organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(3-Hy­dr­oxy­phen­yl)-1,3,4-oxa­diazole-2(3H)-thione hemihydrate

CROSSMARK_Color_square_no_text.svg

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 83 M. Ulugbek St, Tashkent 700125, Uzbekistan, and cInstitute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 77 M. Ulugbek St, Tashkent 100170, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 October 2019; accepted 13 November 2019; online 15 November 2019)

The title 1,3,4-oxa­diazole derivative crystallizes as a hemihydrate, C8H6N2O2S·0.5H2O, with the water mol­ecule located on a twofold rotation axis. The 1,3,4-oxa­diazole mol­ecule is essentially planar, the r.m.s. deviation of the non-H atoms being 0.0443 Å. The dihedral angle between the mean planes of the phenyl and oxa­diazole rings is 6.101 (17)°. In the crystal, mol­ecules are linked via O—H⋯S and N—H⋯O hydrogen bonds involving the water mol­ecule, the N—H group and the thione S atom into undulating ribbons. Additional ππ inter­actions generate a two-dimensional supra­molecular framework extending parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oxa­diazo­les are an important class of heterocyclic compounds because of their broad biological activities. In particular, 1,3,4-Oxa­diazole derivatives are known to act as anti­bacterial (Ahmed et al., 2018[Ahmed, M. N., Sadiq, B., Al-Masoudi, N. A., Yasin, K. A., Hameed, S., Mahmood, T., Ayub, K. & Tahir, M. N. (2018). J. Mol. Struct. 1155, 403-413.]), anti­microbial (Zheng et al., 2018[Zheng, Zh., Liu, O., Kim, W., Tharmalingam, N., Fuchs, B. B. & Mylonakis, E. (2018). Future Med. Chem. 10, 283-296.]), anti­cancer (Glomb et al., 2018[Glomb, T., Szymankiewicz, K. & Świątek, P. (2018). Molecules, 23, 3361-3377.]), anti-inflammatory (Abd-Ellah et al., 2017[Abd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15-29.]), analgesic (Husain & Ajmal, 2009[Husain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223-233.]), anti­tubercular (Ali & Shaharyar, 2007[Ali, M. A. & Shaharyar, M. (2007). Bioorg. Med. Chem. Lett. 17, 3314-3316.]; Zampieri et al., 2009[Zampieri, D., Mamolo, M. G., Laurini, E., Fermeglia, M., Posocco, P., Pricl, S., Banfi, E., Scialino, G. & Vio, L. (2009). Bioorg. Med. Chem. 17, 4693-4707.]), and vasodilatory (Shirote & Bhatia, 2010[Shirote, P. J. & Bhatia, M. S. (2010). Chin. J. Chem. 28, 1429-1436.]) agents. They are also important as starting materials for cyclo­addition reactions (Vasilev et al., 2007[Vasil'ev, N. V., Romanov, D. V., Bazhenov, A. A., Lyssenko, K. A. & Zatonsky, G. V. (2007). J. Fluor. Chem. 128, 740-747.]), and are employed in the synthesis of furans (Wolkenberg & Boger, 2002[Wolkenberg, S. E. & Boger, D. L. (2002). J. Org. Chem. 67, 7361-7364.]), natural products (Yuan et al., 2005[Yuan, Z. Q., Ishikawa, H. & Boger, D. L. (2005). Org. Lett. 7, 741-744.]) and plant-growth hormones (Won et al., 2011[Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory, J. & Zhao, Y. (2011). Proc. Natl Acad. Sci. USA, 108, 18518-18523.]). Several methods have been reported for the synthesis of 1,3,4-oxa­diazo­les, the commonly used synthetic routes including reactions of acid hydrazides with acid chlorides/carb­oxy­lic acids and direct cyclization of di­acyl­hydrazines using a variety of dehydrating agents such as phospho­rous oxychloride (Kadi et al., 2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]), thionyl chloride (Mickevičius et al., 2009[Mickevičius, V., Vaickelionienė, R. & Sapijanskaitė, B. (2009). Chem. Heterocycl. C. 45, 215-218.]), or direct reaction of the acid with tri­phenyl­phospho­rane (Ramazani et al., 2011[Ramazani, A., Nasrabadi, F. Z. & Ahmadi, Y. (2011). Helv. Chim. Acta, 94, 1024-1029.],2013[Ramazani, A., Abdian, B., Nasrabadi, F. Z. & Rouhani, M. (2013). Phosphorus Sulfur Silicon, 188, 642-648.]).

The title 1,3,4-oxa­diazole is derived from the condensation of 3-hy­droxy­benzoic acid hydrazide with potassium butyl xanthate and crystallizes as a hemihydrate (Fig. 1[link]), with the water mol­ecule situated on a twofold rotation axis. The dihedral angle between the mean planes of the phenyl (C3–C8, centroid Cg2) and oxa­diazole (C1/O1/C2/N2/N, centroid1 Cg1) rings is 6.101 (17)°.

[Figure 1]
Figure 1
Structures of the mol­ecular entities of the title compound. Displacement ellipsoids are drawn at the 30% probability level; hydrogen bonds are indicated by dashed lines.

In the crystal, the organic mol­ecules are linked into dimers by pairs of N—H⋯O hydrogen bonds (Table 1[link]), with the O atom of the hy­droxy group as the acceptor. Simultaneously, the hy­droxy group is also the donor group of a weak hydrogen bond to the S atom of a neighbouring mol­ecule. The water mol­ecule is likewise involved in hydrogen bonding both as a donor and an acceptor, with the S atom and the N—H group as the corresponding acceptor and donor groups, respectively (Table 1[link]). The above-mentioned hydrogen bonds give rise to R22(16) and R22(6) graph-set motifs (Fig. 2[link]), and eventually lead to the formation of undulating ribbons (Fig. 3[link]). Additional ππ stacking between the phenyl and oxa­diazole rings [Cg1⋯ Cg2 (x, 1 + y, z) = 3.6283 (16) Å, slippage = 1.684 Å] consolidates a two-dimensional supra­molecular framework extending parallel (001).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 2.26 2.995 (3) 143
N1—H1⋯O2i 0.86 2.42 3.064 (3) 133
O1W—H1W⋯S1 0.85 (4) 2.72 (4) 3.2814 (9) 125 (3)
O2—H2⋯S1ii 0.82 2.51 3.319 (2) 168
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+1, z].
[Figure 2]
Figure 2
Formation of N—H⋯O and O—H⋯S hydrogen bonds (dashed lines) in the crystal structure, leading to R22(16) and R22(6) graph-set motifs.
[Figure 3]
Figure 3
Packing of the mol­ecular entities in the crystal structure, in a view along the b axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

A mixture of 50 mmol of 3-hy­droxy­benzoic acid hydrazide and 50 mmol of potassium butyl xanthate was dissolved in 100 ml of ethanol and boiled for 8 h. The solvent was distilled off, the residue was diluted with water and acidified with hydro­chloric acid to pH = 5–6 (Fig. 4[link]). The resulting mass was filtered, washed with water, dried in air and recrystallized from aqueous ethanol. Small needle-shaped crystals the colour of pale milk were obtained; m.p. 477–478 K.

[Figure 4]
Figure 4
Synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C8H6N2O2S·H2O
Mr 406.43
Crystal system, space group Monoclinic, I2/a
Temperature (K) 293
a, b, c (Å) 16.3881 (12), 4.6912 (3), 22.4928 (18)
β (°) 97.512 (7)
V3) 1714.4 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.17
Crystal size (mm) 0.4 × 0.28 × 0.2
 
Data collection
Diffractometer Rigaku Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD. (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.953, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5850, 1767, 1256
Rint 0.061
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.04
No. of reflections 1767
No. of parameters 128
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD. (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

5-(3-Hydroxyphenyl)-1,3,4-oxadiazole-2(3H)-thione hemihydrate top
Crystal data top
2C8H6N2O2S·H2OF(000) = 840
Mr = 406.43Dx = 1.575 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 16.3881 (12) ÅCell parameters from 1053 reflections
b = 4.6912 (3) Åθ = 5.4–74.2°
c = 22.4928 (18) ŵ = 3.17 mm1
β = 97.512 (7)°T = 293 K
V = 1714.4 (2) Å3Block, colourless
Z = 40.4 × 0.28 × 0.2 mm
Data collection top
Rigaku Xcalibur Ruby
diffractometer
1256 reflections with I > 2σ(I)
Detector resolution: 10.2576 pixels mm-1Rint = 0.061
ω scansθmax = 76.1°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1820
Tmin = 0.953, Tmax = 1.000k = 45
5850 measured reflectionsl = 2727
1767 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1767 reflectionsΔρmax = 0.22 e Å3
128 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atom of the water molecule was located from a difference electron-density map and was refined with O—H = 0.85 (4) Å, and Uiso(H) = 1.3Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67502 (4)1.34393 (15)0.35767 (3)0.0449 (2)
O10.55444 (11)0.9588 (4)0.35221 (8)0.0373 (4)
O20.32072 (15)0.0756 (5)0.42672 (10)0.0555 (6)
H20.2905710.0459560.4092750.083*
O1W0.7500001.3852 (8)0.5000000.0597 (9)
N10.60967 (15)1.0310 (5)0.44201 (11)0.0447 (6)
H10.6403091.1000990.4725760.054*
N0AA0.55104 (15)0.8229 (5)0.44618 (11)0.0452 (6)
C20.51961 (16)0.7884 (6)0.39152 (11)0.0361 (6)
C30.45590 (16)0.5862 (5)0.36792 (12)0.0365 (6)
C80.41731 (17)0.4239 (6)0.40779 (13)0.0392 (6)
H80.4313990.4461990.4489380.047*
C10.61390 (16)1.1129 (6)0.38633 (12)0.0380 (6)
C70.35775 (17)0.2289 (6)0.38559 (13)0.0401 (6)
C40.43517 (18)0.5516 (6)0.30612 (13)0.0435 (7)
H40.4610170.6599690.2794330.052*
C60.33699 (18)0.1922 (6)0.32463 (13)0.0447 (7)
H60.2971610.0592440.3102100.054*
C50.37544 (19)0.3532 (7)0.28508 (13)0.0480 (7)
H50.3612170.3285500.2440070.058*
H1W0.742 (3)1.497 (8)0.4702 (18)0.086 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0410 (4)0.0408 (4)0.0533 (4)0.0028 (3)0.0071 (3)0.0054 (3)
O10.0366 (9)0.0366 (9)0.0384 (10)0.0010 (8)0.0037 (7)0.0026 (8)
O20.0563 (13)0.0618 (15)0.0488 (12)0.0194 (10)0.0080 (10)0.0006 (10)
O1W0.078 (2)0.055 (2)0.0451 (18)0.0000.0046 (17)0.000
N10.0464 (14)0.0494 (14)0.0372 (12)0.0080 (11)0.0013 (10)0.0030 (11)
N0AA0.0479 (14)0.0479 (14)0.0402 (12)0.0076 (11)0.0074 (10)0.0005 (11)
C20.0390 (14)0.0355 (13)0.0350 (13)0.0023 (10)0.0094 (11)0.0024 (11)
C30.0350 (13)0.0328 (13)0.0426 (15)0.0039 (10)0.0080 (11)0.0008 (10)
C80.0390 (14)0.0396 (15)0.0391 (14)0.0003 (11)0.0054 (11)0.0018 (11)
C10.0346 (13)0.0357 (14)0.0433 (15)0.0035 (10)0.0035 (11)0.0007 (11)
C70.0381 (14)0.0386 (14)0.0453 (15)0.0012 (11)0.0122 (12)0.0012 (12)
C40.0464 (16)0.0427 (15)0.0418 (15)0.0032 (12)0.0072 (12)0.0026 (12)
C60.0402 (15)0.0429 (16)0.0503 (17)0.0027 (12)0.0034 (12)0.0066 (13)
C50.0516 (16)0.0518 (17)0.0395 (15)0.0033 (14)0.0013 (12)0.0033 (14)
Geometric parameters (Å, º) top
S1—C11.662 (3)C2—C31.458 (4)
O1—C11.366 (3)C3—C81.390 (4)
O1—C21.371 (3)C3—C41.396 (4)
O2—C71.374 (3)C8—C71.382 (4)
O2—H20.8200C8—H80.9300
O1W—H1W0.85 (4)C7—C61.380 (4)
O1W—H1Wi0.85 (4)C4—C51.388 (4)
N1—C11.321 (4)C4—H40.9300
N1—N0AA1.381 (3)C6—C51.380 (4)
N1—H10.8600C6—H60.9300
N0AA—C21.280 (4)C5—H50.9300
C1—O1—C2105.8 (2)N1—C1—O1104.9 (2)
C7—O2—H2109.5N1—C1—S1131.8 (2)
H1W—O1W—H1Wi104 (6)O1—C1—S1123.3 (2)
C1—N1—N0AA113.2 (2)O2—C7—C6122.0 (3)
C1—N1—H1123.4O2—C7—C8117.1 (3)
N0AA—N1—H1123.4C6—C7—C8120.8 (3)
C2—N0AA—N1102.7 (2)C5—C4—C3119.1 (3)
N0AA—C2—O1113.4 (2)C5—C4—H4120.5
N0AA—C2—C3127.7 (2)C3—C4—H4120.5
O1—C2—C3118.9 (2)C7—C6—C5119.9 (3)
C8—C3—C4120.4 (3)C7—C6—H6120.1
C8—C3—C2119.1 (2)C5—C6—H6120.1
C4—C3—C2120.5 (2)C6—C5—C4120.5 (3)
C7—C8—C3119.2 (3)C6—C5—H5119.7
C7—C8—H8120.4C4—C5—H5119.7
C3—C8—H8120.4
Symmetry code: (i) x+3/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.262.995 (3)143
N1—H1···O2ii0.862.423.064 (3)133
O1W—H1W···S10.85 (4)2.72 (4)3.2814 (9)125 (3)
O2—H2···S1iii0.822.513.319 (2)168
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+1, z.
 

Funding information

This work was supported by a Grant for Fundamental Research (No. BA—FA–F7–004) from the Center of Science and Technology, Uzbekistan.

References

First citationAbd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15–29.  Web of Science CAS PubMed Google Scholar
First citationAhmed, M. N., Sadiq, B., Al-Masoudi, N. A., Yasin, K. A., Hameed, S., Mahmood, T., Ayub, K. & Tahir, M. N. (2018). J. Mol. Struct. 1155, 403–413.  Web of Science CSD CrossRef CAS Google Scholar
First citationAli, M. A. & Shaharyar, M. (2007). Bioorg. Med. Chem. Lett. 17, 3314–3316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGlomb, T., Szymankiewicz, K. & Świątek, P. (2018). Molecules, 23, 3361–3377.  Web of Science CrossRef Google Scholar
First citationHusain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223–233.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMickevičius, V., Vaickelionienė, R. & Sapijanskaitė, B. (2009). Chem. Heterocycl. C. 45, 215–218.  Google Scholar
First citationRamazani, A., Abdian, B., Nasrabadi, F. Z. & Rouhani, M. (2013). Phosphorus Sulfur Silicon, 188, 642–648.  Web of Science CrossRef CAS Google Scholar
First citationRamazani, A., Nasrabadi, F. Z. & Ahmadi, Y. (2011). Helv. Chim. Acta, 94, 1024–1029.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD. (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShirote, P. J. & Bhatia, M. S. (2010). Chin. J. Chem. 28, 1429–1436.  Web of Science CrossRef CAS Google Scholar
First citationVasil'ev, N. V., Romanov, D. V., Bazhenov, A. A., Lyssenko, K. A. & Zatonsky, G. V. (2007). J. Fluor. Chem. 128, 740–747.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolkenberg, S. E. & Boger, D. L. (2002). J. Org. Chem. 67, 7361–7364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWon, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory, J. & Zhao, Y. (2011). Proc. Natl Acad. Sci. USA, 108, 18518–18523.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYuan, Z. Q., Ishikawa, H. & Boger, D. L. (2005). Org. Lett. 7, 741–744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZampieri, D., Mamolo, M. G., Laurini, E., Fermeglia, M., Posocco, P., Pricl, S., Banfi, E., Scialino, G. & Vio, L. (2009). Bioorg. Med. Chem. 17, 4693–4707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, Zh., Liu, O., Kim, W., Tharmalingam, N., Fuchs, B. B. & Mylonakis, E. (2018). Future Med. Chem. 10, 283–296.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds