organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4-Carb­­oxy­benz­yl)tri­phenyl­phospho­nium hexa­fluorido­phosphate tetra­hydro­furan monosolvate

CROSSMARK_Color_square_no_text.svg

a5050 Ave Maria Blvd, Ave Maria, FL, 34142, USA, and b11935 Abercorn St., Georgia Southern University Armstrong Campus, Savannah, GA 31419, USA
*Correspondence e-mail: Patrick.Hillesheim@avemaria.edu

Edited by R. J. Butcher, Howard University, USA (Received 11 October 2019; accepted 31 October 2019; online 5 November 2019)

The title compound, C26H22O2P+·PF6·C4H7O, crystallizes as a cation-anion pair with a single solvent mol­ecule in the asymmetric unit. Hydrogen bonding occurs between the carb­oxy­lic acid group on the cation and the oxygen atom of the solvent mol­ecule. Longer hydrogen-bonding inter­actions are observed between fluorine atoms of the anion and H atoms on the phenyl rings of the cation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a single cation–anion pair with a disordered solvent tetra­hydro­furan mol­ecule in the asymmetric unit. There are inter­molecular inter­actions between the hydrogen atom of the carb­oxy­lic acid moiety and the tetra­hydro­furan solvent. However, the solvent mol­ecule is disordered over two positions making arguments regarding the importance of this inter­action difficult. Further, there are weak inter­actions between phenyl H atoms and fluorine atoms, on the cation and anion respectively, in the crystal, forming an extended network (Table 1[link]). There are no observed ππ inter­actions, likely due to the torsion angles of the phenyl rings preventing any direct inter­actions because of steric hindrance.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.80 1.91 2.654 (4) 154
O1—H1⋯O3′ 0.80 2.42 2.997 (10) 129
C3—H3⋯F4i 0.93 2.82 3.467 (3) 128
C3—H3⋯F6i 0.93 2.54 3.468 (3) 172
C4—H4⋯F2ii 0.93 2.80 3.497 (3) 133
C6—H6⋯F1iii 0.93 2.62 3.360 (3) 137
C10—H10⋯F1iv 0.93 2.57 3.410 (4) 150
C11—H11⋯F6iv 0.93 2.83 3.479 (3) 128
C15—H15⋯F4 0.93 2.56 3.219 (3) 129
C17—H17⋯O1v 0.93 2.71 3.402 (4) 131
C19—H19B⋯F3iii 0.97 2.42 3.380 (3) 172
C19—H19B⋯F5iii 0.97 2.54 3.275 (3) 132
C30—H30A⋯O2 0.97 2.66 3.323 (8) 126
C28′—H28C⋯F3vi 0.97 2.59 3.385 (18) 139
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) x, y+1, z; (vi) x+1, y-1, z.
[Figure 1]
Figure 1
Structure of title compounds with 50% probability ellipsoids. The disordered portion of the solvent mol­ecule is omitted for clarity.

For structures of similar tri­phenyl­phospho­nium compounds, see: Bonnet & Kariuki (2006[Bonnet, L. G. & Kariuki, B. M. (2006). Eur. J. Inorg. Chem. pp. 437-446.]) and Ibrahim et al. (2011[Ibrahim, H., Koorbanally, N., Ramjugernath, D., Bala, M. D. & Nyamori, V. O. (2011). Acta Cryst. E67, o3391.]). For uses of tri­phenyl­phospho­nium compounds in synthesis, see: Liang (2015[Liang, X. (2015). RSC Adv. 5, 99448-99453.]).

Synthesis and crystallization

The title compound was synthesized by dissolving 1.0 g (2.09 mmol) of (4-carb­oxy­benz­yl)tri­phenyl­phospho­nium bromide and 0.45 g (2.45 mmol) of potassium hexa­fluorido­phosphate into 20 ml of water. The resultant mixture was stirred overnight, during which time a powder precipitated from solution. The white powder was filtered, washed with water (3 × 25 ml), and dried under high vacuum yielding (4-carb­oxy­benz­yl)tri­phenyl­phospho­nium hexa­fluorido­phosphate. Single crystals suitable for diffraction were grown by slow diffusion of hexane into a tetra­hydro­furan solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The tetra­hydro­furan solvent mol­ecule within the structure is disordered over two positions, of which one part was found to be approximately 67% of the occupancy with the remaining occupancy arising from the disorder. The disorder itself appears to arise from a ring inversion as has been observed in many other structures. The secondary portion of the disorder was restrained to allow for proper modeling.

Table 2
Experimental details

Crystal data
Chemical formula C26H22O2P+·PF6·C4H7O
Mr 613.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 10.3724 (4), 11.1647 (5), 14.1562 (5)
α, β, γ (°) 85.454 (3), 71.125 (4), 74.999 (4)
V3) 1498.32 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.46 × 0.42 × 0.26
 
Data collection
Diffractometer Rigaku XtaLAB Mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.979, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36497, 10830, 5318
Rint 0.042
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.212, 1.03
No. of reflections 10830
No. of parameters 376
No. of restraints 355
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(4-Carboxybenzyl)triphenylphosphonium hexafluoridophosphate tetrahydrofuran monosolvate top
Crystal data top
C26H22O2P+·PF6·C4H7OZ = 2
Mr = 613.47F(000) = 634
Triclinic, P1Dx = 1.360 Mg m3
a = 10.3724 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1647 (5) ÅCell parameters from 5598 reflections
c = 14.1562 (5) Åθ = 2.4–23.2°
α = 85.454 (3)°µ = 0.21 mm1
β = 71.125 (4)°T = 170 K
γ = 74.999 (4)°Block, colorless
V = 1498.32 (11) Å30.46 × 0.42 × 0.26 mm
Data collection top
Rigaku XtaLAB Mini
diffractometer
10830 independent reflections
Radiation source: Sealed Tube5318 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 33.1°, θmin = 1.9°
profile data from ω–scansh = 1515
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1616
Tmin = 0.979, Tmax = 1.000l = 2121
36497 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212 w = 1/[σ2(Fo2) + (0.0843P)2 + 0.3868P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
10830 reflectionsΔρmax = 0.35 e Å3
376 parametersΔρmin = 0.33 e Å3
355 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.74066 (6)0.63718 (5)0.30298 (4)0.04533 (15)
O10.8721 (4)0.0549 (2)0.6234 (2)0.1160 (9)
H10.918 (4)0.0158 (11)0.657 (2)0.139*
O20.8305 (3)0.2077 (2)0.72578 (18)0.1091 (8)
C10.6458 (2)0.7187 (2)0.22186 (16)0.0484 (5)
C20.6196 (3)0.8464 (2)0.21474 (19)0.0624 (6)
H20.6516200.8905640.2516970.075*
C30.5452 (3)0.9086 (3)0.1522 (2)0.0772 (8)
H30.5275280.9945090.1470050.093*
C40.4976 (3)0.8430 (3)0.0978 (2)0.0775 (8)
H40.4472780.8849800.0563020.093*
C50.5236 (3)0.7165 (3)0.1043 (2)0.0756 (8)
H50.4908990.6729510.0674420.091*
C60.5985 (3)0.6535 (2)0.16561 (19)0.0647 (6)
H60.6171920.5675050.1692970.078*
C70.9235 (2)0.5847 (2)0.23621 (17)0.0518 (5)
C80.9759 (3)0.6236 (3)0.1395 (2)0.0841 (9)
H80.9158670.6755180.1085350.101*
C91.1180 (4)0.5851 (4)0.0888 (3)0.1118 (13)
H91.1530530.6122480.0239320.134*
C101.2067 (3)0.5088 (4)0.1319 (3)0.0961 (10)
H101.3021360.4842590.0967590.115*
C111.1568 (3)0.4673 (3)0.2271 (3)0.0790 (8)
H111.2181250.4135460.2560360.095*
C121.0149 (3)0.5054 (3)0.2806 (2)0.0664 (6)
H120.9811290.4781220.3456270.080*
C130.7139 (2)0.7373 (2)0.40360 (16)0.0487 (5)
C140.5770 (2)0.7835 (2)0.46638 (18)0.0592 (6)
H140.5019280.7656930.4528870.071*
C150.5525 (3)0.8547 (3)0.54755 (19)0.0716 (7)
H150.4612580.8842050.5896790.086*
C160.6626 (4)0.8826 (3)0.5666 (2)0.0885 (9)
H160.6459460.9297290.6226000.106*
C170.7963 (4)0.8418 (4)0.5044 (3)0.0989 (11)
H170.8697110.8642350.5167970.119*
C180.8241 (3)0.7675 (3)0.4231 (2)0.0741 (8)
H180.9159270.7381600.3818550.089*
C190.6635 (3)0.5082 (2)0.35274 (18)0.0555 (5)
H19A0.5634400.5418740.3838060.067*
H19B0.6742260.4577370.2966860.067*
C200.7174 (2)0.4229 (2)0.42731 (17)0.0509 (5)
C210.6971 (3)0.4625 (2)0.52283 (17)0.0586 (6)
H210.6560540.5454360.5403650.070*
C220.7372 (3)0.3796 (3)0.59205 (19)0.0637 (6)
H220.7245070.4075280.6553650.076*
C230.7959 (2)0.2560 (2)0.56810 (19)0.0597 (6)
C240.8165 (3)0.2157 (2)0.4731 (2)0.0669 (6)
H240.8565200.1324460.4560760.080*
C250.7776 (3)0.2990 (2)0.40295 (19)0.0620 (6)
H250.7921590.2712590.3392200.074*
C260.8337 (3)0.1693 (3)0.6463 (3)0.0837 (9)
P20.40321 (7)0.72795 (6)0.84033 (5)0.05614 (18)
F10.4425 (2)0.61011 (15)0.90639 (15)0.0898 (5)
F20.3132 (2)0.80537 (17)0.93905 (12)0.0885 (5)
F30.26869 (16)0.68270 (16)0.84047 (12)0.0765 (4)
F40.3598 (2)0.84541 (16)0.77637 (13)0.0880 (5)
F50.49227 (19)0.64899 (17)0.74183 (13)0.0888 (5)
F60.53703 (18)0.77003 (16)0.84106 (16)0.0922 (6)
O30.9436 (5)0.0783 (4)0.7706 (3)0.1069 (17)0.677 (7)
C270.8665 (8)0.1658 (6)0.8066 (5)0.1210 (16)0.677 (7)
H270.8182010.1972370.7734000.145*0.677 (7)
C280.8753 (9)0.1996 (7)0.9067 (5)0.1210 (16)0.677 (7)
H28A0.7841410.2051880.9519090.145*0.677 (7)
H28B0.9418870.2790650.9051100.145*0.677 (7)
C290.9219 (12)0.1022 (8)0.9390 (5)0.1210 (16)0.677 (7)
H29A0.9978320.1376820.9664650.145*0.677 (7)
H29B0.8450380.0502480.9894610.145*0.677 (7)
C300.9709 (11)0.0292 (7)0.8483 (5)0.1210 (16)0.677 (7)
H30A0.9210600.0575000.8592170.145*0.677 (7)
H30B1.0707590.0355810.8319960.145*0.677 (7)
O3'0.8547 (11)0.0047 (9)0.8366 (8)0.115 (3)0.323 (7)
C27'0.8325 (17)0.1247 (11)0.8378 (12)0.115 (3)0.323 (7)
H27A0.8597260.1543400.7698430.138*0.323 (7)
H27B0.7334140.1211260.8690120.138*0.323 (7)
C28'0.9160 (19)0.2124 (13)0.8937 (14)0.115 (3)0.323 (7)
H28C1.0063570.2569370.8499300.138*0.323 (7)
H28D0.8652930.2708560.9326820.138*0.323 (7)
C29'0.931 (2)0.1204 (14)0.9579 (13)0.115 (3)0.323 (7)
H29C1.0115030.1526120.9808190.138*0.323 (7)
H29D0.8468860.0968221.0151500.138*0.323 (7)
C30'0.9503 (16)0.0117 (12)0.8872 (11)0.115 (3)0.323 (7)
H30'1.0120530.0382610.8798190.138*0.323 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0450 (3)0.0476 (3)0.0460 (3)0.0146 (2)0.0158 (2)0.0025 (2)
O10.176 (3)0.0861 (16)0.116 (2)0.0328 (17)0.094 (2)0.0355 (15)
O20.140 (2)0.1107 (19)0.0745 (14)0.0115 (16)0.0513 (15)0.0239 (13)
C10.0525 (11)0.0457 (11)0.0488 (11)0.0131 (9)0.0178 (9)0.0008 (8)
C20.0810 (17)0.0471 (12)0.0692 (15)0.0166 (11)0.0371 (13)0.0023 (11)
C30.107 (2)0.0499 (14)0.0852 (19)0.0116 (14)0.0514 (17)0.0081 (13)
C40.096 (2)0.0684 (16)0.0803 (18)0.0118 (15)0.0529 (17)0.0115 (14)
C50.103 (2)0.0677 (16)0.0780 (18)0.0260 (15)0.0560 (17)0.0082 (13)
C60.0907 (18)0.0499 (13)0.0684 (15)0.0197 (12)0.0441 (14)0.0037 (11)
C70.0500 (11)0.0530 (12)0.0510 (11)0.0125 (9)0.0133 (9)0.0038 (9)
C80.0652 (16)0.104 (2)0.0641 (16)0.0110 (16)0.0066 (13)0.0148 (15)
C90.070 (2)0.147 (4)0.083 (2)0.015 (2)0.0101 (17)0.017 (2)
C100.0522 (16)0.119 (3)0.097 (2)0.0114 (17)0.0008 (15)0.016 (2)
C110.0547 (15)0.0779 (19)0.101 (2)0.0042 (13)0.0273 (15)0.0097 (16)
C120.0552 (13)0.0718 (16)0.0704 (16)0.0115 (12)0.0209 (12)0.0009 (13)
C130.0493 (11)0.0510 (12)0.0467 (11)0.0141 (9)0.0154 (9)0.0015 (9)
C140.0520 (12)0.0628 (14)0.0592 (13)0.0119 (11)0.0141 (10)0.0016 (11)
C150.0709 (17)0.0754 (17)0.0544 (14)0.0067 (14)0.0084 (12)0.0059 (12)
C160.098 (2)0.098 (2)0.0699 (18)0.0111 (18)0.0294 (17)0.0303 (16)
C170.082 (2)0.124 (3)0.104 (2)0.0247 (19)0.0369 (19)0.047 (2)
C180.0538 (14)0.094 (2)0.0807 (18)0.0222 (13)0.0207 (13)0.0268 (15)
C190.0613 (13)0.0573 (13)0.0598 (13)0.0253 (11)0.0293 (11)0.0110 (10)
C200.0518 (12)0.0556 (12)0.0537 (12)0.0248 (10)0.0209 (10)0.0097 (9)
C210.0630 (14)0.0603 (14)0.0540 (13)0.0191 (11)0.0186 (11)0.0046 (10)
C220.0675 (15)0.0759 (16)0.0548 (13)0.0245 (13)0.0256 (12)0.0103 (11)
C230.0539 (13)0.0700 (15)0.0641 (14)0.0253 (11)0.0274 (11)0.0212 (11)
C240.0763 (17)0.0541 (14)0.0764 (16)0.0173 (12)0.0341 (14)0.0121 (12)
C250.0744 (16)0.0598 (14)0.0597 (14)0.0200 (12)0.0299 (12)0.0048 (11)
C260.0672 (17)0.093 (2)0.093 (2)0.0255 (16)0.0346 (16)0.0434 (18)
P20.0597 (4)0.0537 (4)0.0591 (4)0.0149 (3)0.0224 (3)0.0037 (3)
F10.1094 (14)0.0694 (10)0.1083 (13)0.0222 (9)0.0621 (11)0.0190 (9)
F20.1015 (12)0.0924 (12)0.0683 (10)0.0162 (10)0.0227 (9)0.0241 (9)
F30.0670 (9)0.0961 (12)0.0764 (10)0.0301 (8)0.0268 (8)0.0057 (8)
F40.1001 (13)0.0765 (11)0.0825 (11)0.0139 (9)0.0327 (9)0.0193 (9)
F50.0819 (11)0.0928 (12)0.0821 (11)0.0240 (9)0.0039 (9)0.0300 (9)
F60.0745 (10)0.0766 (11)0.1397 (16)0.0268 (9)0.0427 (11)0.0143 (10)
O30.146 (4)0.086 (3)0.093 (3)0.018 (3)0.056 (3)0.021 (2)
C270.156 (4)0.117 (3)0.105 (2)0.061 (3)0.045 (2)0.018 (2)
C280.156 (4)0.117 (3)0.105 (2)0.061 (3)0.045 (2)0.018 (2)
C290.156 (4)0.117 (3)0.105 (2)0.061 (3)0.045 (2)0.018 (2)
C300.156 (4)0.117 (3)0.105 (2)0.061 (3)0.045 (2)0.018 (2)
O3'0.125 (5)0.098 (4)0.123 (5)0.012 (4)0.062 (4)0.043 (4)
C27'0.125 (5)0.098 (4)0.123 (5)0.012 (4)0.062 (4)0.043 (4)
C28'0.125 (5)0.098 (4)0.123 (5)0.012 (4)0.062 (4)0.043 (4)
C29'0.125 (5)0.098 (4)0.123 (5)0.012 (4)0.062 (4)0.043 (4)
C30'0.125 (5)0.098 (4)0.123 (5)0.012 (4)0.062 (4)0.043 (4)
Geometric parameters (Å, º) top
P1—C11.793 (2)C19—C201.510 (3)
P1—C71.785 (2)C20—C211.389 (3)
P1—C131.787 (2)C20—C251.382 (3)
P1—C191.811 (2)C21—H210.9300
O1—H10.803 (18)C21—C221.382 (3)
O1—C261.270 (4)C22—H220.9300
O2—C261.223 (4)C22—C231.377 (4)
C1—C21.382 (3)C23—C241.385 (4)
C1—C61.391 (3)C23—C261.493 (4)
C2—H20.9300C24—H240.9300
C2—C31.389 (3)C24—C251.390 (3)
C3—H30.9300C25—H250.9300
C3—C41.377 (4)P2—F11.5956 (17)
C4—H40.9300P2—F21.5815 (17)
C4—C51.369 (4)P2—F31.6016 (16)
C5—H50.9300P2—F41.5849 (17)
C5—C61.380 (3)P2—F51.5858 (17)
C6—H60.9300P2—F61.5796 (16)
C7—C81.381 (4)O3—C271.384 (6)
C7—C121.394 (3)O3—C301.404 (6)
C8—H80.9300C27—H270.9300
C8—C91.381 (4)C27—C281.462 (7)
C9—H90.9300C28—H28A0.9700
C9—C101.349 (5)C28—H28B0.9700
C10—H100.9300C28—C291.456 (8)
C10—C111.368 (5)C29—H29A0.9700
C11—H110.9300C29—H29B0.9700
C11—C121.388 (4)C29—C301.482 (7)
C12—H120.9300C30—H30A0.9700
C13—C141.396 (3)C30—H30B0.9700
C13—C181.384 (3)O3'—C27'1.416 (12)
C14—H140.9300O3'—C30'1.382 (13)
C14—C151.367 (3)C27'—H27A0.9700
C15—H150.9300C27'—H27B0.9700
C15—C161.367 (4)C27'—C28'1.488 (13)
C16—H160.9300C28'—H28C0.9700
C16—C171.361 (5)C28'—H28D0.9700
C17—H170.9300C28'—C29'1.490 (14)
C17—C181.382 (4)C29'—H29C0.9700
C18—H180.9300C29'—H29D0.9700
C19—H19A0.9700C29'—C30'1.523 (13)
C19—H19B0.9700C30'—H30'0.9300
C1—P1—C19106.09 (10)C23—C22—C21120.6 (2)
C7—P1—C1110.78 (10)C23—C22—H22119.7
C7—P1—C13110.72 (10)C22—C23—C24119.2 (2)
C7—P1—C19111.29 (11)C22—C23—C26118.7 (3)
C13—P1—C1109.01 (10)C24—C23—C26122.1 (3)
C13—P1—C19108.83 (11)C23—C24—H24119.8
C26—O1—H1111.1C23—C24—C25120.3 (2)
C2—C1—P1120.31 (17)C25—C24—H24119.8
C2—C1—C6119.7 (2)C20—C25—C24120.4 (2)
C6—C1—P1120.03 (17)C20—C25—H25119.8
C1—C2—H2120.1C24—C25—H25119.8
C1—C2—C3119.8 (2)O1—C26—C23115.5 (3)
C3—C2—H2120.1O2—C26—O1123.0 (3)
C2—C3—H3120.0O2—C26—C23121.4 (3)
C4—C3—C2119.9 (2)F1—P2—F388.66 (9)
C4—C3—H3120.0F2—P2—F189.58 (10)
C3—C4—H4119.7F2—P2—F390.19 (10)
C5—C4—C3120.6 (2)F2—P2—F489.45 (10)
C5—C4—H4119.7F2—P2—F5179.23 (10)
C4—C5—H5120.0F4—P2—F1178.46 (11)
C4—C5—C6120.1 (2)F4—P2—F390.14 (10)
C6—C5—H5120.0F4—P2—F590.96 (10)
C1—C6—H6120.0F5—P2—F189.99 (11)
C5—C6—C1120.0 (2)F5—P2—F389.16 (9)
C5—C6—H6120.0F6—P2—F190.23 (10)
C8—C7—P1119.9 (2)F6—P2—F290.03 (10)
C8—C7—C12119.2 (2)F6—P2—F3178.87 (10)
C12—C7—P1120.91 (18)F6—P2—F490.97 (10)
C7—C8—H8120.2F6—P2—F590.61 (10)
C7—C8—C9119.7 (3)C27—O3—C30110.7 (5)
C9—C8—H8120.2O3—C27—H27126.4
C8—C9—H9119.4O3—C27—C28107.2 (4)
C10—C9—C8121.1 (3)C28—C27—H27126.4
C10—C9—H9119.4C27—C28—H28A110.4
C9—C10—H10119.9C27—C28—H28B110.4
C9—C10—C11120.2 (3)H28A—C28—H28B108.6
C11—C10—H10119.9C29—C28—C27106.5 (4)
C10—C11—H11119.9C29—C28—H28A110.4
C10—C11—C12120.2 (3)C29—C28—H28B110.4
C12—C11—H11119.9C28—C29—H29A110.6
C7—C12—H12120.2C28—C29—H29B110.6
C11—C12—C7119.5 (3)C28—C29—C30105.7 (4)
C11—C12—H12120.2H29A—C29—H29B108.7
C14—C13—P1118.54 (17)C30—C29—H29A110.6
C18—C13—P1122.38 (18)C30—C29—H29B110.6
C18—C13—C14119.0 (2)O3—C30—C29107.1 (4)
C13—C14—H14119.8O3—C30—H30A110.3
C15—C14—C13120.5 (2)O3—C30—H30B110.3
C15—C14—H14119.8C29—C30—H30A110.3
C14—C15—H15120.1C29—C30—H30B110.3
C16—C15—C14119.8 (3)H30A—C30—H30B108.5
C16—C15—H15120.1C30'—O3'—C27'107.1 (9)
C15—C16—H16119.7O3'—C27'—H27A109.5
C17—C16—C15120.5 (3)O3'—C27'—H27B109.5
C17—C16—H16119.7O3'—C27'—C28'110.7 (10)
C16—C17—H17119.7H27A—C27'—H27B108.1
C16—C17—C18120.7 (3)C28'—C27'—H27A109.5
C18—C17—H17119.7C28'—C27'—H27B109.5
C13—C18—H18120.3C27'—C28'—H28C112.1
C17—C18—C13119.4 (3)C27'—C28'—H28D112.1
C17—C18—H18120.3C27'—C28'—C29'98.4 (10)
P1—C19—H19A107.5H28C—C28'—H28D109.7
P1—C19—H19B107.5C29'—C28'—H28C112.1
H19A—C19—H19B107.0C29'—C28'—H28D112.1
C20—C19—P1119.25 (15)C28'—C29'—H29C111.3
C20—C19—H19A107.5C28'—C29'—H29D111.3
C20—C19—H19B107.5C28'—C29'—C30'102.4 (10)
C21—C20—C19122.0 (2)H29C—C29'—H29D109.2
C25—C20—C19118.9 (2)C30'—C29'—H29C111.3
C25—C20—C21118.8 (2)C30'—C29'—H29D111.3
C20—C21—H21119.7O3'—C30'—C29'103.7 (10)
C22—C21—C20120.6 (2)O3'—C30'—H30'128.1
C22—C21—H21119.7C29'—C30'—H30'128.1
C21—C22—H22119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.801.912.654 (4)154
O1—H1···O30.802.422.997 (10)129
C3—H3···F4i0.932.823.467 (3)128
C3—H3···F6i0.932.543.468 (3)172
C4—H4···F2ii0.932.803.497 (3)133
C6—H6···F1iii0.932.623.360 (3)137
C10—H10···F1iv0.932.573.410 (4)150
C11—H11···F6iv0.932.833.479 (3)128
C15—H15···F40.932.563.219 (3)129
C17—H17···O1v0.932.713.402 (4)131
C19—H19B···F3iii0.972.423.380 (3)172
C19—H19B···F5iii0.972.543.275 (3)132
C30—H30A···O20.972.663.323 (8)126
C28—H28C···F3vi0.972.593.385 (18)139
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+1, y1, z.
 

Acknowledgements

The authors would like to thank Florida Gulf Coast University Department of Chemistry for the use of their equipment in characterization of the material.

Funding information

Funding for this research was provided by: Ave Maria University Department of Chemistry and Physics ; Georgia Southern University Armstrong Campus, Department of Chemistry .

References

First citationBonnet, L. G. & Kariuki, B. M. (2006). Eur. J. Inorg. Chem. pp. 437–446.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, H., Koorbanally, N., Ramjugernath, D., Bala, M. D. & Nyamori, V. O. (2011). Acta Cryst. E67, o3391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, X. (2015). RSC Adv. 5, 99448–99453.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds