organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-(2-Hy­dr­oxy-3-meth­­oxy­benzyl­­idene)pyrazine-2-carbohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aChongqing Key Laboratory of Environmental, Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, People's Republic of China
*Correspondence e-mail: 495481927@qq.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 December 2019; accepted 28 December 2019; online 10 January 2020)

In the title hydrated Schiff base, C13H12N4O3·H2O, the dihedral angle between the aromatic rings is 5.06 (11)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, Ow—H⋯O and Ow—H⋯N (w = water) hydrogen bonds link the components into centrosymmetric tetra­mers (two Schiff bases and two water mol­ecules). Longer N—H⋯O hydrogen bonds link the tetra­mers into [010] chains. A weak C—H⋯O hydrogen bond and aromatic ππ stacking between the pyrazine and phenyl rings [centroid–centroid separations = 3.604 (2) and 3.715 (2) Å] are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydrazone-type Schiff base ligands have attracted attention from inorganic chemists because of their simple synthesis and variety arising from changing the aldyhyde or ketone and acyl­hydrazide precursors. Their applications include mol­ecular switches (Coskun et al., 2012[Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. (2012). Chem. Soc. Rev. 41, 19-30.]), sensors (Albelda et al., 2012[Albelda, M. T., Frías, J. C., García-España, E. & Schneider, H. J. (2012). Chem. Soc. Rev. 41, 3859-3877.]) and single mol­ecular magnets (SMMs) (Anwar et al., 2018[Anwar, M. U., Al-Harrasi, A., Gavey, E. L., Pilkington, M., Rawson, J. M. & Thompson, L. K. (2018). Dalton Trans. 47, 2511-2521.]). As part of our studies in this area, we now describe the synthesis and structure of the title pyrazine-containing hydrazone, which crystallized as a monohydrate (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.

The dihedral angle between the aromatic rings is 5.06 (11)° and an intra­molecular O2—H2⋯N2 hydrogen bond closes an S(6) ring. The C7—N2 bond length [1.278 (3) Å] is consistent with a normal carbon–nitro­gen double bond. In the crystal, Ow—H⋯O and Ow—H⋯N (w = water) hydrogen bonds link the components into centrosymmetric tetra­mers (two Schiff base and two water mol­ecules). Longer N—H⋯O hydrogen bonds link the tetra­mers into [010] chains (Table 1[link], Fig. 2[link]). The packing is consolidated by a weak C—H⋯O hydrogen bond and aromatic ππ stacking between the pyrazine and phenyl rings [centroid–centroid separations = 3.604 (2) and 3.715 (2) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3 0.88 2.34 2.708 (3) 105
N1—H1⋯O4i 0.88 2.49 3.119 (3) 129
O2—H2⋯N2 0.84 1.94 2.668 (3) 145
O4—H4A⋯O3 0.87 1.99 2.846 (3) 167
O4—H4B⋯N4ii 0.87 2.17 2.998 (3) 160
C13—H13A⋯O2iii 0.98 2.56 3.335 (4) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing viewed along the -axis direction.

Synthesis and crystallization

Pyrazine-2-carbohydrazide (2.76 g, 20 mmol) was reacted with 2-hy­droxy-3-meth­oxybenzaldehyde (3.04 g, 20 mmol) under reflux in 25 ml methanol for 8 h. After cooling and solvent removal by rotary evaporation, a light yellow solid was obtained, which was recrystallized from methanol solution at room temperature to obtain colourless crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H12N4O3·H2O
Mr 290.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 189
a, b, c (Å) 7.018 (3), 9.041 (4), 20.828 (8)
β (°) 91.481 (7)
V3) 1321.1 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.25 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7707, 2996, 1745
Rint 0.053
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.161, 1.00
No. of reflections 2996
No. of parameters 195
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N'-(2-Hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide monohydrate top
Crystal data top
C13H12N4O3·H2OF(000) = 608
Mr = 290.28Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.018 (3) ÅCell parameters from 1318 reflections
b = 9.041 (4) Åθ = 2.5–24.4°
c = 20.828 (8) ŵ = 0.11 mm1
β = 91.481 (7)°T = 189 K
V = 1321.1 (9) Å3Block, colourless
Z = 40.25 × 0.15 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
1745 reflections with I > 2σ(I)
Multi–scanRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.7°, θmin = 2.5°
Tmin = 0.626, Tmax = 0.746h = 98
7707 measured reflectionsk = 1111
2996 independent reflectionsl = 1827
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2996 reflectionsΔρmax = 0.31 e Å3
195 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8752 (3)0.71932 (19)0.73561 (7)0.0466 (5)
O20.8069 (3)0.55020 (18)0.63673 (8)0.0485 (5)
H20.7846690.5048270.6021490.073*
O30.6841 (3)0.2318 (2)0.50428 (8)0.0551 (6)
N10.7156 (3)0.4515 (2)0.45331 (9)0.0390 (5)
H10.7138850.4990880.4164500.047*
N20.7502 (3)0.5261 (2)0.51003 (9)0.0380 (5)
N30.6642 (3)0.3166 (2)0.33806 (9)0.0366 (5)
N40.5903 (3)0.0122 (2)0.33186 (10)0.0411 (5)
C10.6523 (3)0.2336 (3)0.39063 (10)0.0324 (6)
C20.8247 (3)0.7542 (3)0.56268 (10)0.0329 (6)
C30.8709 (3)0.7883 (3)0.67721 (11)0.0325 (6)
C40.8336 (3)0.6947 (3)0.62434 (11)0.0336 (6)
C50.6843 (3)0.3044 (3)0.45503 (11)0.0370 (6)
C60.6124 (3)0.0832 (3)0.38743 (11)0.0378 (6)
H60.6004180.0292550.4262690.045*
C70.7873 (3)0.6640 (3)0.50590 (11)0.0368 (6)
H70.7904960.7088910.4646950.044*
C80.8975 (3)0.9374 (3)0.66768 (12)0.0388 (6)
H80.9240311.0002520.7033700.047*
C90.6062 (4)0.0945 (3)0.27911 (12)0.0400 (6)
H90.5943170.0484170.2381990.048*
C100.8859 (4)0.9966 (3)0.60621 (13)0.0431 (7)
H100.9029781.0998550.6001300.052*
C110.8502 (3)0.9074 (3)0.55447 (12)0.0395 (6)
H110.8424400.9489220.5125930.047*
C120.6397 (3)0.2452 (3)0.28243 (11)0.0387 (6)
H120.6454340.2999400.2435860.046*
C130.8953 (4)0.8115 (3)0.79116 (11)0.0505 (7)
H13A1.0185760.8623480.7906230.076*
H13B0.8888390.7504740.8299370.076*
H13C0.7924000.8847210.7909850.076*
O40.4937 (3)0.2931 (2)0.62032 (9)0.0573 (6)
H4A0.5677490.2717980.5887420.086*
H4B0.4870990.2114560.6422690.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0713 (13)0.0426 (11)0.0256 (9)0.0046 (9)0.0038 (8)0.0012 (8)
O20.0798 (14)0.0288 (10)0.0360 (10)0.0038 (9)0.0165 (9)0.0014 (8)
O30.0919 (15)0.0470 (12)0.0263 (10)0.0178 (10)0.0010 (9)0.0063 (8)
N10.0536 (14)0.0429 (13)0.0202 (10)0.0006 (10)0.0043 (9)0.0019 (9)
N20.0425 (12)0.0447 (14)0.0265 (11)0.0051 (10)0.0051 (9)0.0052 (9)
N30.0413 (12)0.0401 (12)0.0283 (11)0.0018 (9)0.0009 (9)0.0017 (9)
N40.0436 (13)0.0414 (13)0.0383 (13)0.0000 (10)0.0011 (10)0.0032 (10)
C10.0333 (13)0.0379 (14)0.0259 (12)0.0062 (10)0.0013 (9)0.0001 (11)
C20.0319 (13)0.0409 (15)0.0258 (12)0.0006 (11)0.0034 (10)0.0012 (11)
C30.0318 (13)0.0385 (15)0.0270 (12)0.0007 (10)0.0024 (10)0.0033 (10)
C40.0363 (14)0.0288 (14)0.0353 (14)0.0023 (10)0.0039 (10)0.0025 (10)
C50.0418 (15)0.0433 (16)0.0258 (13)0.0101 (11)0.0002 (11)0.0014 (11)
C60.0452 (15)0.0388 (15)0.0294 (13)0.0062 (11)0.0013 (11)0.0063 (11)
C70.0371 (14)0.0472 (17)0.0257 (13)0.0019 (11)0.0039 (10)0.0036 (11)
C80.0439 (15)0.0346 (15)0.0376 (14)0.0042 (11)0.0034 (11)0.0059 (11)
C90.0428 (14)0.0477 (17)0.0294 (13)0.0024 (12)0.0011 (11)0.0078 (12)
C100.0449 (15)0.0361 (15)0.0482 (16)0.0040 (12)0.0038 (12)0.0050 (12)
C110.0418 (14)0.0422 (16)0.0341 (14)0.0046 (12)0.0044 (11)0.0115 (11)
C120.0462 (15)0.0438 (16)0.0258 (13)0.0019 (12)0.0037 (11)0.0014 (11)
C130.0620 (19)0.0581 (19)0.0314 (14)0.0005 (14)0.0002 (13)0.0079 (13)
O40.0784 (15)0.0496 (12)0.0441 (12)0.0017 (10)0.0057 (10)0.0024 (9)
Geometric parameters (Å, º) top
O1—C31.367 (3)C3—C41.408 (3)
O1—C131.430 (3)C3—C81.376 (3)
O2—H20.8400C6—H60.9500
O2—C41.346 (3)C7—H70.9500
O3—C51.218 (3)C8—H80.9500
N1—H10.8800C8—C101.388 (4)
N1—N21.376 (3)C9—H90.9500
N1—C51.348 (3)C9—C121.385 (4)
N2—C71.278 (3)C10—H100.9500
N3—C11.332 (3)C10—C111.364 (4)
N3—C121.333 (3)C11—H110.9500
N4—C61.329 (3)C12—H120.9500
N4—C91.334 (3)C13—H13A0.9800
C1—C51.498 (3)C13—H13B0.9800
C1—C61.390 (3)C13—H13C0.9800
C2—C41.393 (3)O4—H4A0.8702
C2—C71.455 (3)O4—H4B0.8697
C2—C111.407 (3)
C3—O1—C13117.0 (2)N2—C7—C2121.7 (2)
C4—O2—H2109.5N2—C7—H7119.1
N2—N1—H1120.5C2—C7—H7119.1
C5—N1—H1120.5C3—C8—H8119.8
C5—N1—N2119.1 (2)C3—C8—C10120.4 (2)
C7—N2—N1116.9 (2)C10—C8—H8119.8
C1—N3—C12115.6 (2)N4—C9—H9119.2
C6—N4—C9116.0 (2)N4—C9—C12121.7 (2)
N3—C1—C5119.0 (2)C12—C9—H9119.2
N3—C1—C6121.9 (2)C8—C10—H10119.8
C6—C1—C5119.1 (2)C11—C10—C8120.4 (2)
C4—C2—C7122.4 (2)C11—C10—H10119.8
C4—C2—C11119.3 (2)C2—C11—H11119.8
C11—C2—C7118.3 (2)C10—C11—C2120.5 (2)
O1—C3—C4114.9 (2)C10—C11—H11119.8
O1—C3—C8125.2 (2)N3—C12—C9122.5 (2)
C8—C3—C4120.0 (2)N3—C12—H12118.7
O2—C4—C2123.3 (2)C9—C12—H12118.7
O2—C4—C3117.2 (2)O1—C13—H13A109.5
C2—C4—C3119.4 (2)O1—C13—H13B109.5
O3—C5—N1123.9 (2)O1—C13—H13C109.5
O3—C5—C1121.4 (2)H13A—C13—H13B109.5
N1—C5—C1114.7 (2)H13A—C13—H13C109.5
N4—C6—C1122.2 (2)H13B—C13—H13C109.5
N4—C6—H6118.9H4A—O4—H4B104.5
C1—C6—H6118.9
O1—C3—C4—O20.1 (3)C6—N4—C9—C121.3 (4)
O1—C3—C4—C2179.5 (2)C6—C1—C5—O33.2 (4)
O1—C3—C8—C10178.5 (2)C6—C1—C5—N1177.8 (2)
N1—N2—C7—C2179.5 (2)C7—C2—C4—O20.6 (4)
N2—N1—C5—O30.2 (4)C7—C2—C4—C3179.8 (2)
N2—N1—C5—C1178.74 (19)C7—C2—C11—C10179.9 (2)
N3—C1—C5—O3176.4 (2)C8—C3—C4—O2179.3 (2)
N3—C1—C5—N12.6 (3)C8—C3—C4—C20.2 (3)
N3—C1—C6—N42.4 (4)C8—C10—C11—C20.0 (4)
N4—C9—C12—N32.2 (4)C9—N4—C6—C10.9 (4)
C1—N3—C12—C90.7 (3)C11—C2—C4—O2178.5 (2)
C3—C8—C10—C110.8 (4)C11—C2—C4—C31.0 (3)
C4—C2—C7—N23.9 (4)C11—C2—C7—N2175.3 (2)
C4—C2—C11—C100.9 (4)C12—N3—C1—C5178.1 (2)
C4—C3—C8—C100.7 (4)C12—N3—C1—C61.5 (3)
C5—N1—N2—C7177.0 (2)C13—O1—C3—C4174.5 (2)
C5—C1—C6—N4177.1 (2)C13—O1—C3—C84.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.882.342.708 (3)105
N1—H1···O4i0.882.493.119 (3)129
O2—H2···N20.841.942.668 (3)145
O4—H4A···O30.871.992.846 (3)167
O4—H4B···N4ii0.872.172.998 (3)160
C13—H13A···O2iii0.982.563.335 (4)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1/2, z+3/2.
 

Funding information

The author would like to thank the major cultivation project of Chongqing University of Arts and Sciences (No. P2017CH10) for financial support.

References

First citationAlbelda, M. T., Frías, J. C., García-España, E. & Schneider, H. J. (2012). Chem. Soc. Rev. 41, 3859–3877.  Web of Science PubMed Google Scholar
First citationAnwar, M. U., Al-Harrasi, A., Gavey, E. L., Pilkington, M., Rawson, J. M. & Thompson, L. K. (2018). Dalton Trans. 47, 2511–2521.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. (2012). Chem. Soc. Rev. 41, 19–30.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds