organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(5-Chloro­pyridin-2-yl­imino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Periyar Maniammai Institute of Science & Technology, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: lvsethu13@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 December 2019; accepted 6 January 2020; online 31 January 2020)

In the title compound, C12H9ClN2O, the dihedral angle between the aromatic rings is 1.78 (4)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds connect the mol­ecules into [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The dihedral angle between the N1/C2–C6 pyridine ring and C7–C12 benzene ring is 1.78 (4)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. The disposition of the aromatic rings is trans as indicated by the C2—N2—C13—C7 torsion angle of −179.7 (2)° (Fig. 1[link]). In the crystal, centrosymmetric dimers linked by pairs of weak C6—H6⋯N1 hydrogen bonds (Table 1[link]) generate R22(6) loops. These dimers are linked by two pairs of C3—H3⋯O1 hydrogen bonds to form R66(42) loops (Fig. 2[link]). These alternating loops lead to wave-like supra­molecular strands propagating along [001]. Inter­molecular Cl⋯Cl [3.476 (4)] and Cl⋯π [3.528 (4) Å] contacts slightly shorter than van der Waals separations are also observed (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H8⋯N2 0.89 (5) 1.89 (5) 2.627 (4) 140 (4)
C3—H3⋯O1i 0.93 2.50 3.361 (5) 154
C6—H6⋯N1ii 0.93 2.59 3.365 (5) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The O—H⋯N hydrogen bond is indicated by a dashed line.
[Figure 2]
Figure 2
Supra­molecular strands formed by weak C—H⋯N and C—H⋯O hydrogen bonds. Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z.
[Figure 3]
Figure 3
Left: Supra­molecular chain arising from Cl⋯Cl and C—Cl⋯π contacts. [Symmetry code: (iii) [{3\over 2}] − x,-[{1\over 2}] + y,1/2 − z; (iv) x,-1 + y, z]. Right: Honeycomb architecture formed by the weak non-covalent inter­actions.

For the pharmaceutical behavior of Schiff bases, see: Mounika et al. (2010[Mounika, K., Pragathi, A. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513-524.]); Miri et al. (2013[Miri, R., Razzaghi-asl, N. & Mohammadi, M. K. (2013). J. Mol. Model. 19, 727-735.]); Aboul-Fadl et al. (2003[Aboul-Fadl, T., Mohammed, F. A. & Hassan, E. A. (2003). Arch. Pharm. Res. 26, 778-784.]); Wei et al. (2006[Wei, D., Li, N., Lu, G. & Yao, K. (2006). Sci. China Ser. B, 49, 225-229.]). For ring-opening reactions of pyrroles, see: Mannaert et al. (1997[Mannaert, E., Tytgat, J. & Daenens, P. (1997). J. Anal. Toxicol. 21, 208-212.]); . For halogen–halogen reactions, see: Pedireddi et al. (1994[Pedireddi, V. R., Shekhar Reddy, D., Goud, S. B., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. 2, 2353-2360.]) and for halogen⋯π reactions, see: Rahman et al. (2003[Rahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422-428.]).

Synthesis and crystallization

2-Amino-5-chloro­pyridine (1 mmol) and 2-hy­droxy benzaldehyde (1.2 mmol) were mixed in 20 ml of absolute ethanol with the addition of few drops of piperidine as catalyst. The mixture was refluxed for 5 h at 60–70°C. Colourless blocks of the title compound were obtained from the mother solution on cooling.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H9ClN2O
Mr 232.66
Crystal system, space group Monoclinic, P21/n
Temperature (K) 294
a, b, c (Å) 14.753 (12), 4.639 (3), 16.379 (16)
β (°) 105.35 (4)
V3) 1081.0 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.14 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.955, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 22920, 3033, 1878
Rint 0.060
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.219, 1.12
No. of reflections 3033
No. of parameters 154
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2-[(5-Chloropyridin-2-ylimino)methyl]phenol top
Crystal data top
C12H9ClN2OF(000) = 480
Mr = 232.66Dx = 1.430 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71076 Å
Hall symbol: -P 2ynCell parameters from 3033 reflections
a = 14.753 (12) Åθ = 2.9–29.6°
b = 4.639 (3) ŵ = 0.33 mm1
c = 16.379 (16) ÅT = 294 K
β = 105.35 (4)°Block, colourless
V = 1081.0 (16) Å30.14 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3033 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω and φ scanθmax = 29.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2020
Tmin = 0.955, Tmax = 0.971k = 66
22920 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.0991P)2 + 0.6777P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3033 reflectionsΔρmax = 0.36 e Å3
154 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: shelxl, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.096 (14)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66137 (5)0.10505 (17)0.21103 (5)0.0569 (3)
O10.22420 (18)1.2528 (6)0.17721 (15)0.0632 (9)
N10.46749 (16)0.6578 (5)0.09207 (14)0.0458 (7)
N20.35223 (15)0.9377 (5)0.13429 (14)0.0407 (7)
C20.42598 (17)0.7322 (5)0.15259 (16)0.0372 (8)
C30.4511 (2)0.6134 (6)0.23285 (18)0.0455 (9)
C40.5240 (2)0.4173 (6)0.25253 (18)0.0478 (9)
C50.56824 (18)0.3459 (6)0.19071 (17)0.0405 (8)
C60.5382 (2)0.4667 (7)0.11164 (18)0.0463 (9)
C70.25370 (18)1.2702 (6)0.03971 (17)0.0417 (8)
C80.2054 (2)1.3599 (6)0.0985 (2)0.0476 (9)
C90.1342 (2)1.5664 (7)0.0744 (3)0.0614 (13)
C100.1122 (2)1.6815 (8)0.0058 (3)0.0657 (13)
C110.1594 (2)1.5959 (7)0.0644 (2)0.0625 (11)
C120.2300 (2)1.3929 (6)0.04133 (19)0.0505 (9)
C130.32852 (19)1.0574 (6)0.06114 (18)0.0413 (8)
H30.419500.664600.272800.0550*
H40.543000.335100.306100.0570*
H60.567800.414400.070300.0560*
H80.266 (3)1.111 (10)0.186 (3)0.091 (15)*
H90.101701.626200.112800.0740*
H100.064801.819100.021000.0790*
H110.143801.674100.118600.0750*
H120.262301.336600.080300.0610*
H130.358 (2)1.009 (7)0.015 (2)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0455 (5)0.0518 (5)0.0695 (6)0.0066 (3)0.0084 (3)0.0004 (3)
O10.0711 (15)0.0624 (15)0.0660 (15)0.0137 (12)0.0356 (12)0.0063 (12)
N10.0448 (12)0.0539 (14)0.0402 (12)0.0083 (11)0.0138 (10)0.0007 (10)
N20.0410 (12)0.0376 (11)0.0460 (13)0.0020 (9)0.0158 (10)0.0057 (9)
C20.0376 (13)0.0363 (13)0.0387 (13)0.0046 (10)0.0118 (10)0.0065 (10)
C30.0542 (16)0.0452 (15)0.0414 (14)0.0010 (12)0.0202 (12)0.0029 (12)
C40.0560 (16)0.0466 (15)0.0396 (14)0.0020 (13)0.0107 (12)0.0037 (12)
C50.0360 (12)0.0377 (13)0.0451 (15)0.0032 (10)0.0060 (11)0.0027 (11)
C60.0453 (15)0.0528 (16)0.0426 (15)0.0070 (12)0.0147 (12)0.0052 (12)
C70.0391 (13)0.0357 (13)0.0499 (15)0.0057 (11)0.0110 (11)0.0058 (11)
C80.0404 (14)0.0424 (15)0.0636 (18)0.0047 (11)0.0200 (13)0.0048 (13)
C90.0480 (16)0.0505 (17)0.092 (3)0.0043 (14)0.0296 (16)0.0033 (17)
C100.0445 (16)0.0496 (17)0.097 (3)0.0057 (14)0.0080 (17)0.0017 (18)
C110.0592 (19)0.0510 (17)0.066 (2)0.0043 (15)0.0034 (16)0.0012 (15)
C120.0520 (16)0.0459 (15)0.0513 (16)0.0032 (13)0.0095 (13)0.0043 (13)
C130.0405 (13)0.0388 (13)0.0453 (15)0.0025 (11)0.0125 (11)0.0055 (11)
Geometric parameters (Å, º) top
Cl1—C51.733 (3)C7—C81.404 (4)
O1—C81.340 (4)C8—C91.399 (5)
O1—H80.89 (5)C9—C101.375 (7)
N1—C61.342 (4)C10—C111.385 (5)
N1—C21.341 (4)C11—C121.381 (5)
N2—C131.282 (4)C3—H30.9300
N2—C21.418 (4)C4—H40.9300
C2—C31.383 (4)C6—H60.9300
C3—C41.380 (4)C9—H90.9300
C4—C51.382 (4)C10—H100.9300
C5—C61.373 (4)C11—H110.9300
C7—C121.401 (4)C12—H120.9300
C7—C131.453 (4)C13—H130.99 (3)
Cl1···C6i3.627 (5)C8···N2vi3.398 (5)
Cl1···Cl1ii3.476 (4)C8···C2vi3.582 (5)
Cl1···H11iii3.1500C10···C13vi3.546 (6)
O1···N22.627 (4)C10···C7vi3.398 (6)
O1···C3iv3.361 (5)C11···C13vi3.510 (5)
O1···H3iv2.5000C13···N1vi3.416 (5)
O1···H8iv2.76 (5)C13···C6vi3.536 (5)
N1···C13i3.416 (5)C13···C10i3.546 (6)
N1···C6v3.365 (5)C13···C11i3.510 (5)
N2···O12.627 (4)C4···H11viii3.0300
N2···C8i3.398 (5)C6···H6v3.0300
N1···H6v2.5900C11···H4ix3.0800
N1···H132.40 (3)C13···H82.47 (5)
N2···H81.89 (5)H3···O1vii2.5000
C2···C5vi3.494 (5)H4···C11iii3.0800
C2···C7i3.462 (5)H6···N1v2.5900
C2···C8i3.582 (5)H6···C6v3.0300
C3···O1vii3.361 (5)H8···N21.89 (5)
C5···C2i3.494 (5)H8···C132.47 (5)
C6···C13i3.536 (5)H8···O1vii2.76 (5)
C6···Cl1vi3.627 (5)H11···Cl1ix3.1500
C6···N1v3.365 (5)H11···C4x3.0300
C6···C6v3.544 (5)H12···H132.3600
C7···C2vi3.462 (5)H13···N12.40 (3)
C7···C10i3.398 (6)H13···H122.3600
C8—O1—H8113 (3)C10—C11—C12119.2 (3)
C2—N1—C6118.2 (2)C7—C12—C11121.2 (3)
C2—N2—C13119.5 (2)N2—C13—C7121.5 (3)
N1—C2—N2119.5 (2)C2—C3—H3121.00
N1—C2—C3122.7 (2)C4—C3—H3121.00
N2—C2—C3117.8 (2)C3—C4—H4121.00
C2—C3—C4118.8 (3)C5—C4—H4121.00
C3—C4—C5118.5 (3)N1—C6—H6119.00
Cl1—C5—C6119.1 (2)C5—C6—H6119.00
C4—C5—C6119.8 (3)C8—C9—H9120.00
Cl1—C5—C4121.2 (2)C10—C9—H9120.00
N1—C6—C5122.1 (3)C9—C10—H10120.00
C8—C7—C12119.0 (3)C11—C10—H10119.00
C12—C7—C13119.2 (3)C10—C11—H11120.00
C8—C7—C13121.8 (3)C12—C11—H11120.00
O1—C8—C7122.4 (3)C7—C12—H12119.00
C7—C8—C9119.3 (3)C11—C12—H12119.00
O1—C8—C9118.3 (3)N2—C13—H13123.2 (19)
C8—C9—C10120.4 (3)C7—C13—H13115.3 (19)
C9—C10—C11121.1 (3)
C6—N1—C2—N2178.8 (2)C12—C7—C8—O1179.9 (3)
C6—N1—C2—C32.1 (4)C12—C7—C8—C90.8 (4)
C2—N1—C6—C50.4 (4)C13—C7—C8—O10.9 (4)
C13—N2—C2—N12.5 (4)C13—C7—C8—C9179.8 (3)
C13—N2—C2—C3178.4 (3)C8—C7—C12—C111.0 (4)
C2—N2—C13—C7179.7 (2)C13—C7—C12—C11180.0 (3)
N1—C2—C3—C42.2 (4)C8—C7—C13—N21.5 (4)
N2—C2—C3—C4178.7 (3)C12—C7—C13—N2179.5 (3)
C2—C3—C4—C50.6 (4)O1—C8—C9—C10179.7 (3)
C3—C4—C5—Cl1179.1 (2)C7—C8—C9—C100.4 (5)
C3—C4—C5—C61.0 (4)C8—C9—C10—C110.2 (5)
Cl1—C5—C6—N1179.0 (2)C9—C10—C11—C120.4 (5)
C4—C5—C6—N11.1 (5)C10—C11—C12—C70.8 (5)
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+5/2, z+1/2; (ix) x1/2, y+3/2, z1/2; (x) x1/2, y+5/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H8···N20.89 (5)1.89 (5)2.627 (4)140 (4)
C3—H3···O1vii0.932.503.361 (5)154
C6—H6···N1v0.932.593.365 (5)141
Symmetry codes: (v) x+1, y+1, z; (vii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr J. S. Nirmalram, Assistant Professor, Center for Research and Development, PRIST University, for the help rendered during manuscript preparation.

References

First citationAboul-Fadl, T., Mohammed, F. A. & Hassan, E. A. (2003). Arch. Pharm. Res. 26, 778–784.  PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: https://www.povray.org.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMannaert, E., Tytgat, J. & Daenens, P. (1997). J. Anal. Toxicol. 21, 208–212.  CrossRef CAS PubMed Google Scholar
First citationMiri, R., Razzaghi-asl, N. & Mohammadi, M. K. (2013). J. Mol. Model. 19, 727–735.  CrossRef CAS PubMed Google Scholar
First citationMounika, K., Pragathi, A. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513–524.  CrossRef CAS Google Scholar
First citationPedireddi, V. R., Shekhar Reddy, D., Goud, S. B., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. 2, 2353–2360.  Google Scholar
First citationRahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWei, D., Li, N., Lu, G. & Yao, K. (2006). Sci. China Ser. B, 49, 225–229.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds