organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Benzene-1,2-diaminium bis­­(4-methyl­benzene-1-sulfonate)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Goa University PO, Goa 403206, India
*Correspondence e-mail: srini@unigoa.ac.in

Edited by R. J. Butcher, Howard University, USA (Received 2 January 2020; accepted 25 January 2020; online 31 January 2020)

The structure of the title salt, C6H10N22+·2C7H7O3S, consists of a unique benzene-1,2-diaminium dication charge balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions. The cations and anions are inter­linked by several N—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The aromatic di­amine, benzene-1,2-di­amine also known as o-phenyl­enedi­amine, can function as a neutral ligand and bind to a metal via both amine N atoms (Koizumi & Fukuju, 2011[Koizumi, T. & Fukuju, K. (2011). J. Organomet. Chem. 696, 232-1235.]; Guillén et al., 2018[González Guillén, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 5029-5037.]) or by a single nitro­gen in a monodentate fashion (Nelson et al., 1982[Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407-415.]; Dickman, 2000[Dickman, M. H. (2000). Acta Cryst. C56, 58-60.]). In addition, benzene-1,2-di­amine can function as a charge-balancing dication in which both the amine N atoms are protonated (Raghavaiah et al., 2006[Raghavaiah, P., Supriya, S. & Das, S. K. (2006). Chem. Commun. pp. 2762-2764.]; Powers & Geiger, 2019[Powers, K. A. & Geiger, D. K. (2019). Acta Cryst. C75, 329-335.]) or as a monocation (Raghavaiah et al., 2005[Raghavaiah, P., Supriya, S. & Das, S. K. (2005). CrystEngComm, 7, 167-170.]; Mishra & Pallepogu, 2018[Mishra, R. & Pallepogu, R. (2018). Acta Cryst. B74, 32-41.]). The structural diversity of the compounds of benzene-1,2-di­amine in neutral or cationic form is highlighted by the results of a survey of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), which had more than 220 hits for the above three types of compounds. Of these, a total of 79 deposits do not contain any metal ions and correspond to crystal structures containing only diprotonated benzene-1,2-diaminium cations (47 hits) and monoprotonated 2-amino­anilinium cations (55 hits). An example of a mol­ecular salt of 4-methyl­benzene-1-sulfonic acid containing both mono and diprotonated cations, namely 2-amino­anilinium benzene-1,2-diaminium tris­(4-methyl­benzene-1-sulfonate) (2) has been reported recently (Amirthakumar et al., 2018[Amirthakumar, C., Pandi, P., Kumar, R. M. & Chakkaravarthi, G. (2018). IUCrData, 3, x180437.]).

In this report, we describe the crystal structure of the title compound, which was obtained by an aqueous reaction of the aromatic di­amine with 4-methyl­benzene-1-sulfonic acid in a 1:2 molar ratio, unlike 2, which was isolated from a 1:1 reaction. The asymmetric unit of the title compound consists of an unique benzene-1,2-diaminium dication charge-balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions (Fig. 1[link]) with all atoms located on general positions. The geometric parameters of the unique dication and the crystallographically independent anions are in normal ranges and are in agreement with reported data (Powers & Geiger, 2019[Powers, K. A. & Geiger, D. K. (2019). Acta Cryst. C75, 329-335.]).

[Figure 1]
Figure 1
The crystal structure of 1 showing the atom-labelling scheme. Blue dotted lines indicate hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

All six oxygen atoms attached to the sulfur atom of the sulfonate moiety of the anion function as hydrogen-bond acceptors while the H atoms attached to the N atoms of the dication function as hydrogen-bond donors, resulting in a total of eight N—H⋯O hydrogen bonds of which six are inter­molecular (Table 1[link]). It is inter­esting to note that the dications and the unique anions are inter­linked only via N—H⋯O hydrogen bonds, unlike in 2 for which both N—H⋯O and C—H⋯O hydrogen bonds were reported. Each anion is linked to three symmetry-related dications (Fig. 2[link]) while each dication is hydrogen-bonded to six symmetry-related anions. The net result of the hydrogen-bonding inter­actions is the inter­linking of the cations with the anions, resulting in alternating layers of cations and anions parallel to [010] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O21 0.89 1.92 2.8062 (19) 175
N1—H1B⋯O11i 0.89 2.07 2.7509 (19) 133
N1—H1B⋯O22ii 0.89 2.31 2.9017 (18) 124
N1—H1C⋯O13iii 0.89 1.89 2.7733 (19) 170
N2—H2A⋯O13iii 0.89 2.46 2.9128 (19) 112
N2—H2A⋯O23iv 0.89 1.97 2.7820 (18) 151
N2—H2B⋯O22ii 0.89 1.98 2.8611 (19) 173
N2—H2C⋯O12 0.89 1.84 2.7224 (19) 175
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x, y-1, z.
[Figure 2]
Figure 2
The hydrogen-bonding scheme around the two unique anions (left and right). For clarity, the H atoms of the aromatic ring are not shown. The hydrogen-bonding environment of the dication (middle) shows only the acceptor oxygen atoms of the unique anions. Symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1; (iv) x, y − 1, z.
[Figure 3]
Figure 3
A view along b axis of the unit-cell packing showing the inter­linking of the dications with the monocations via N—H⋯O hydrogen bonds which are shown as dashed lines. For clarity, the H atoms attached to the C atoms are not shown.

Synthesis and crystallization

Freshly recrystallized benzene-1,2-di­amine (108 mg, 1 mmol) was dissolved in double-distilled water (10–15 ml) by heating the mixture. Into this, an aqueous solution of 4-methyl­benzene-1-sulfonic acid (380 mg, 2 mmol) was added. The reaction mixture was heated to boiling and a pinch of activated charcoal was added. The hot solution was filtered and the clear filtrate was left aside for crystallization. After a few days, crystals of the title compound 1 slowly separated. The crystals were filtered and air dried. Yield 50%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H10N22+·2C7H7O3S
Mr 452.53
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 29.1537 (9), 8.8739 (3), 19.9919 (6)
β (°) 123.621 (1)
V3) 4306.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.56 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest ECO
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.696, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 59056, 6568, 4705
Rint 0.046
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.126, 1.07
No. of reflections 6568
No. of parameters 276
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.39
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: shelXle (Hübschle et al., 2011).

Benzene-1,2-diaminium bis(4-methylbenzene-1-sulfonate) top
Crystal data top
C6H10N22+·2C7H7O3SF(000) = 1904
Mr = 452.53Dx = 1.396 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.1537 (9) ÅCell parameters from 9968 reflections
b = 8.8739 (3) Åθ = 2.9–29.9°
c = 19.9919 (6) ŵ = 0.29 mm1
β = 123.621 (1)°T = 293 K
V = 4306.9 (2) Å3Block, colourless
Z = 80.56 × 0.14 × 0.12 mm
Data collection top
Bruker D8 Quest ECO
diffractometer
4705 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.046
φ and ω scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 4141
Tmin = 0.696, Tmax = 0.746k = 1212
59056 measured reflectionsl = 2828
6568 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0525P)2 + 2.9966P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.34 e Å3
6568 reflectionsΔρmin = 0.39 e Å3
276 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0026 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were located in appropriate positions and were included in calculated positions and refined with a riding model for both C—H and N—H protons. C–H distances ranged from = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and 0.89 for NH3+ H atoms with Uiso(H) = 1.2 Ueq(C-aromatic) and Uiso(H) = 1.5 Ueq(C-methyl, NH3+).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52597 (6)0.42385 (15)0.43447 (8)0.0399 (3)
H1A0.5160000.5114650.4084510.060*
H1B0.5523900.4393980.4858860.060*
H1C0.4970140.3815920.4309380.060*
N20.54019 (6)0.10069 (15)0.46813 (8)0.0374 (3)
H2A0.5057670.0662550.4392290.056*
H2B0.5434730.1681260.5034950.056*
H2C0.5632300.0244620.4940940.056*
C10.54643 (6)0.32416 (17)0.39869 (9)0.0349 (3)
C20.55343 (6)0.17140 (17)0.41510 (9)0.0344 (3)
C30.57224 (8)0.0796 (2)0.37927 (12)0.0505 (4)
H30.5765210.0233170.3899000.061*
C40.58462 (11)0.1411 (3)0.32770 (14)0.0661 (6)
H40.5972560.0795920.3035080.079*
C50.57830 (11)0.2935 (3)0.31201 (15)0.0664 (6)
H50.5869830.3349360.2776090.080*
C60.55909 (9)0.3848 (2)0.34726 (12)0.0529 (4)
H60.5546600.4875710.3363100.064*
S110.60971 (2)0.26457 (4)0.57918 (2)0.03904 (11)
O110.61408 (5)0.40103 (15)0.54362 (8)0.0562 (3)
O120.61358 (6)0.12891 (15)0.54200 (8)0.0563 (3)
O130.56134 (5)0.26132 (16)0.58310 (9)0.0573 (4)
C110.81185 (11)0.2503 (3)0.92035 (15)0.0827 (8)
H11A0.8335500.3385910.9292690.124*
H11B0.8013020.2483480.9581030.124*
H11C0.8331110.1619700.9273330.124*
C120.76068 (8)0.2532 (2)0.83564 (12)0.0540 (5)
C130.71405 (8)0.1716 (2)0.81418 (11)0.0541 (5)
H130.7138440.1135800.8527570.065*
C140.66758 (7)0.1744 (2)0.73639 (11)0.0460 (4)
H140.6366340.1182060.7227660.055*
C150.66778 (6)0.26174 (17)0.67934 (10)0.0363 (3)
C160.71387 (7)0.3444 (2)0.69966 (12)0.0523 (4)
H160.7139450.4034240.6612700.063*
C170.76014 (8)0.3390 (3)0.77780 (13)0.0616 (5)
H170.7912580.3941650.7912940.074*
S210.45059 (2)0.76496 (4)0.35286 (2)0.03714 (11)
O210.49995 (5)0.70837 (16)0.36096 (8)0.0547 (3)
O220.44084 (6)0.69248 (16)0.40921 (7)0.0559 (3)
O230.44971 (6)0.92776 (14)0.35764 (8)0.0565 (4)
C210.26881 (15)0.5602 (4)0.01997 (17)0.1233 (14)
H21A0.2330800.5828930.0090490.185*
H21B0.2728050.4529690.0188520.185*
H21C0.2726610.6064990.0200560.185*
C220.31300 (11)0.6205 (3)0.10249 (13)0.0742 (7)
C230.30782 (11)0.6004 (3)0.16652 (16)0.0813 (7)
H230.2759440.5567510.1578150.098*
C240.34940 (9)0.6443 (3)0.24375 (13)0.0609 (5)
H240.3459110.6275500.2866600.073*
C250.39576 (7)0.71265 (18)0.25587 (9)0.0387 (3)
C260.40091 (9)0.7360 (2)0.19192 (11)0.0496 (4)
H260.4322850.7822540.2001840.060*
C270.35939 (11)0.6905 (3)0.11584 (12)0.0665 (6)
H270.3628710.7074270.0729400.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0434 (7)0.0323 (6)0.0424 (7)0.0035 (5)0.0229 (6)0.0005 (5)
N20.0435 (7)0.0346 (6)0.0376 (7)0.0003 (5)0.0246 (6)0.0022 (5)
C10.0357 (7)0.0340 (7)0.0356 (7)0.0015 (6)0.0202 (6)0.0014 (6)
C20.0390 (8)0.0329 (7)0.0352 (7)0.0019 (6)0.0230 (6)0.0009 (6)
C30.0707 (12)0.0390 (9)0.0597 (11)0.0038 (8)0.0473 (10)0.0019 (8)
C40.0979 (17)0.0598 (12)0.0792 (15)0.0033 (11)0.0732 (14)0.0036 (11)
C50.0924 (16)0.0672 (13)0.0737 (14)0.0001 (12)0.0673 (14)0.0091 (11)
C60.0669 (12)0.0435 (9)0.0623 (11)0.0018 (8)0.0444 (10)0.0082 (8)
S110.03285 (19)0.0358 (2)0.0398 (2)0.00174 (14)0.01463 (16)0.00139 (15)
O110.0498 (7)0.0493 (7)0.0513 (7)0.0054 (6)0.0165 (6)0.0134 (6)
O120.0558 (8)0.0497 (7)0.0522 (7)0.0056 (6)0.0227 (6)0.0147 (6)
O130.0324 (6)0.0628 (9)0.0694 (9)0.0034 (5)0.0237 (6)0.0094 (7)
C110.0602 (14)0.095 (2)0.0504 (12)0.0003 (12)0.0039 (11)0.0007 (12)
C120.0433 (9)0.0557 (11)0.0440 (10)0.0025 (8)0.0122 (8)0.0027 (8)
C130.0534 (11)0.0615 (12)0.0427 (9)0.0035 (9)0.0236 (8)0.0089 (8)
C140.0403 (8)0.0516 (10)0.0449 (9)0.0032 (7)0.0229 (7)0.0038 (7)
C150.0320 (7)0.0356 (7)0.0390 (8)0.0009 (6)0.0182 (6)0.0017 (6)
C160.0413 (9)0.0563 (11)0.0504 (10)0.0096 (8)0.0199 (8)0.0063 (8)
C170.0403 (10)0.0659 (13)0.0586 (12)0.0134 (9)0.0149 (9)0.0009 (10)
S210.0452 (2)0.03159 (19)0.03394 (19)0.00202 (14)0.02151 (17)0.00074 (13)
O210.0502 (7)0.0599 (8)0.0523 (7)0.0147 (6)0.0274 (6)0.0096 (6)
O220.0741 (9)0.0606 (8)0.0383 (6)0.0077 (7)0.0345 (7)0.0003 (6)
O230.0581 (8)0.0318 (6)0.0582 (8)0.0003 (5)0.0188 (7)0.0062 (5)
C210.131 (3)0.089 (2)0.0642 (16)0.005 (2)0.0007 (17)0.0314 (16)
C220.0841 (16)0.0541 (12)0.0475 (11)0.0005 (11)0.0132 (11)0.0131 (9)
C230.0700 (15)0.0772 (17)0.0764 (16)0.0281 (13)0.0279 (13)0.0191 (13)
C240.0641 (12)0.0657 (13)0.0564 (11)0.0176 (10)0.0355 (10)0.0091 (10)
C250.0486 (9)0.0326 (7)0.0356 (7)0.0005 (6)0.0237 (7)0.0019 (6)
C260.0659 (12)0.0465 (10)0.0406 (9)0.0041 (8)0.0320 (9)0.0042 (7)
C270.0919 (17)0.0610 (12)0.0383 (9)0.0128 (12)0.0309 (11)0.0004 (9)
Geometric parameters (Å, º) top
N1—C11.4570 (19)C13—C141.386 (3)
N2—C21.4561 (18)C14—C151.382 (2)
C1—C61.380 (2)C15—C161.380 (2)
C1—C21.383 (2)C16—C171.389 (3)
C2—C31.383 (2)S21—O211.4462 (14)
C3—C41.380 (3)S21—O231.4490 (13)
C4—C51.378 (3)S21—O221.4554 (13)
C5—C61.380 (3)S21—C251.7602 (17)
S11—O111.4451 (13)C21—C221.521 (3)
S11—O121.4517 (14)C22—C271.373 (4)
S11—O131.4553 (14)C22—C231.381 (4)
S11—C151.7671 (16)C23—C241.390 (3)
C11—C121.515 (3)C24—C251.375 (3)
C12—C171.377 (3)C25—C261.383 (2)
C12—C131.382 (3)C26—C271.379 (3)
C6—C1—C2119.60 (15)C16—C15—C14120.25 (16)
C6—C1—N1118.71 (15)C16—C15—S11119.46 (13)
C2—C1—N1121.69 (13)C14—C15—S11120.27 (12)
C3—C2—C1120.23 (14)C15—C16—C17119.57 (18)
C3—C2—N2117.66 (14)C12—C17—C16121.09 (18)
C1—C2—N2122.10 (13)O21—S21—O23113.06 (9)
C4—C3—C2119.78 (17)O21—S21—O22111.63 (9)
C5—C4—C3120.09 (18)O23—S21—O22111.81 (9)
C4—C5—C6120.07 (18)O21—S21—C25105.80 (8)
C5—C6—C1120.23 (18)O23—S21—C25107.28 (8)
O11—S11—O12112.95 (9)O22—S21—C25106.77 (8)
O11—S11—O13113.27 (8)C27—C22—C23118.7 (2)
O12—S11—O13111.32 (8)C27—C22—C21121.4 (3)
O11—S11—C15106.21 (7)C23—C22—C21119.9 (3)
O12—S11—C15105.73 (8)C22—C23—C24121.2 (2)
O13—S11—C15106.72 (8)C25—C24—C23119.1 (2)
C17—C12—C13118.48 (17)C24—C25—C26120.16 (17)
C17—C12—C11119.6 (2)C24—C25—S21121.00 (14)
C13—C12—C11121.9 (2)C26—C25—S21118.79 (14)
C12—C13—C14121.40 (18)C27—C26—C25119.8 (2)
C15—C14—C13119.22 (17)C22—C27—C26121.0 (2)
C6—C1—C2—C30.9 (2)C14—C15—C16—C170.2 (3)
N1—C1—C2—C3179.13 (16)S11—C15—C16—C17178.16 (16)
C6—C1—C2—N2179.29 (16)C13—C12—C17—C160.2 (3)
N1—C1—C2—N20.8 (2)C11—C12—C17—C16179.8 (2)
C1—C2—C3—C40.7 (3)C15—C16—C17—C120.5 (3)
N2—C2—C3—C4179.15 (19)C27—C22—C23—C242.5 (4)
C2—C3—C4—C50.0 (4)C21—C22—C23—C24175.2 (3)
C3—C4—C5—C60.6 (4)C22—C23—C24—C251.8 (4)
C4—C5—C6—C10.4 (4)C23—C24—C25—C260.6 (3)
C2—C1—C6—C50.4 (3)C23—C24—C25—S21177.95 (19)
N1—C1—C6—C5179.68 (19)O21—S21—C25—C24131.47 (17)
C17—C12—C13—C140.3 (3)O23—S21—C25—C24107.57 (17)
C11—C12—C13—C14179.6 (2)O22—S21—C25—C2412.44 (18)
C12—C13—C14—C150.6 (3)O21—S21—C25—C2645.95 (16)
C13—C14—C15—C160.3 (3)O23—S21—C25—C2675.00 (16)
C13—C14—C15—S11178.67 (15)O22—S21—C25—C26164.99 (14)
O11—S11—C15—C1622.07 (17)C24—C25—C26—C270.0 (3)
O12—S11—C15—C1698.17 (16)S21—C25—C26—C27177.46 (15)
O13—S11—C15—C16143.20 (15)C23—C22—C27—C261.9 (4)
O11—S11—C15—C14159.58 (14)C21—C22—C27—C26175.7 (2)
O12—S11—C15—C1480.18 (15)C25—C26—C27—C220.7 (3)
O13—S11—C15—C1438.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O210.891.922.8062 (19)175
N1—H1B···O11i0.892.072.7509 (19)133
N1—H1B···O22ii0.892.312.9017 (18)124
N1—H1C···O13iii0.891.892.7733 (19)170
N2—H2A···O13iii0.892.462.9128 (19)112
N2—H2A···O23iv0.891.972.7820 (18)151
N2—H2B···O22ii0.891.982.8611 (19)173
N2—H2C···O120.891.842.7224 (19)175
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y1, z.
 

Acknowledgements

The authors acknowledge the Department of Science & Technology (DST) New Delhi, for the sanction of a Bruker D8 Quest Eco single-crystal X-ray diffractometer under the DST–FIST program.

References

First citationAmirthakumar, C., Pandi, P., Kumar, R. M. & Chakkaravarthi, G. (2018). IUCrData, 3, x180437.  Google Scholar
First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickman, M. H. (2000). Acta Cryst. C56, 58–60.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonzález Guillén, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 5029–5037.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoizumi, T. & Fukuju, K. (2011). J. Organomet. Chem. 696, 232–1235.  CrossRef Google Scholar
First citationMishra, R. & Pallepogu, R. (2018). Acta Cryst. B74, 32–41.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407–415.  CSD CrossRef Web of Science Google Scholar
First citationPowers, K. A. & Geiger, D. K. (2019). Acta Cryst. C75, 329–335.  CrossRef IUCr Journals Google Scholar
First citationRaghavaiah, P., Supriya, S. & Das, S. K. (2005). CrystEngComm, 7, 167–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaghavaiah, P., Supriya, S. & Das, S. K. (2006). Chem. Commun. pp. 2762–2764.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds