organic compounds
5-(3-Hydroxyphenyl)-1,3,4-oxadiazole-2(3H)-thione hemihydrate
aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 83 M. Ulugbek St, Tashkent 700125, Uzbekistan, and cInstitute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 77 M. Ulugbek St, Tashkent 100170, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru
The title 1,3,4-oxadiazole derivative crystallizes as a hemihydrate, C8H6N2O2S·0.5H2O, with the water molecule located on a twofold rotation axis. The 1,3,4-oxadiazole molecule is essentially planar, the r.m.s. deviation of the non-H atoms being 0.0443 Å. The dihedral angle between the mean planes of the phenyl and oxadiazole rings is 6.101 (17)°. In the crystal, molecules are linked via O—H⋯S and N—H⋯O hydrogen bonds involving the water molecule, the N—H group and the thione S atom into undulating ribbons. Additional π–π interactions generate a two-dimensional supramolecular framework extending parallel to (001).
Keywords: crystal structure; 1,3,4-oxadiazole; hydrogen bonding.
Structure description
Oxadiazoles are an important class of et al., 2018), antimicrobial (Zheng et al., 2018), anticancer (Glomb et al., 2018), anti-inflammatory (Abd-Ellah et al., 2017), analgesic (Husain & Ajmal, 2009), antitubercular (Ali & Shaharyar, 2007; Zampieri et al., 2009), and vasodilatory (Shirote & Bhatia, 2010) agents. They are also important as starting materials for cycloaddition reactions (Vasilev et al., 2007), and are employed in the synthesis of furans (Wolkenberg & Boger, 2002), natural products (Yuan et al., 2005) and plant-growth hormones (Won et al., 2011). Several methods have been reported for the synthesis of 1,3,4-oxadiazoles, the commonly used synthetic routes including reactions of acid with acid chlorides/carboxylic acids and direct of diacylhydrazines using a variety of dehydrating agents such as phosphorous oxychloride (Kadi et al., 2007), thionyl chloride (Mickevičius et al., 2009), or direct reaction of the acid with triphenylphosphorane (Ramazani et al., 2011,2013).
because of their broad biological activities. In particular, 1,3,4-Oxadiazole derivatives are known to act as antibacterial (AhmedThe title 1,3,4-oxadiazole is derived from the condensation of 3-hydroxybenzoic acid hydrazide with potassium butyl xanthate and crystallizes as a hemihydrate (Fig. 1), with the water molecule situated on a twofold rotation axis. The dihedral angle between the mean planes of the phenyl (C3–C8, centroid Cg2) and oxadiazole (C1/O1/C2/N2/N, centroid1 Cg1) rings is 6.101 (17)°.
In the crystal, the organic molecules are linked into dimers by pairs of N—H⋯O hydrogen bonds (Table 1), with the O atom of the hydroxy group as the acceptor. Simultaneously, the hydroxy group is also the donor group of a weak hydrogen bond to the S atom of a neighbouring molecule. The water molecule is likewise involved in hydrogen bonding both as a donor and an acceptor, with the S atom and the N—H group as the corresponding acceptor and donor groups, respectively (Table 1). The above-mentioned hydrogen bonds give rise to R22(16) and R22(6) graph-set motifs (Fig. 2), and eventually lead to the formation of undulating ribbons (Fig. 3). Additional π–π stacking between the phenyl and oxadiazole rings [Cg1⋯ Cg2 (x, 1 + y, z) = 3.6283 (16) Å, slippage = 1.684 Å] consolidates a two-dimensional supramolecular framework extending parallel (001).
Synthesis and crystallization
A mixture of 50 mmol of 3-hydroxybenzoic acid hydrazide and 50 mmol of potassium butyl xanthate was dissolved in 100 ml of ethanol and boiled for 8 h. The solvent was distilled off, the residue was diluted with water and acidified with hydrochloric acid to pH = 5–6 (Fig. 4). The resulting mass was filtered, washed with water, dried in air and recrystallized from aqueous ethanol. Small needle-shaped crystals the colour of pale milk were obtained; m.p. 477–478 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
https://doi.org/10.1107/S2414314619015323/wm4116sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619015323/wm4116Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619015323/wm4116Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).2C8H6N2O2S·H2O | F(000) = 840 |
Mr = 406.43 | Dx = 1.575 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 16.3881 (12) Å | Cell parameters from 1053 reflections |
b = 4.6912 (3) Å | θ = 5.4–74.2° |
c = 22.4928 (18) Å | µ = 3.17 mm−1 |
β = 97.512 (7)° | T = 293 K |
V = 1714.4 (2) Å3 | Block, colourless |
Z = 4 | 0.4 × 0.28 × 0.2 mm |
Rigaku Xcalibur Ruby diffractometer | 1256 reflections with I > 2σ(I) |
Detector resolution: 10.2576 pixels mm-1 | Rint = 0.061 |
ω scans | θmax = 76.1°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −18→20 |
Tmin = 0.953, Tmax = 1.000 | k = −4→5 |
5850 measured reflections | l = −27→27 |
1767 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0512P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1767 reflections | Δρmax = 0.22 e Å−3 |
128 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The hydrogen atom of the water molecule was located from a difference electron-density map and was refined with O—H = 0.85 (4) Å, and Uiso(H) = 1.3Ueq(O). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.67502 (4) | 1.34393 (15) | 0.35767 (3) | 0.0449 (2) | |
O1 | 0.55444 (11) | 0.9588 (4) | 0.35221 (8) | 0.0373 (4) | |
O2 | 0.32072 (15) | 0.0756 (5) | 0.42672 (10) | 0.0555 (6) | |
H2 | 0.290571 | −0.045956 | 0.409275 | 0.083* | |
O1W | 0.750000 | 1.3852 (8) | 0.500000 | 0.0597 (9) | |
N1 | 0.60967 (15) | 1.0310 (5) | 0.44201 (11) | 0.0447 (6) | |
H1 | 0.640309 | 1.100099 | 0.472576 | 0.054* | |
N0AA | 0.55104 (15) | 0.8229 (5) | 0.44618 (11) | 0.0452 (6) | |
C2 | 0.51961 (16) | 0.7884 (6) | 0.39152 (11) | 0.0361 (6) | |
C3 | 0.45590 (16) | 0.5862 (5) | 0.36792 (12) | 0.0365 (6) | |
C8 | 0.41731 (17) | 0.4239 (6) | 0.40779 (13) | 0.0392 (6) | |
H8 | 0.431399 | 0.446199 | 0.448938 | 0.047* | |
C1 | 0.61390 (16) | 1.1129 (6) | 0.38633 (12) | 0.0380 (6) | |
C7 | 0.35775 (17) | 0.2289 (6) | 0.38559 (13) | 0.0401 (6) | |
C4 | 0.43517 (18) | 0.5516 (6) | 0.30612 (13) | 0.0435 (7) | |
H4 | 0.461017 | 0.659969 | 0.279433 | 0.052* | |
C6 | 0.33699 (18) | 0.1922 (6) | 0.32463 (13) | 0.0447 (7) | |
H6 | 0.297161 | 0.059244 | 0.310210 | 0.054* | |
C5 | 0.37544 (19) | 0.3532 (7) | 0.28508 (13) | 0.0480 (7) | |
H5 | 0.361217 | 0.328550 | 0.244007 | 0.058* | |
H1W | 0.742 (3) | 1.497 (8) | 0.4702 (18) | 0.086 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0410 (4) | 0.0408 (4) | 0.0533 (4) | −0.0028 (3) | 0.0071 (3) | 0.0054 (3) |
O1 | 0.0366 (9) | 0.0366 (9) | 0.0384 (10) | −0.0010 (8) | 0.0037 (7) | 0.0026 (8) |
O2 | 0.0563 (13) | 0.0618 (15) | 0.0488 (12) | −0.0194 (10) | 0.0080 (10) | −0.0006 (10) |
O1W | 0.078 (2) | 0.055 (2) | 0.0451 (18) | 0.000 | 0.0046 (17) | 0.000 |
N1 | 0.0464 (14) | 0.0494 (14) | 0.0372 (12) | −0.0080 (11) | 0.0013 (10) | −0.0030 (11) |
N0AA | 0.0479 (14) | 0.0479 (14) | 0.0402 (12) | −0.0076 (11) | 0.0074 (10) | 0.0005 (11) |
C2 | 0.0390 (14) | 0.0355 (13) | 0.0350 (13) | 0.0023 (10) | 0.0094 (11) | 0.0024 (11) |
C3 | 0.0350 (13) | 0.0328 (13) | 0.0426 (15) | 0.0039 (10) | 0.0080 (11) | 0.0008 (10) |
C8 | 0.0390 (14) | 0.0396 (15) | 0.0391 (14) | 0.0003 (11) | 0.0054 (11) | −0.0018 (11) |
C1 | 0.0346 (13) | 0.0357 (14) | 0.0433 (15) | 0.0035 (10) | 0.0035 (11) | −0.0007 (11) |
C7 | 0.0381 (14) | 0.0386 (14) | 0.0453 (15) | 0.0012 (11) | 0.0122 (12) | 0.0012 (12) |
C4 | 0.0464 (16) | 0.0427 (15) | 0.0418 (15) | −0.0032 (12) | 0.0072 (12) | 0.0026 (12) |
C6 | 0.0402 (15) | 0.0429 (16) | 0.0503 (17) | −0.0027 (12) | 0.0034 (12) | −0.0066 (13) |
C5 | 0.0516 (16) | 0.0518 (17) | 0.0395 (15) | −0.0033 (14) | 0.0013 (12) | −0.0033 (14) |
S1—C1 | 1.662 (3) | C2—C3 | 1.458 (4) |
O1—C1 | 1.366 (3) | C3—C8 | 1.390 (4) |
O1—C2 | 1.371 (3) | C3—C4 | 1.396 (4) |
O2—C7 | 1.374 (3) | C8—C7 | 1.382 (4) |
O2—H2 | 0.8200 | C8—H8 | 0.9300 |
O1W—H1W | 0.85 (4) | C7—C6 | 1.380 (4) |
O1W—H1Wi | 0.85 (4) | C4—C5 | 1.388 (4) |
N1—C1 | 1.321 (4) | C4—H4 | 0.9300 |
N1—N0AA | 1.381 (3) | C6—C5 | 1.380 (4) |
N1—H1 | 0.8600 | C6—H6 | 0.9300 |
N0AA—C2 | 1.280 (4) | C5—H5 | 0.9300 |
C1—O1—C2 | 105.8 (2) | N1—C1—O1 | 104.9 (2) |
C7—O2—H2 | 109.5 | N1—C1—S1 | 131.8 (2) |
H1W—O1W—H1Wi | 104 (6) | O1—C1—S1 | 123.3 (2) |
C1—N1—N0AA | 113.2 (2) | O2—C7—C6 | 122.0 (3) |
C1—N1—H1 | 123.4 | O2—C7—C8 | 117.1 (3) |
N0AA—N1—H1 | 123.4 | C6—C7—C8 | 120.8 (3) |
C2—N0AA—N1 | 102.7 (2) | C5—C4—C3 | 119.1 (3) |
N0AA—C2—O1 | 113.4 (2) | C5—C4—H4 | 120.5 |
N0AA—C2—C3 | 127.7 (2) | C3—C4—H4 | 120.5 |
O1—C2—C3 | 118.9 (2) | C7—C6—C5 | 119.9 (3) |
C8—C3—C4 | 120.4 (3) | C7—C6—H6 | 120.1 |
C8—C3—C2 | 119.1 (2) | C5—C6—H6 | 120.1 |
C4—C3—C2 | 120.5 (2) | C6—C5—C4 | 120.5 (3) |
C7—C8—C3 | 119.2 (3) | C6—C5—H5 | 119.7 |
C7—C8—H8 | 120.4 | C4—C5—H5 | 119.7 |
C3—C8—H8 | 120.4 |
Symmetry code: (i) −x+3/2, y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1W | 0.86 | 2.26 | 2.995 (3) | 143 |
N1—H1···O2ii | 0.86 | 2.42 | 3.064 (3) | 133 |
O1W—H1W···S1 | 0.85 (4) | 2.72 (4) | 3.2814 (9) | 125 (3) |
O2—H2···S1iii | 0.82 | 2.51 | 3.319 (2) | 168 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+1, z. |
Funding information
This work was supported by a Grant for Fundamental Research (No. BA—FA–F7–004) from the Center of Science and Technology, Uzbekistan.
References
Abd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15–29. Web of Science CAS PubMed Google Scholar
Ahmed, M. N., Sadiq, B., Al-Masoudi, N. A., Yasin, K. A., Hameed, S., Mahmood, T., Ayub, K. & Tahir, M. N. (2018). J. Mol. Struct. 1155, 403–413. Web of Science CSD CrossRef CAS Google Scholar
Ali, M. A. & Shaharyar, M. (2007). Bioorg. Med. Chem. Lett. 17, 3314–3316. Web of Science CrossRef PubMed CAS Google Scholar
Glomb, T., Szymankiewicz, K. & Świątek, P. (2018). Molecules, 23, 3361–3377. Web of Science CrossRef Google Scholar
Husain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223–233. Web of Science CrossRef PubMed CAS Google Scholar
Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mickevičius, V., Vaickelionienė, R. & Sapijanskaitė, B. (2009). Chem. Heterocycl. C. 45, 215–218. Google Scholar
Ramazani, A., Abdian, B., Nasrabadi, F. Z. & Rouhani, M. (2013). Phosphorus Sulfur Silicon, 188, 642–648. Web of Science CrossRef CAS Google Scholar
Ramazani, A., Nasrabadi, F. Z. & Ahmadi, Y. (2011). Helv. Chim. Acta, 94, 1024–1029. Web of Science CrossRef CAS Google Scholar
Rigaku OD. (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shirote, P. J. & Bhatia, M. S. (2010). Chin. J. Chem. 28, 1429–1436. Web of Science CrossRef CAS Google Scholar
Vasil'ev, N. V., Romanov, D. V., Bazhenov, A. A., Lyssenko, K. A. & Zatonsky, G. V. (2007). J. Fluor. Chem. 128, 740–747. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolkenberg, S. E. & Boger, D. L. (2002). J. Org. Chem. 67, 7361–7364. Web of Science CrossRef PubMed CAS Google Scholar
Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory, J. & Zhao, Y. (2011). Proc. Natl Acad. Sci. USA, 108, 18518–18523. Web of Science CrossRef CAS PubMed Google Scholar
Yuan, Z. Q., Ishikawa, H. & Boger, D. L. (2005). Org. Lett. 7, 741–744. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zampieri, D., Mamolo, M. G., Laurini, E., Fermeglia, M., Posocco, P., Pricl, S., Banfi, E., Scialino, G. & Vio, L. (2009). Bioorg. Med. Chem. 17, 4693–4707. Web of Science CrossRef PubMed CAS Google Scholar
Zheng, Zh., Liu, O., Kim, W., Tharmalingam, N., Fuchs, B. B. & Mylonakis, E. (2018). Future Med. Chem. 10, 283–296. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.