organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Iso­butyl-8,9-dimeth­­oxy-3-phenyl-5,6-dihidro­imidazo[5,1-a]isoquinolin-2-ium chloride

CROSSMARK_Color_square_no_text.svg

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 100170, Mirzo Ulugbek Str. 77, Tashkent City, Uzbekistan, and bSamarkand State University, 140104, University blv. 15, Samarkand City, Samarkand region, Uzbekistan
*Correspondence e-mail: raxul@mail.ru

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 October 2019; accepted 11 October 2019; online 22 October 2019)

The molecular salt, C23H26N2O2+·Cl, was obtained from 1-isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline, which was synthesized by cyclo­condensation of α-benzoyl­amino-γ-methyl-N-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]valeramide in the presence of phosphoryl chloride. The tetra­hydro­pyridine ring adopts a twist–boat conformation. In the crystal structure, centrosymmetric dimers are formed by N—H⋯Cl and C—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The relevance of a wide range of potent biological activities of natural and synthetic iso­quinoline alkaloids is inter­esting for the synthesis of new iso­quinoline compounds. In nature, there are compounds that contain condensed imidazole and iso­quinoline rings, for example, cribrostatin 6.

Cyclization of α-benzoyl­amino-γ-methyl-N-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]valeramide with phosphoryl chloride based on the Bischler–Napieralski reaction results in a heterocyclic compound containing condensed imidazole and iso­quinoline rings (Seganish et al., 2012[Seganish, W. M., Bercovici, A., Ho, G. D., Loozen, H. J. J., Timmers, C. M. & Tulshian, D. (2012). Tetrahedron Lett. 53, 903-905.]; Iaroshenko et al., 2015[Iaroshenko, V. O., Gevorgyan, A., Mkrtchyan, S., Arakelyan, K., Grigoryan, T., Yedoyan, J., Villinger, A. & Langer, P. (2015). J. Org. Chem. 80, 2103-2119.]; Allin et al., 2005[Allin, S. M., Bowman, W. R., Elsegood, M. R. J., McKee, V., Karim, R. & Rahman, Sh. S. (2005). Tetrahedron, 61, 2689-2696.]). In the reaction, phosphoryl chloride is used as a reagent and solvent (Fig. 1[link]).

[Figure 1]
Figure 1
Reaction scheme for the preparation of the title compound.

However, from the obtained 1-isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline we could not get suitable single crystals for X-ray diffraction analysis. Good crystals of the title compound were obtained by slow evaporation of a solution of 1-isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline treated with hydro­chloric acid.

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The di­hydro­pyridine ring occurs in a twist-boat conformation. The C6, C6A, C10A and C10B atoms of the di­hydro­pyridine ring are almost coplanar (r.m.s. deviation = 0.095 Å). The C5 and N4 atoms deviate from this plane by 0.806 (5) and 0.413 (5) Å, respectively. The imidazole (C1/N2/C3/N4/C10B) and benzene (C17–C22) rings are essentially planar, the dihedral angle between the planes being 41.4 (1)°. In the crystal, N2—H1⋯Cl1 and C20—H20A⋯Cl1 hydrogen bonds are observed, resulting in the formation of a centrosymmetric dimer consisting of two anions and two cations (Fig. 3[link] and Table 1[link]). These dimers are linked by C5—H5B⋯Cl1 hydrogen bonds into a chain directed along [011].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl1 0.98 (3) 2.04 (3) 3.019 (2) 179
C20—H20A⋯Cl1i 0.93 2.89 3.650 (3) 140
C5—H5B⋯Cl1ii 0.97 2.83 3.707 (3) 152
Symmetry codes: (i) -x+1, -y+3, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The N—H⋯Cl hydrogen bond is shown as a dashed line.
[Figure 3]
Figure 3
Formation of a centrosymmetric dimer in the crystal structure of the title compound. N—H⋯Cl hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

To a round-bottomed flask with 0.5 g (1.25 mmol) of α-benzoyl­amino-γ-methyl-N-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]val­eramide was added dropwise 0.7 ml (7.64 mmol) of POCl3. The reaction mixture was heated for 4 h in a boiling water bath. The course of the reaction was monitored using thin-layer chromatography (TLC). After heating, the reaction tube was filled with crushed ice, the pH of the solution was adjusted to 9 with 25% ammonium hydroxide solution. The solution was extracted with chloro­form (30 ml) and the organic layer was washed with water and distilled. When acetone was added to the residue, a precipitate was formed. The precipitate was filtered off and dried and giving 0.33 g (yield 74%) of product; RF = 0.61 (1:4 CH3OH–CHCl3 v/v); m.p. 433–436 K.

0.2 g of 1-isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline was dissolved in 25 ml of methanol and transferred to an acidic medium with 30% HCl (pH = 3). The methanol was distilled and a precipitate was obtained when acetone was added. The precipitate was filtered off, washed with acetone and dried in the open air. 0.18 g of 1-isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline hydro­chloride was obtained (yield 82%); RF = 0.32 (1:4 CH3OH–CHCl3 v/v); m.p. 475–477 K.

1-Isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline hydro­chloride was dissolved in a 4:1 (v/v) acetone–methanol solvent mixture and allowed to evaporation at room temperature. Colourless crystals suitable for X-ray diffraction analysis were obtained.

1H NMR [400 MHz, CD3OD, δ (p.p.m.), J (Hz)]: 7.69 (2H, dt, J = 1.9; 6.0, H18 and H22); 7.62 (2H, dd, J = 1.7; 6.6, H19 and H21); 7.60 (1H, dt, J = 1.4; 6.0, H20), 7.18 (1H, s, H7); 6.97 (1H, s, H10); 4.26 (2H, t, J = 6.4, CH2-5); 3.85 (3H, s, CH3-12); 3.83 (3H, s, CH3-11), 3.01 (2H, t, J = 6.4, CH2-6); 2.86 (2H, t, J = 7.3, CH2-13); 2.09 (1H, q, J = 6.8, H14); 1.02 (6H, d, J = 6.6, CH3-15,16).

13C NMR [100 MHz, CD3OD, δ (p.p.m.)]: 23.02 (C15, C16); 29.62 (C14); 30.61 (C6); 36.02 (C13); 44.52 (C5); 57.05 (C11); 57.27 (C12); 109.98 (C10); 113.96 (C7); 119.63 (C10A); 125.95 (C6A; C1), 128.73 (C18, C22); 131.06 (C19, C21); 131.42 (C20); 133.72 (C10B, C17); 144.77 (C3); 150.99 (C9); 152.16 (C8).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H27N2O2+·Cl
Mr 398.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 291
a, b, c (Å) 13.595 (3), 14.337 (3), 10.958 (2)
β (°) 92.23 (3)
V3) 2134.1 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.74
Crystal size (mm) 0.60 × 0.53 × 0.48
 
Data collection
Diffractometer Rigaku Xcalibur Ruby
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.371, 0.434
No. of measured, independent and observed [I > 2σ(I)] reflections 9283, 4347, 2990
Rint 0.036
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.01
No. of reflections 4347
No. of parameters 261
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku OD, Yarnton, England.]), SHELXS7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

1-Isobutyl-8,9-dimethoxy-3-phenyl-5,6-dihydroimidazo[5,1-a]isoquinolin-2-ium chloride top
Crystal data top
C23H27N2O2+·ClF(000) = 848
Mr = 398.92Dx = 1.242 Mg m3
Monoclinic, P21/cMelting point: 475(2) K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 13.595 (3) ÅCell parameters from 2082 reflections
b = 14.337 (3) Åθ = 4.5–75.8°
c = 10.958 (2) ŵ = 1.74 mm1
β = 92.23 (3)°T = 291 K
V = 2134.1 (7) Å3Prizmatic, colorless
Z = 40.60 × 0.53 × 0.48 mm
Data collection top
Rigaku Xcalibur Ruby
diffractometer
4347 independent reflections
Radiation source: fine-focus sealed tube2990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.2576 pixels mm-1θmax = 76.0°, θmin = 4.5°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1816
Tmin = 0.371, Tmax = 0.434l = 913
9283 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.2438P]
where P = (Fo2 + 2Fc2)/3
4347 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding motion approximation, with Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The H atom of N2 was located in a difference Fourier synthesis and refined with a N2—H1 distance = 0.79 (3) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85755 (14)0.77486 (11)0.41517 (17)0.0640 (5)
O20.89458 (14)0.91068 (12)0.56498 (16)0.0623 (5)
N20.66229 (14)1.27667 (13)0.26859 (17)0.0478 (4)
N40.63568 (14)1.13705 (12)0.20336 (17)0.0452 (4)
C10.72530 (17)1.21988 (15)0.3370 (2)0.0457 (5)
C30.60827 (16)1.22675 (15)0.1889 (2)0.0459 (5)
C50.5983 (2)1.05567 (16)0.1344 (2)0.0569 (6)
H5A0.57421.07480.05370.068*
H5B0.54431.02730.17630.068*
C60.6813 (2)0.98620 (19)0.1235 (3)0.0692 (8)
H6A0.65500.92830.09010.083*
H6B0.72831.01030.06700.083*
C6A0.7336 (2)0.96661 (16)0.2439 (2)0.0545 (6)
C70.7699 (2)0.87809 (16)0.2724 (2)0.0589 (6)
H7A0.75870.82980.21690.071*
C80.82169 (18)0.85996 (15)0.3799 (2)0.0503 (5)
C90.83978 (17)0.93362 (15)0.4627 (2)0.0474 (5)
C100.80171 (17)1.02087 (15)0.4369 (2)0.0467 (5)
H10A0.81151.06880.49320.056*
C10A0.74883 (17)1.03854 (14)0.3279 (2)0.0451 (5)
C10B0.70861 (17)1.13078 (15)0.29649 (19)0.0443 (5)
C110.8322 (2)0.69713 (18)0.3379 (3)0.0744 (8)
H11A0.85950.64110.37320.112*
H11B0.85840.70670.25880.112*
H11C0.76190.69150.33010.112*
C120.9174 (2)0.98354 (18)0.6494 (2)0.0648 (7)
H12A0.96220.96070.71230.097*
H12B0.85801.00470.68530.097*
H12C0.94721.03440.60760.097*
C130.79478 (19)1.26228 (17)0.4306 (2)0.0551 (6)
H13A0.82761.21260.47640.066*
H13B0.75711.29830.48740.066*
C140.8726 (2)1.32535 (19)0.3772 (3)0.0671 (7)
H14A0.83841.37310.32770.080*
C150.9379 (3)1.2716 (3)0.2951 (4)0.1234 (15)
H15A0.89841.24250.23130.185*
H15B0.97281.22460.34170.185*
H15C0.98411.31330.25980.185*
C160.9321 (3)1.3745 (3)0.4774 (4)0.1160 (15)
H16A0.97961.41470.44180.174*
H16B0.96541.32910.52840.174*
H16C0.88891.41100.52570.174*
C170.53556 (17)1.26476 (16)0.1005 (2)0.0479 (5)
C180.44587 (19)1.22054 (18)0.0757 (2)0.0583 (6)
H18A0.43111.16520.11530.070*
C190.3789 (2)1.2590 (2)0.0080 (3)0.0668 (7)
H19A0.31851.22990.02320.080*
C200.4007 (2)1.34047 (19)0.0695 (2)0.0653 (7)
H20A0.35611.36510.12730.078*
C210.4889 (2)1.38447 (18)0.0442 (2)0.0648 (7)
H21A0.50351.43950.08470.078*
C220.5564 (2)1.34783 (17)0.0408 (2)0.0558 (6)
H22A0.61551.37860.05800.067*
Cl10.65752 (5)1.48541 (4)0.30437 (6)0.0602 (2)
H10.661 (2)1.345 (2)0.280 (3)0.076 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0725 (11)0.0376 (8)0.0803 (12)0.0105 (8)0.0194 (9)0.0055 (8)
O20.0825 (12)0.0436 (9)0.0588 (10)0.0087 (8)0.0214 (9)0.0025 (8)
N20.0565 (11)0.0344 (9)0.0520 (11)0.0013 (8)0.0040 (9)0.0001 (8)
N40.0521 (10)0.0357 (9)0.0472 (10)0.0002 (8)0.0038 (8)0.0003 (8)
C10.0519 (12)0.0374 (11)0.0475 (12)0.0005 (9)0.0018 (10)0.0013 (9)
C30.0508 (12)0.0376 (11)0.0492 (12)0.0021 (9)0.0012 (10)0.0027 (9)
C50.0723 (16)0.0405 (12)0.0565 (14)0.0001 (11)0.0169 (12)0.0052 (11)
C60.095 (2)0.0496 (14)0.0608 (16)0.0164 (14)0.0204 (15)0.0142 (12)
C6A0.0677 (15)0.0418 (12)0.0532 (14)0.0064 (11)0.0093 (12)0.0053 (10)
C70.0737 (16)0.0394 (12)0.0624 (15)0.0062 (11)0.0145 (13)0.0113 (11)
C80.0542 (13)0.0351 (11)0.0612 (14)0.0045 (9)0.0050 (11)0.0011 (10)
C90.0511 (12)0.0400 (11)0.0508 (12)0.0007 (10)0.0030 (10)0.0025 (10)
C100.0537 (12)0.0376 (11)0.0484 (12)0.0001 (9)0.0040 (10)0.0032 (10)
C10A0.0509 (12)0.0360 (11)0.0481 (12)0.0006 (9)0.0017 (10)0.0006 (9)
C10B0.0509 (12)0.0389 (11)0.0428 (11)0.0002 (9)0.0018 (10)0.0008 (9)
C110.0809 (19)0.0387 (13)0.102 (2)0.0087 (13)0.0182 (17)0.0127 (14)
C120.0815 (18)0.0543 (14)0.0567 (15)0.0021 (13)0.0198 (13)0.0041 (12)
C130.0684 (15)0.0421 (12)0.0540 (13)0.0063 (11)0.0065 (11)0.0041 (11)
C140.0576 (15)0.0552 (15)0.087 (2)0.0029 (12)0.0157 (14)0.0146 (14)
C150.092 (3)0.142 (4)0.139 (4)0.012 (3)0.043 (3)0.017 (3)
C160.093 (3)0.093 (3)0.159 (4)0.036 (2)0.035 (3)0.009 (3)
C170.0572 (13)0.0414 (12)0.0449 (12)0.0057 (10)0.0011 (10)0.0003 (9)
C180.0631 (15)0.0484 (13)0.0627 (15)0.0028 (11)0.0067 (12)0.0042 (11)
C190.0687 (16)0.0615 (16)0.0689 (17)0.0069 (13)0.0158 (13)0.0083 (14)
C200.0848 (19)0.0565 (15)0.0534 (15)0.0194 (14)0.0134 (14)0.0014 (12)
C210.097 (2)0.0451 (13)0.0514 (14)0.0094 (14)0.0001 (14)0.0068 (11)
C220.0710 (15)0.0434 (12)0.0531 (14)0.0017 (11)0.0012 (12)0.0017 (11)
Cl10.0777 (4)0.0391 (3)0.0627 (4)0.0086 (3)0.0097 (3)0.0026 (3)
Geometric parameters (Å, º) top
O1—C81.364 (3)C11—H11B0.9600
O1—C111.433 (3)C11—H11C0.9600
O2—C91.362 (3)C12—H12A0.9600
O2—C121.421 (3)C12—H12B0.9600
N2—C31.328 (3)C12—H12C0.9600
N2—C11.381 (3)C13—C141.526 (4)
N2—H10.98 (3)C13—H13A0.9700
N4—C31.346 (3)C13—H13B0.9700
N4—C10B1.398 (3)C14—C151.501 (5)
N4—C51.470 (3)C14—C161.512 (4)
C1—C10B1.368 (3)C14—H14A0.9800
C1—C131.497 (3)C15—H15A0.9600
C3—C171.462 (3)C15—H15B0.9600
C5—C61.513 (4)C15—H15C0.9600
C5—H5A0.9700C16—H16A0.9600
C5—H5B0.9700C16—H16B0.9600
C6—C6A1.500 (3)C16—H16C0.9600
C6—H6A0.9700C17—C181.392 (3)
C6—H6B0.9700C17—C221.393 (3)
C6A—C10A1.393 (3)C18—C191.381 (3)
C6A—C71.393 (3)C18—H18A0.9300
C7—C81.374 (3)C19—C201.387 (4)
C7—H7A0.9300C19—H19A0.9300
C8—C91.408 (3)C20—C211.373 (4)
C9—C101.379 (3)C20—H20A0.9300
C10—C10A1.393 (3)C21—C221.385 (4)
C10—H10A0.9300C21—H21A0.9300
C10A—C10B1.467 (3)C22—H22A0.9300
C11—H11A0.9600Cl1—Cl10.0000 (19)
C8—O1—C11116.95 (19)H11A—C11—H11C109.5
C9—O2—C12117.16 (18)H11B—C11—H11C109.5
C3—N2—C1110.75 (18)O2—C12—H12A109.5
C3—N2—H1127.1 (16)O2—C12—H12B109.5
C1—N2—H1122.1 (16)H12A—C12—H12B109.5
C3—N4—C10B109.42 (18)O2—C12—H12C109.5
C3—N4—C5127.51 (19)H12A—C12—H12C109.5
C10B—N4—C5123.07 (18)H12B—C12—H12C109.5
C10B—C1—N2106.43 (19)C1—C13—C14114.0 (2)
C10B—C1—C13133.9 (2)C1—C13—H13A108.8
N2—C1—C13119.61 (19)C14—C13—H13A108.8
N2—C3—N4107.08 (19)C1—C13—H13B108.8
N2—C3—C17125.23 (19)C14—C13—H13B108.8
N4—C3—C17127.7 (2)H13A—C13—H13B107.7
N4—C5—C6108.6 (2)C15—C14—C16111.3 (3)
N4—C5—H5A110.0C15—C14—C13111.1 (3)
C6—C5—H5A110.0C16—C14—C13110.9 (3)
N4—C5—H5B110.0C15—C14—H14A107.8
C6—C5—H5B110.0C16—C14—H14A107.8
H5A—C5—H5B108.4C13—C14—H14A107.8
C6A—C6—C5112.5 (2)C14—C15—H15A109.5
C6A—C6—H6A109.1C14—C15—H15B109.5
C5—C6—H6A109.1H15A—C15—H15B109.5
C6A—C6—H6B109.1C14—C15—H15C109.5
C5—C6—H6B109.1H15A—C15—H15C109.5
H6A—C6—H6B107.8H15B—C15—H15C109.5
C10A—C6A—C7118.9 (2)C14—C16—H16A109.5
C10A—C6A—C6119.7 (2)C14—C16—H16B109.5
C7—C6A—C6121.3 (2)H16A—C16—H16B109.5
C8—C7—C6A122.0 (2)C14—C16—H16C109.5
C8—C7—H7A119.0H16A—C16—H16C109.5
C6A—C7—H7A119.0H16B—C16—H16C109.5
O1—C8—C7125.3 (2)C18—C17—C22119.3 (2)
O1—C8—C9115.9 (2)C18—C17—C3121.6 (2)
C7—C8—C9118.8 (2)C22—C17—C3119.0 (2)
O2—C9—C10125.2 (2)C19—C18—C17119.9 (2)
O2—C9—C8115.19 (19)C19—C18—H18A120.1
C10—C9—C8119.6 (2)C17—C18—H18A120.1
C9—C10—C10A121.2 (2)C18—C19—C20120.7 (3)
C9—C10—H10A119.4C18—C19—H19A119.7
C10A—C10—H10A119.4C20—C19—H19A119.7
C10—C10A—C6A119.4 (2)C21—C20—C19119.4 (2)
C10—C10A—C10B122.7 (2)C21—C20—H20A120.3
C6A—C10A—C10B117.9 (2)C19—C20—H20A120.3
C1—C10B—N4106.30 (18)C20—C21—C22120.7 (3)
C1—C10B—C10A135.2 (2)C20—C21—H21A119.6
N4—C10B—C10A118.47 (19)C22—C21—H21A119.6
O1—C11—H11A109.5C21—C22—C17119.9 (3)
O1—C11—H11B109.5C21—C22—H22A120.0
H11A—C11—H11B109.5C17—C22—H22A120.0
O1—C11—H11C109.5
C3—N2—C1—C10B0.0 (3)C7—C6A—C10A—C10B179.1 (2)
C3—N2—C1—C13178.6 (2)C6—C6A—C10A—C10B2.7 (4)
C1—N2—C3—N40.5 (3)N2—C1—C10B—N40.4 (3)
C1—N2—C3—C17178.7 (2)C13—C1—C10B—N4177.8 (3)
C10B—N4—C3—N20.7 (3)N2—C1—C10B—C10A179.9 (3)
C5—N4—C3—N2178.7 (2)C13—C1—C10B—C10A1.7 (5)
C10B—N4—C3—C17178.9 (2)C3—N4—C10B—C10.7 (3)
C5—N4—C3—C170.6 (4)C5—N4—C10B—C1178.8 (2)
C3—N4—C5—C6146.8 (2)C3—N4—C10B—C10A179.7 (2)
C10B—N4—C5—C632.6 (3)C5—N4—C10B—C10A0.8 (3)
N4—C5—C6—C6A49.5 (3)C10—C10A—C10B—C117.4 (4)
C5—C6—C6A—C10A37.4 (4)C6A—C10A—C10B—C1162.0 (3)
C5—C6—C6A—C7144.4 (3)C10—C10A—C10B—N4163.1 (2)
C10A—C6A—C7—C81.1 (4)C6A—C10A—C10B—N417.4 (3)
C6—C6A—C7—C8177.1 (3)C10B—C1—C13—C14112.9 (3)
C11—O1—C8—C75.2 (4)N2—C1—C13—C1465.2 (3)
C11—O1—C8—C9174.3 (2)C1—C13—C14—C1562.4 (3)
C6A—C7—C8—O1178.5 (3)C1—C13—C14—C16173.2 (3)
C6A—C7—C8—C91.0 (4)N2—C3—C17—C18139.6 (3)
C12—O2—C9—C102.6 (4)N4—C3—C17—C1842.6 (4)
C12—O2—C9—C8178.1 (2)N2—C3—C17—C2239.8 (3)
O1—C8—C9—O22.7 (3)N4—C3—C17—C22138.0 (3)
C7—C8—C9—O2177.7 (2)C22—C17—C18—C190.3 (4)
O1—C8—C9—C10176.7 (2)C3—C17—C18—C19179.7 (2)
C7—C8—C9—C102.8 (4)C17—C18—C19—C201.2 (4)
O2—C9—C10—C10A178.1 (2)C18—C19—C20—C211.7 (4)
C8—C9—C10—C10A2.6 (4)C19—C20—C21—C220.7 (4)
C9—C10—C10A—C6A0.4 (4)C20—C21—C22—C170.9 (4)
C9—C10—C10A—C10B179.0 (2)C18—C17—C22—C211.4 (4)
C7—C6A—C10A—C101.4 (4)C3—C17—C22—C21179.3 (2)
C6—C6A—C10A—C10176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl10.98 (3)2.04 (3)3.019 (2)179
C20—H20A···Cl1i0.932.893.650 (3)140
C5—H5B···Cl1ii0.972.833.707 (3)152
Symmetry codes: (i) x+1, y+3, z; (ii) x+1, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by the Academy of Sciences of the Republic of Uzbekistan (grant No. VA-FA-F-6–010).

References

First citationAllin, S. M., Bowman, W. R., Elsegood, M. R. J., McKee, V., Karim, R. & Rahman, Sh. S. (2005). Tetrahedron, 61, 2689–2696.  CSD CrossRef CAS Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIaroshenko, V. O., Gevorgyan, A., Mkrtchyan, S., Arakelyan, K., Grigoryan, T., Yedoyan, J., Villinger, A. & Langer, P. (2015). J. Org. Chem. 80, 2103–2119.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku OD, Yarnton, England.  Google Scholar
First citationSeganish, W. M., Bercovici, A., Ho, G. D., Loozen, H. J. J., Timmers, C. M. & Tulshian, D. (2012). Tetrahedron Lett. 53, 903–905.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds