323 (12) | 0.0260 (5) | |
H13 | 0.4931 | 0.5627 | 0.1250 | 0.031* | |
C7 | 0.21767 (13) | 0.33846 (16) | 0.19770 (11) | 0.0220 (4) | |
C5 | 0.25879 (13) | 0.51099 (16) | 0.32589 (10) | 0.0200 (4) | |
C3 | 0.20350 (14) | 0.58805 (18) | 0.41653 (11) | 0.0251 (5) | |
H3A | 0.1628 | 0.5939 | 0.4479 | 0.030* | |
C4 | 0.19672 (13) | 0.51814 (17) | 0.36966 (11) | 0.0232 (5) | |
H4 | 0.1509 | 0.4764 | 0.3676 | 0.028* | |
C12 | 0.29871 (14) | 0.37186 (17) | 0.18758 (11) | 0.0239 (5) | |
C17 | 0.54399 (13) | 0.40452 (16) | 0.22848 (11) | 0.0229 (4) | |
C19 | 0.52027 (14) | 0.31581 (18) | 0.39437 (11) | 0.0266 (5) | |
C18 | 0.52220 (13) | 0.38021 (17) | 0.29551 (11) | 0.0229 (4) | |
C24 | 0.47421 (14) | 0.39799 (17) | 0.39175 (11) | 0.0247 (5) | |
C8 | 0.17716 (14) | 0.27144 (18) | 0.15768 (12) | 0.0273 (5) | |
H8 | 0.1232 | 0.2488 | 0.1658 | 0.033* | |
C9 | 0.21903 (16) | 0.23914 (19) | 0.10533 (12) | 0.0305 (5) | |
H9 | 0.1928 | 0.1942 | 0.0761 | 0.037* | |
C16 | 0.60480 (15) | 0.35909 (18) | 0.19622 (12) | 0.0285 (5) | |
H16 | 0.6329 | 0.3071 | 0.2159 | 0.034* | |
C10 | 0.29967 (16) | 0.2715 (2) | 0.09461 (13) | 0.0335 (6) | |
H10 | 0.3266 | 0.2477 | 0.0582 | 0.040* | |
C14 | 0.58124 (16) | 0.46814 (19) | 0.10720 (13) | 0.0320 (6) | |
H14 | 0.5929 | 0.4915 | 0.0648 | 0.038* | |
C11 | 0.34100 (15) | 0.3368 (2) | 0.13516 (13) | 0.0319 (6) | |
H11 | 0.3960 | 0.3572 | 0.1279 | 0.038* | |
C23 | 0.43824 (16) | 0.42902 (19) | 0.44841 (11) | 0.0290 (5) | |
H23 | 0.4070 | 0.4842 | 0.4476 | 0.035* | |
C22 | 0.45004 (18) | 0.3760 (2) | 0.50589 (12) | 0.0345 (6) | |
H22 | 0.4270 | 0.3959 | 0.5453 | 0.041* | |
C20 | 0.53109 (16) | 0.2614 (2) | 0.45225 (13) | 0.0335 (6) | |
H20 | 0.5614 | 0.2057 | 0.4534 | 0.040* | |
C21 | 0.49486 (17) | 0.2940 (2) | 0.50755 (12) | 0.0362 (6) | |
H21 | 0.5006 | 0.2596 | 0.5479 | 0.043* | |
C15 | 0.62325 (16) | 0.3922 (2) | 0.13411 (13) | 0.0320 (5) | |
H15 | 0.6644 | 0.3627 | 0.1105 | 0.038* | |
O1 | 0.3180 (3) | 0.5134 (3) | 0.0429 (2) | 0.0440 (10) | 0.5 |
H1A | 0.3268 | 0.5413 | 0.0802 | 0.066* | 0.5 |
H1B | 0.3085 | 0.4575 | 0.0502 | 0.066* | 0.5 |
O2 | 0.2882 (3) | 0.6487 (3) | 0.01818 (18) | 0.0429 (10) | 0.5 |
H2A | 0.2602 | 0.6019 | 0.0042 | 0.064* | 0.5 |
H2B | 0.3113 | 0.6391 | 0.0578 | 0.064* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01005 (13) | 0.03529 (17) | 0.01374 (13) | −0.00391 (10) | 0.00448 (10) | −0.00355 (11) |
Cl2 | 0.0109 (2) | 0.0340 (3) | 0.0169 (2) | −0.00172 (18) | 0.00350 (17) | −0.00279 (19) |
Cl1 | 0.0169 (2) | 0.0491 (4) | 0.0188 (2) | −0.0029 (2) | −0.00126 (19) | 0.0018 (2) |
N1 | 0.0130 (8) | 0.0355 (10) | 0.0141 (8) | −0.0013 (7) | 0.0049 (6) | −0.0016 (7) |
N4 | 0.0129 (8) | 0.0379 (11) | 0.0165 (8) | −0.0066 (7) | 0.0038 (7) | −0.0047 (8) |
N3 | 0.0098 (7) | 0.0387 (11) | 0.0162 (8) | −0.0036 (7) | 0.0033 (6) | 0.0001 (8) |
N5 | 0.0154 (8) | 0.0346 (10) | 0.0153 (8) | −0.0064 (7) | 0.0036 (7) | −0.0023 (7) |
N2 | 0.0133 (8) | 0.0401 (11) | 0.0166 (8) | −0.0052 (8) | 0.0059 (7) | −0.0046 (8) |
N6 | 0.0167 (8) | 0.0376 (11) | 0.0208 (9) | −0.0022 (8) | 0.0007 (7) | −0.0010 (8) |
C1 | 0.0172 (10) | 0.0334 (12) | 0.0158 (9) | −0.0009 (8) | 0.0035 (8) | −0.0014 (8) |
C6 | 0.0114 (9) | 0.0319 (11) | 0.0159 (9) | −0.0005 (8) | 0.0020 (7) | 0.0000 (8) |
C2 | 0.0196 (10) | 0.0384 (13) | 0.0143 (9) | 0.0055 (9) | 0.0048 (8) | −0.0004 (9) |
C13 | 0.0179 (10) | 0.0420 (13) | 0.0192 (10) | −0.0054 (9) | 0.0064 (8) | −0.0015 (9) |
C7 | 0.0141 (9) | 0.0351 (12) | 0.0163 (9) | −0.0028 (8) | 0.0000 (8) | 0.0011 (9) |
C5 | 0.0113 (9) | 0.0368 (12) | 0.0120 (8) | 0.0018 (8) | 0.0020 (7) | 0.0007 (8) |
C3 | 0.0149 (9) | 0.0445 (14) | 0.0166 (9) | 0.0053 (9) | 0.0049 (8) | 0.0013 (9) |
C4 | 0.0111 (9) | 0.0423 (13) | 0.0163 (9) | 0.0005 (8) | 0.0022 (8) | 0.0036 (9) |
C12 | 0.0160 (10) | 0.0385 (13) | 0.0172 (9) | −0.0054 (9) | 0.0025 (8) | −0.0057 (9) |
C17 | 0.0129 (9) | 0.0362 (12) | 0.0196 (10) | −0.0059 (8) | 0.0021 (8) | −0.0051 (9) |
C19 | 0.0190 (10) | 0.0422 (13) | 0.0178 (10) | −0.0096 (9) | −0.0019 (8) | −0.0011 (9) |
C18 | 0.0128 (9) | 0.0383 (12) | 0.0173 (9) | −0.0046 (8) | −0.0002 (8) | −0.0024 (9) |
C24 | 0.0174 (10) | 0.0386 (13) | 0.0176 (10) | −0.0094 (9) | −0.0009 (8) | −0.0009 (9) |
C8 | 0.0180 (10) | 0.0414 (14) | 0.0216 (10) | −0.0077 (9) | −0.0025 (9) | −0.0010 (10) |
C9 | 0.0255 (11) | 0.0430 (14) | 0.0219 (11) | −0.0073 (10) | −0.0036 (9) | −0.0077 (10) |
C16 | 0.0179 (10) | 0.0418 (14) | 0.0264 (11) | −0.0009 (9) | 0.0053 (9) | −0.0049 (10) |
C10 | 0.0252 (12) | 0.0514 (16) | 0.0245 (11) | −0.0056 (11) | 0.0050 (9) | −0.0140 (11) |
C14 | 0.0236 (12) | 0.0501 (16) | 0.0242 (11) | −0.0064 (11) | 0.0123 (10) | −0.0039 (11) |
C11 | 0.0204 (11) | 0.0509 (15) | 0.0260 (12) | −0.0089 (10) | 0.0098 (9) | −0.0165 (11) |
C23 | 0.0253 (11) | 0.0434 (14) | 0.0182 (10) | −0.0138 (10) | 0.0021 (9) | −0.0041 (10) |
C22 | 0.0358 (14) | 0.0520 (16) | 0.0158 (10) | −0.0193 (12) | 0.0023 (10) | −0.0037 (10) |
C20 | 0.0270 (12) | 0.0454 (15) | 0.0263 (12) | −0.0106 (11) | −0.0057 (10) | 0.0043 (11) |
C21 | 0.0362 (14) | 0.0533 (17) | 0.0174 (10) | −0.0191 (12) | −0.0048 (10) | 0.0042 (11) |
C15 | 0.0201 (11) | 0.0511 (15) | 0.0268 (12) | −0.0027 (10) | 0.0114 (9) | −0.0093 (11) |
O1 | 0.057 (3) | 0.048 (2) | 0.0260 (19) | 0.009 (2) | −0.0008 (18) | 0.0042 (17) |
O2 | 0.052 (3) | 0.057 (3) | 0.0188 (17) | −0.022 (2) | 0.0026 (17) | −0.0022 (16) |
Ni1—Cl2 | 2.4101 (6) | C3—C4 | 1.388 (3) |
Ni1—Cl1 | 2.4394 (6) | C4—H4 | 0.9500 |
Ni1—N1 | 2.0937 (18) | C12—C11 | 1.401 (3) |
Ni1—N4 | 2.0949 (19) | C17—C18 | 1.463 (3) |
Ni1—N5 | 2.099 (2) | C17—C16 | 1.388 (3) |
Ni1—N2 | 2.0918 (19) | C19—C24 | 1.411 (4) |
N1—C1 | 1.336 (3) | C19—C20 | 1.403 (3) |
N1—C5 | 1.349 (3) | C24—C23 | 1.398 (3) |
N4—C13 | 1.338 (3) | C8—H8 | 0.9500 |
N4—C17 | 1.347 (3) | C8—C9 | 1.382 (4) |
N3—H3 | 0.8800 | C9—H9 | 0.9500 |
N3—C6 | 1.351 (3) | C9—C10 | 1.405 (4) |
N3—C7 | 1.383 (3) | C16—H16 | 0.9500 |
N5—C18 | 1.326 (3) | C16—C15 | 1.393 (4) |
N5—C24 | 1.390 (3) | C10—H10 | 0.9500 |
N2—C6 | 1.325 (3) | C10—C11 | 1.378 (3) |
N2—C12 | 1.385 (3) | C14—H14 | 0.9500 |
N6—H6 | 0.8800 | C14—C15 | 1.382 (4) |
N6—C19 | 1.378 (3) | C11—H11 | 0.9500 |
N6—C18 | 1.356 (3) | C23—H23 | 0.9500 |
C1—H1 | 0.9500 | C23—C22 | 1.386 (4) |
C1—C2 | 1.392 (3) | C22—H22 | 0.9500 |
C6—C5 | 1.457 (3) | C22—C21 | 1.398 (4) |
C2—H2 | 0.9500 | C20—H20 | 0.9500 |
C2—C3 | 1.391 (3) | C20—C21 | 1.385 (4) |
C13—H13 | 0.9500 | C21—H21 | 0.9500 |
C13—C14 | 1.394 (3) | C15—H15 | 0.9500 |
C7—C12 | 1.413 (3) | O1—H1A | 0.8505 |
C7—C8 | 1.386 (3) | O1—H1B | 0.8503 |
C5—C4 | 1.389 (3) | O2—H2A | 0.8507 |
C3—H3A | 0.9500 | O2—H2B | 0.8498 |
Cl2—Ni1—Cl1 | 93.04 (2) | C5—C4—H4 | 120.9 |
N1—Ni1—Cl2 | 95.15 (5) | C3—C4—C5 | 118.1 (2) |
N1—Ni1—Cl1 | 89.87 (5) | C3—C4—H4 | 120.9 |
N1—Ni1—N4 | 170.66 (8) | N2—C12—C7 | 108.96 (19) |
N1—Ni1—N5 | 93.99 (7) | N2—C12—C11 | 131.4 (2) |
N4—Ni1—Cl2 | 91.27 (5) | C11—C12—C7 | 119.6 (2) |
N4—Ni1—Cl1 | 96.57 (6) | N4—C17—C18 | 113.3 (2) |
N4—Ni1—N5 | 78.99 (8) | N4—C17—C16 | 123.1 (2) |
N5—Ni1—Cl2 | 91.90 (5) | C16—C17—C18 | 123.4 (2) |
N5—Ni1—Cl1 | 173.44 (6) | N6—C19—C24 | 105.9 (2) |
N2—Ni1—Cl2 | 174.23 (5) | N6—C19—C20 | 131.6 (3) |
N2—Ni1—Cl1 | 87.19 (6) | C20—C19—C24 | 122.5 (2) |
N2—Ni1—N1 | 79.09 (7) | N5—C18—N6 | 113.1 (2) |
N2—Ni1—N4 | 94.43 (7) | N5—C18—C17 | 119.9 (2) |
N2—Ni1—N5 | 88.32 (8) | N6—C18—C17 | 126.8 (2) |
C1—N1—Ni1 | 126.52 (15) | N5—C24—C19 | 108.8 (2) |
C1—N1—C5 | 118.82 (18) | N5—C24—C23 | 130.9 (2) |
C5—N1—Ni1 | 114.63 (15) | C23—C24—C19 | 120.2 (2) |
C13—N4—Ni1 | 127.08 (17) | C7—C8—H8 | 121.6 |
C13—N4—C17 | 118.3 (2) | C9—C8—C7 | 116.8 (2) |
C17—N4—Ni1 | 114.60 (15) | C9—C8—H8 | 121.6 |
C6—N3—H3 | 126.5 | C8—C9—H9 | 119.4 |
C6—N3—C7 | 106.94 (17) | C8—C9—C10 | 121.2 (2) |
C7—N3—H3 | 126.5 | C10—C9—H9 | 119.4 |
C18—N5—Ni1 | 111.00 (15) | C17—C16—H16 | 121.1 |
C18—N5—C24 | 105.3 (2) | C17—C16—C15 | 117.9 (2) |
C24—N5—Ni1 | 142.33 (16) | C15—C16—H16 | 121.1 |
C6—N2—Ni1 | 112.26 (15) | C9—C10—H10 | 118.9 |
C6—N2—C12 | 105.40 (18) | C11—C10—C9 | 122.2 (2) |
C12—N2—Ni1 | 142.08 (15) | C11—C10—H10 | 118.9 |
C19—N6—H6 | 126.6 | C13—C14—H14 | 120.6 |
C18—N6—H6 | 126.6 | C15—C14—C13 | 118.9 (2) |
C18—N6—C19 | 106.8 (2) | C15—C14—H14 | 120.6 |
N1—C1—H1 | 118.8 | C12—C11—H11 | 121.3 |
N1—C1—C2 | 122.4 (2) | C10—C11—C12 | 117.4 (2) |
C2—C1—H1 | 118.8 | C10—C11—H11 | 121.3 |
N3—C6—C5 | 126.71 (19) | C24—C23—H23 | 121.4 |
N2—C6—N3 | 113.18 (19) | C22—C23—C24 | 117.2 (3) |
N2—C6—C5 | 120.04 (19) | C22—C23—H23 | 121.4 |
C1—C2—H2 | 120.9 | C23—C22—H22 | 119.0 |
C3—C2—C1 | 118.3 (2) | C23—C22—C21 | 122.0 (2) |
C3—C2—H2 | 120.9 | C21—C22—H22 | 119.0 |
N4—C13—H13 | 118.8 | C19—C20—H20 | 122.1 |
N4—C13—C14 | 122.3 (2) | C21—C20—C19 | 115.9 (3) |
C14—C13—H13 | 118.8 | C21—C20—H20 | 122.1 |
N3—C7—C12 | 105.53 (19) | C22—C21—H21 | 118.9 |
N3—C7—C8 | 131.7 (2) | C20—C21—C22 | 122.1 (2) |
C8—C7—C12 | 122.7 (2) | C20—C21—H21 | 118.9 |
N1—C5—C6 | 113.64 (18) | C16—C15—H15 | 120.3 |
N1—C5—C4 | 122.5 (2) | C14—C15—C16 | 119.5 (2) |
C4—C5—C6 | 123.9 (2) | C14—C15—H15 | 120.3 |
C2—C3—H3A | 120.1 | H1A—O1—H1B | 109.4 |
C4—C3—C2 | 119.8 (2) | H2A—O2—H2B | 109.5 |
C4—C3—H3A | 120.1 |
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C7–C12, N5/N6/C18/C19/C24, N1/C1–C5, N4/C13–C17 and C19–C24 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.95 | 2.75 | 3.378 (2) | 124 |
O1—H1A···Cl1 | 0.85 | 2.37 | 3.221 (4) | 174 |
O2—H2B···Cl1 | 0.85 | 2.41 | 3.239 (4) | 165 |
O2—H2A···O1i | 0.85 | 1.97 | 2.806 (6) | 167 |
N3—H3···Cl2ii | 0.88 | 2.29 | 3.162 (2) | 171 |
N6—H6···Cl1iii | 0.88 | 2.23 | 3.069 (2) | 160 |
C2—H2···O2iv | 0.95 | 2.56 | 3.400 (5) | 147 |
C20—H20···O2iii | 0.95 | 2.54 | 3.317 (5) | 139 |
O1—H1B···Cg1 | 0.85 | 3.11 | 3.869 (3) | 150 |
C3—H3A···Cg5ii | 0.95 | 2.97 | 3.738 (3) | 139 |
C8—H8···Cg2v | 0.95 | 2.69 | 3.579 (3) | 155 |
C9—H9···Cg5v | 0.95 | 2.88 | 3.542 (3) | 128 |
C11—H11···Cg4 | 0.95 | 2.93 | 3.810 (3) | 155 |
C23—H23···Cg3 | 0.95 | 2.94 | 3.733 (3) | 142 |
Symmetry codes: (i) −x+1/2, y, −z; (ii) x−1/2, −y+1, z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1/2, −y+3/2, −z+1/2; (v) −x+1/2, −y+1/2, −z+1/2. |
Acknowledgements
CSM is grateful to Professor Paul J. Chirik of Princeton University for hosting during the submission of the manuscript.
Funding information
The authors thank the NSERC of Canada for funding. CSM is grateful to NSERC for a CGS-D fellowship. PGH thanks NSERC for a Discovery Grant and the University of Lethbridge for a Tier I Board of Governors Research Chair in Organometallic Chemistry. SOO is grateful to the University of KwaZulu-Natal and National Research Foundation–South Africa (grant No. CPRR98938) for financial support.
References
Abubakar, S. & Bala, M. D. (2018). J. Coord. Chem. 71, 2913–2923. CSD CrossRef CAS Google Scholar
Chen, Z., Zeng, M., Zhang, Y., Zhang, Z. & Liang, F. (2010). Appl. Organomet. Chem. 24, 625–630. CSD CrossRef CAS Google Scholar
Das, S., Guha, S., Banerjee, A., Lohar, S., Sahana, A. & Das, D. (2011). Org. Biomol. Chem. 9, 7097–7104. CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garduño, J. A. & García, J. J. (2017). ACS Omega, 2, 2337–2343. PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Li, Y. Y., Yu, S. L., Shen, W. Y. & Gao, J. X. (2015). Acc. Chem. Res. 48, 2587–2598. CrossRef CAS PubMed Google Scholar
Morris, R. H. (2009). Chem. Soc. Rev. 38, 2282–2291. CrossRef PubMed CAS Google Scholar
Raja, N. & Ramesh, R. (2012). Tetrahedron Lett. 53, 4770–4774. CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wang, D. & Astruc, D. (2015). Chem. Rev. 115, 6621–6686. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, M. (2014). Appl. Catal. Gen. 479, 45–48. CrossRef CAS Google Scholar
Zhu, X.-H., Cai, L., Wang, C., Wang, Y., Guo, X. & Hou, X. (2014). J. Mol. Catal. A Chem. 393, 134–141. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.