organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(4-Iodo­phen­yl)-2,3-di­hydro-1H-benzo[f]chromen-1-one

CROSSMARK_Color_square_no_text.svg

aGeorgia Southern University, 11935 Abercorn St, Department of Chemistry and Biochemistry, Savannah GA 31419, USA
*Correspondence e-mail: szingales@georgiasouthern.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 December 2019; accepted 27 January 2020; online 31 January 2020)

In the title compound, C19H13IO2, the dihedral angle between the naphthyl ring system and the pendant iodo­phenyl ring is 72.48 (11)°. In the crystal, C—H⋯π inter­actions and I⋯O [3.293 (2) Å] halogen bonds are observed, which combine to generate a herringbone packing motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Traditional CORMS (carbon monoxide-releasing mol­ecules) contain metal carbonyls whereas photoCORMS have recently become of inter­est because of their ability to release CO in biological systems. Our group is particularly inter­ested in the extended flavonol motif as it has been shown to release CO qu­anti­tatively with visible light (Popova et al., 2017[Popova, M., Soboleva, T., Arif, A. M. & Berreau, L. M. (2017). RSC Adv. 7, 21997-22007.]). Typically, we synthesize these flavonols in two steps from an acetyl naphthol and an aromatic aldehyde. The first step is an aldol condensation, followed by oxidative cyclization. However, if no oxidant is added, the 2′–hy­droxy­chalcone inter­mediate can cyclize to a flavanone under basic conditions (Furlong et al., 1985[Furlong, J. J. P. & Nudelman, N. S. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 633-639.]). In our quest to synthesize a novel flavonol (2-hy­droxy-3-(4-iodo­phen­yl)-1H-naphtho­[2,1-b]pyran-1-one), we serendipitously synthesized the title flavanone.

In the title mol­ecule (Fig. 1[link]), the iodo­phenyl ring is tilted by 72.48 (11)° with respect to the naphthyl ring system. No hydrogen bonding is observed in the extended structure. T-shaped π-stacking with Cg1⋯Cg2i = 4.929 (2) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z] and C6—H6⋯Cg2i = 154.5 (3)°, where Cg1 is the centroid of the pyran­one ring containing atoms C4–C7/C12/C13 and Cg2 is the centroid of the iodo­phenyl ring containing atoms C14–C19 (Burley & Petsko, 1985[Burley, S. K. & Petsko, G. A. (1985). Science, 229, 23-28.]). I⋯O halogen bonds between neighboring mol­ecules form a chain that runs parallel to the b-axis direction. The I1⋯O2ii distance is 3.293 (2) Å, with C17—I1⋯O2ii and I1⋯O2ii—C1ii angles of 177.21 (10) and 127.9 (2)°, respectively [symmetry code: (ii) −[{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z]. This I⋯O separation is some 0.25 Å shorter than van der Waals'inter­action distance of 3.5 Å (Rissanen, 2008[Rissanen, K. (2008). CrystEngComm, 10, 1107-1113.]) The crystal structure exhibits a herringbone pattern (Fig. 2[link]) with mol­ecules linked into [010] chains by the halogen bonding; neighboring layers are held together with van der Waals inter­actions along with T-shaped π-stacking.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed along the a axis. O⋯I halogen bonds are indicated has red lines.

Synthesis and crystallization

1-Acetyl-2-naphthol (164 mg, 0.88 mmol) and 4-iodo­benzaldehyde (205 mg, 0.88 mmol) were dissolved in ethanol (5 ml). An NaOH solution (5 M, 0.76 ml) was added and the reaction was stirred until a precipitate formed. The reaction mixture was acidified to pH 4 with glacial acetic acid. The solids were filtered and taken directly to the next step. (E)-1-(2-Hy­droxy­naphthalen-1-yl)-3-(4-iodo­phen­yl)prop-2-en-1-one was then suspended in ethanol (10 ml). An NaOH solution (5 M, 0.12 ml) was added and the reaction stirred until a precipitate formed. The reaction mixture was acidified to pH 1 with HCl (6 M). The white solid was collected by filtration and slow evaporation of a solution of the title compound in ethyl acetate gave colorless crystals (108 mg, 30% yield over two steps).

1H NMR (300 MHz, (CDCl2) δ = 9.46 (d, J = 8.6 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 7.80–7.75 (m, 3H), 7.65 (t, J = 7.9 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.9 Hz, 1H), 5.54 (dd, J = 13.4, 3.1 Hz, 1H), 3.16 (dd, J = 16.5, 13.2 Hz, 1H), 2.95 (dd, J = 16.5, 3.0 Hz, 1H) ppm.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C19H13IO2
Mr 400.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 7.0481 (3), 18.2185 (8), 12.6391 (6)
β (°) 104.947 (4)
V3) 1568.02 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.05
Crystal size (mm) 0.77 × 0.34 × 0.34
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.738, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23424, 5656, 3493
Rint 0.035
(sin θ/λ)max−1) 0.768
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.096, 1.12
No. of reflections 5656
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.81
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-(4-Iodophenyl)-2,3-dihydro-1H-benzo[f]chromen-1-one top
Crystal data top
C19H13IO2F(000) = 784
Mr = 400.19Dx = 1.695 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0481 (3) ÅCell parameters from 5447 reflections
b = 18.2185 (8) Åθ = 2.0–28.8°
c = 12.6391 (6) ŵ = 2.05 mm1
β = 104.947 (4)°T = 170 K
V = 1568.02 (12) Å3Prism, colorless
Z = 40.77 × 0.34 × 0.34 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3493 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.035
profile data from ω–scansθmax = 33.1°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1010
Tmin = 0.738, Tmax = 1.000k = 2725
23424 measured reflectionsl = 1918
5656 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.6677P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
5656 reflectionsΔρmax = 0.72 e Å3
199 parametersΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All C–bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for C(H) and CH3 groups, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50948 (3)0.43392 (2)0.16336 (2)0.06235 (10)
O10.3551 (3)0.60041 (12)0.4492 (2)0.0521 (6)
C10.3838 (5)0.75621 (18)0.4302 (3)0.0500 (8)
O20.3855 (4)0.82269 (13)0.4246 (3)0.0732 (8)
C20.2006 (5)0.71359 (18)0.3764 (3)0.0579 (9)
H2A0.1117960.7133320.4256970.069*
H2B0.1316320.7387420.3078740.069*
C30.2426 (4)0.63579 (18)0.3505 (3)0.0482 (8)
H30.3234610.6365490.2960410.058*
C40.5196 (4)0.63685 (16)0.5048 (3)0.0418 (7)
C50.6575 (5)0.59171 (18)0.5759 (3)0.0522 (8)
H50.6312040.5409200.5815500.063*
C60.8277 (5)0.6209 (2)0.6361 (3)0.0556 (9)
H60.9169300.5908670.6871950.067*
C70.8749 (4)0.69535 (18)0.6244 (3)0.0471 (7)
C81.0575 (5)0.7242 (2)0.6837 (3)0.0610 (10)
H81.1468420.6935080.7336730.073*
C91.1078 (6)0.7950 (2)0.6704 (4)0.0708 (11)
H91.2311050.8137730.7105560.085*
C100.9759 (6)0.8396 (2)0.5970 (4)0.0716 (12)
H101.0123770.8886830.5862490.086*
C110.7944 (5)0.81461 (19)0.5397 (3)0.0559 (9)
H110.7062310.8468490.4919260.067*
C120.7382 (4)0.74111 (17)0.5516 (3)0.0423 (7)
C130.5495 (4)0.71092 (16)0.4953 (2)0.0387 (6)
C140.0648 (4)0.58838 (18)0.3059 (3)0.0474 (7)
C150.0197 (5)0.56413 (19)0.1993 (3)0.0537 (8)
H150.1014460.5775540.1533070.064*
C160.1444 (5)0.5201 (2)0.1580 (3)0.0546 (8)
H160.1744820.5035020.0842240.066*
C170.2617 (4)0.50090 (18)0.2245 (3)0.0488 (8)
C180.2188 (5)0.5240 (2)0.3317 (3)0.0591 (9)
H180.2999180.5099470.3776620.071*
C190.0551 (5)0.5683 (2)0.3719 (3)0.0592 (9)
H190.0255150.5849420.4456160.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04458 (13)0.06445 (16)0.06874 (17)0.00698 (11)0.00216 (10)0.01116 (13)
O10.0414 (11)0.0401 (11)0.0626 (15)0.0048 (9)0.0087 (10)0.0070 (10)
C10.0424 (16)0.0458 (18)0.056 (2)0.0027 (14)0.0030 (14)0.0040 (15)
O20.0588 (15)0.0414 (13)0.103 (2)0.0045 (11)0.0094 (14)0.0091 (14)
C20.0417 (16)0.0484 (19)0.072 (2)0.0019 (14)0.0065 (16)0.0077 (17)
C30.0384 (15)0.0525 (19)0.0481 (19)0.0004 (14)0.0010 (13)0.0027 (14)
C40.0364 (14)0.0397 (15)0.0469 (17)0.0030 (12)0.0065 (12)0.0027 (13)
C50.0466 (17)0.0386 (16)0.062 (2)0.0029 (13)0.0030 (15)0.0093 (15)
C60.0420 (16)0.054 (2)0.061 (2)0.0007 (15)0.0045 (15)0.0114 (17)
C70.0366 (14)0.0510 (18)0.0487 (18)0.0045 (13)0.0020 (13)0.0002 (14)
C80.0463 (18)0.068 (2)0.059 (2)0.0095 (17)0.0036 (16)0.0030 (18)
C90.055 (2)0.073 (3)0.073 (3)0.023 (2)0.0036 (19)0.002 (2)
C100.068 (2)0.063 (2)0.073 (3)0.028 (2)0.000 (2)0.001 (2)
C110.0565 (19)0.0462 (18)0.060 (2)0.0087 (15)0.0055 (16)0.0028 (16)
C120.0408 (15)0.0427 (16)0.0421 (16)0.0056 (13)0.0083 (12)0.0004 (13)
C130.0375 (14)0.0400 (15)0.0358 (15)0.0013 (12)0.0042 (11)0.0036 (12)
C140.0369 (15)0.0473 (17)0.0529 (19)0.0003 (13)0.0023 (13)0.0029 (14)
C150.0447 (17)0.060 (2)0.054 (2)0.0026 (16)0.0096 (14)0.0012 (17)
C160.0472 (17)0.064 (2)0.0464 (19)0.0016 (16)0.0003 (14)0.0047 (16)
C170.0377 (15)0.0493 (18)0.0514 (19)0.0005 (13)0.0027 (13)0.0035 (15)
C180.0506 (19)0.075 (2)0.049 (2)0.0139 (18)0.0083 (15)0.0055 (18)
C190.0509 (19)0.075 (2)0.0453 (19)0.0140 (18)0.0012 (15)0.0091 (18)
Geometric parameters (Å, º) top
I1—C172.107 (3)C8—H80.9500
O1—C31.446 (4)C8—C91.360 (5)
O1—C41.364 (3)C9—H90.9500
C1—O21.213 (4)C9—C101.393 (6)
C1—C21.510 (4)C10—H100.9500
C1—C131.492 (4)C10—C111.375 (5)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C11—C121.415 (4)
C2—C31.502 (5)C12—C131.445 (4)
C3—H31.0000C14—C151.374 (5)
C3—C141.507 (4)C14—C191.381 (5)
C4—C51.406 (4)C15—H150.9500
C4—C131.376 (4)C15—C161.394 (5)
C5—H50.9500C16—H160.9500
C5—C61.353 (4)C16—C171.368 (5)
C6—H60.9500C17—C181.376 (5)
C6—C71.413 (5)C18—H180.9500
C7—C81.413 (4)C18—C191.392 (5)
C7—C121.419 (4)C19—H190.9500
C4—O1—C3115.6 (2)C8—C9—C10119.0 (3)
O2—C1—C2120.5 (3)C10—C9—H9120.5
O2—C1—C13124.5 (3)C9—C10—H10119.1
C13—C1—C2114.9 (3)C11—C10—C9121.9 (4)
C1—C2—H2A109.0C11—C10—H10119.1
C1—C2—H2B109.0C10—C11—H11119.8
H2A—C2—H2B107.8C10—C11—C12120.3 (3)
C3—C2—C1112.9 (3)C12—C11—H11119.8
C3—C2—H2A109.0C7—C12—C13118.7 (3)
C3—C2—H2B109.0C11—C12—C7117.6 (3)
O1—C3—C2109.1 (3)C11—C12—C13123.7 (3)
O1—C3—H3108.5C4—C13—C1118.4 (3)
O1—C3—C14106.6 (3)C4—C13—C12118.2 (3)
C2—C3—H3108.5C12—C13—C1123.4 (3)
C2—C3—C14115.5 (3)C15—C14—C3120.7 (3)
C14—C3—H3108.5C15—C14—C19119.0 (3)
O1—C4—C5113.6 (3)C19—C14—C3120.3 (3)
O1—C4—C13124.2 (3)C14—C15—H15119.6
C13—C4—C5122.2 (3)C14—C15—C16120.8 (3)
C4—C5—H5120.1C16—C15—H15119.6
C6—C5—C4119.7 (3)C15—C16—H16120.3
C6—C5—H5120.1C17—C16—C15119.4 (3)
C5—C6—H6119.4C17—C16—H16120.3
C5—C6—C7121.1 (3)C16—C17—I1119.9 (2)
C7—C6—H6119.4C16—C17—C18120.8 (3)
C6—C7—C12119.5 (3)C18—C17—I1119.3 (3)
C8—C7—C6120.5 (3)C17—C18—H18120.4
C8—C7—C12119.9 (3)C17—C18—C19119.2 (3)
C7—C8—H8119.4C19—C18—H18120.4
C9—C8—C7121.2 (3)C14—C19—C18120.7 (3)
C9—C8—H8119.4C14—C19—H19119.6
C8—C9—H9120.5C18—C19—H19119.6
 

Acknowledgements

The authors thank Georgia Southern University for support of this work.

References

First citationBurley, S. K. & Petsko, G. A. (1985). Science, 229, 23–28.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurlong, J. J. P. & Nudelman, N. S. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 633–639.  CrossRef Google Scholar
First citationPopova, M., Soboleva, T., Arif, A. M. & Berreau, L. M. (2017). RSC Adv. 7, 21997–22007.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationRissanen, K. (2008). CrystEngComm, 10, 1107–1113.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds