organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,3′-[(1E,1′E)-Hydrazine-1,2-diylidenebis(ethan-1-yl-1-yl­­idene)]bis­­(4-hy­dr­oxy-6-methyl-2H-pyran-2-one)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Bioorganique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abouelhaoul12@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 24 September 2019; accepted 1 October 2019; online 3 October 2019)

The title compound, C16H16N2O6, lies about an inversion centre at the mid-point of the N—N bond. The mol­ecule features two intra­molecular O—H⋯N and two C—H⋯O hydrogen bonds, each of which forms an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into infinite zigzag chains propagating along the c-axis direction. ππ stacking inter­actions between the pyrone rings [centroid–centroid distances = 3.975 (2) Å] stack the mol­ecules along b.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The condensation of primary amine with several lactones has been reported. Ammonia and primary amines react with 2-pyrones to afford the corresponding 2-pyridones (Castillo et al., 1982[Castillo, S., Ouaddahi, H. & Hérault, V. (1982). Bull. Soc. Chim. Fr. 11, 257-261.]; Wang et al., 1971[Wang, C. S., Easterly, J. P. & Skelly, N. E. (1971). Tetrahedron, 27, 2581-2589.]; Djerrari et al., 1993[Djerrari, B., Essassi, E. M. & Fifani, J. (1993). Bull. Soc. Chim. Belg. 102, 565-573.]; El Kihel et al., 1999[El Kihel, A., Benchidmi, M., Essassi, E. M., Bauchat, P. & Danion-Bougot, R. (1999). Synth. Commun. 29, 2435-2445.]; Djerrari et al., 2002[Djerrari, B., Essassi, E. M., Fifani, J. & Garrigues, B. (2002). C. R. Chim. 5, 177-183.]). Other authors have investigated the condensation of bis-nucleophiles with 4-hy­droxy-6-methyl-2-pyrone and de­hydro­acetic acid (3-acetyl-4-hy­droxy-6-methyl-2-pyrone) and had to postulate a ring opening of these pyrones to account for the experimental results (El Abbassi et al., 1997[El Abbassi, M., Essassi, E. M. & Fifani, J. (1997). Bull. Soc. Chim. Belg. 106, 205-210.]; Fettouhi et al., 1996[Fettouhi, M., Boukhari, A., El Otmani, B. & Essassi, E. M. (1996). Acta Cryst. C52, 1031-1032.]; El Abbassi et al., 1989[El Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069-7070.]). Some bis-pyrone derivatives have been reported to be excellent ligands for complexation with ruthenium metal (Venkatachalam et al., 2005[Venkatachalam, G. & Ramesh, R. (2005). Inorg. Chem. Commun. 8, 1009-1013.]). The present work reports the synthesis of a bis-pyrone derivative from the condensation of hydrated hydrazine with de­hydro­acetic acid. The NMR and mass spectra cannot confirm the structure of the product (either a bis-pyrone or a bis-pyridone). In order to establish the structure of this product, single crystals were prepared for X-ray analysis.

The asymmetric unit of the title compound contains half of the mol­ecule with the other half generated by inversion symmetry. Two strong intra­molecular hydrogen bonds complete the S(6) ring motifs as shown in Fig. 1[link]. All non-hydrogen atoms of the mol­ecule are almost coplanar, the maximum deviation from the mean plane through all of the non hydrogen atoms being 0.082 (2) Å for atom C1.

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme. The intra­molecular hydrogen bonds are represented by dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the mol­ecules are linked by C3—H3⋯O3 and C8—H8A⋯O2 hydrogen bonds (Table 1[link]), forming zigzag chains running along the c-axis direction as shown in Fig. 2[link]. In addition, mol­ecules are stacked along b by ππ inter­actions between the pyridone rings with a centroid–centroid distance of 3.975 (2) Å, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.73 2.4659 (18) 148
C3—H3⋯O3i 0.93 2.57 3.420 (2) 152
C8—H8A⋯O2ii 0.96 2.55 3.278 (2) 133
C8—H8B⋯O3 0.96 2.05 2.821 (3) 136
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Projection of the title structure along (010), showing mol­ecules connected by hydrogen bonds (dashed cyan lines). For clarity, only H atoms involved in these inter­actions have been included.
[Figure 3]
Figure 3
Crystal packing of the title compound showing mol­ecules linked by hydrogen bonds (dashed cyan lines) and ππ inter­action (green lines). For clarity, only H atoms involved in these inter­actions have been included.

Synthesis and crystallization

A mixture of de­hydro­acetic acid (20 mmol) and hydrazine monohydrate (10 mmol) was heated under reflux in n-butanol (30 ml) for 24 h. The solid was separated by filtration and recrystallized several times from CHCl3 to give crystals, yield (52.1%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H16N2O6
Mr 332.31
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 27.797 (3), 3.9750 (4), 14.4569 (15)
β (°) 110.642 (4)
V3) 1494.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.32 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.678, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15395, 1627, 1221
Rint 0.043
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.03
No. of reflections 1627
No. of parameters 112
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: WinGX and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

3,3'-[(1E,1'E)-Hydrazine-1,2-diylidenebis(ethan-1-yl-1-ylidene)]bis(4-hydroxy-6-methyl-2H-pyran-2-one) top
Crystal data top
C16H16N2O6F(000) = 696
Mr = 332.31Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.797 (3) ÅCell parameters from 1626 reflections
b = 3.9750 (4) Åθ = 3.0–27.1°
c = 14.4569 (15) ŵ = 0.12 mm1
β = 110.642 (4)°T = 296 K
V = 1494.8 (3) Å3Block, colourless
Z = 40.32 × 0.25 × 0.19 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
1627 independent reflections
Radiation source: INCOATEC IµS micro-focus source1221 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.043
Detector resolution: 10.4167 pixels mm-1θmax = 27.1°, θmin = 3.0°
φ and ω scansh = 3434
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.678, Tmax = 0.746l = 1818
15395 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0725P)2 + 1.6983P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max = 0.003
S = 1.03Δρmax = 0.33 e Å3
1627 reflectionsΔρmin = 0.23 e Å3
112 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.009 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31666 (5)0.5614 (4)0.29992 (10)0.0404 (4)
O20.44045 (5)0.0821 (4)0.27764 (9)0.0486 (5)
H20.4622320.0406000.3317990.073*
O30.34743 (6)0.5875 (5)0.46061 (11)0.0582 (5)
N10.47971 (5)0.0522 (4)0.45929 (10)0.0318 (4)
C10.27228 (8)0.5809 (6)0.12749 (15)0.0467 (6)
H1A0.2774780.5470700.0659320.070*
H1C0.2653600.8142720.1344360.070*
H1B0.2436530.4477450.1284950.070*
C20.31917 (7)0.4781 (5)0.21031 (13)0.0340 (5)
C30.35979 (7)0.3216 (5)0.20315 (13)0.0365 (5)
H30.3607570.2686890.1411670.044*
C40.40194 (7)0.2338 (5)0.28963 (13)0.0331 (5)
C50.40009 (6)0.3095 (5)0.38391 (12)0.0289 (4)
C60.44140 (7)0.2111 (5)0.47291 (12)0.0286 (4)
C70.35581 (7)0.4878 (5)0.38895 (13)0.0350 (5)
C80.44100 (8)0.2785 (6)0.57414 (14)0.0462 (6)
H8A0.4458780.0712990.6104160.069*
H8B0.4086120.3758860.5693850.069*
H8C0.4682600.4316950.6077680.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0338 (7)0.0534 (9)0.0312 (7)0.0104 (6)0.0080 (6)0.0023 (6)
O20.0377 (8)0.0835 (12)0.0236 (6)0.0184 (8)0.0095 (6)0.0017 (7)
O30.0504 (9)0.0911 (13)0.0341 (8)0.0279 (9)0.0161 (7)0.0045 (8)
N10.0281 (8)0.0433 (10)0.0218 (7)0.0037 (6)0.0061 (6)0.0014 (6)
C10.0391 (11)0.0533 (14)0.0381 (11)0.0050 (10)0.0015 (9)0.0075 (10)
C20.0328 (10)0.0379 (11)0.0279 (9)0.0028 (8)0.0063 (7)0.0045 (8)
C30.0352 (10)0.0510 (13)0.0216 (8)0.0004 (9)0.0078 (7)0.0028 (8)
C40.0299 (9)0.0440 (11)0.0253 (9)0.0002 (8)0.0096 (7)0.0012 (8)
C50.0289 (9)0.0348 (10)0.0231 (8)0.0006 (7)0.0092 (7)0.0008 (7)
C60.0307 (9)0.0319 (10)0.0239 (8)0.0024 (7)0.0105 (7)0.0006 (7)
C70.0314 (9)0.0432 (11)0.0294 (9)0.0046 (8)0.0095 (7)0.0027 (8)
C80.0489 (12)0.0662 (15)0.0236 (9)0.0188 (11)0.0130 (8)0.0027 (9)
Geometric parameters (Å, º) top
O1—C21.363 (2)C2—C31.325 (3)
O1—C71.392 (2)C3—C41.423 (2)
O2—C41.293 (2)C3—H30.9300
O2—H20.8200C4—C51.414 (2)
O3—C71.206 (2)C5—C61.444 (2)
N1—C61.311 (2)C5—C71.444 (3)
N1—N1i1.376 (3)C6—C81.492 (2)
C1—C21.483 (3)C8—H8A0.9600
C1—H1A0.9600C8—H8B0.9600
C1—H1C0.9600C8—H8C0.9600
C1—H1B0.9600
C2—O1—C7122.85 (15)C5—C4—C3119.73 (17)
C4—O2—H2109.5C4—C5—C6120.89 (16)
C6—N1—N1i118.75 (18)C4—C5—C7118.31 (16)
C2—C1—H1A109.5C6—C5—C7120.80 (15)
C2—C1—H1C109.5N1—C6—C5115.43 (15)
H1A—C1—H1C109.5N1—C6—C8121.41 (16)
C2—C1—H1B109.5C5—C6—C8123.15 (16)
H1A—C1—H1B109.5O3—C7—O1113.60 (16)
H1C—C1—H1B109.5O3—C7—C5129.10 (17)
C3—C2—O1121.28 (16)O1—C7—C5117.30 (15)
C3—C2—C1126.66 (18)C6—C8—H8A109.5
O1—C2—C1112.07 (17)C6—C8—H8B109.5
C2—C3—C4120.47 (17)H8A—C8—H8B109.5
C2—C3—H3119.8C6—C8—H8C109.5
C4—C3—H3119.8H8A—C8—H8C109.5
O2—C4—C5122.80 (16)H8B—C8—H8C109.5
O2—C4—C3117.46 (16)
C7—O1—C2—C30.3 (3)N1i—N1—C6—C80.2 (3)
C7—O1—C2—C1179.27 (17)C4—C5—C6—N10.4 (3)
O1—C2—C3—C40.5 (3)C7—C5—C6—N1179.64 (17)
C1—C2—C3—C4179.1 (2)C4—C5—C6—C8178.80 (18)
C2—C3—C4—O2179.86 (19)C7—C5—C6—C81.2 (3)
C2—C3—C4—C51.0 (3)C2—O1—C7—O3178.35 (18)
O2—C4—C5—C61.6 (3)C2—O1—C7—C51.2 (3)
C3—C4—C5—C6177.46 (17)C4—C5—C7—O3176.9 (2)
O2—C4—C5—C7178.38 (19)C6—C5—C7—O33.1 (3)
C3—C4—C5—C72.5 (3)C4—C5—C7—O12.6 (3)
N1i—N1—C6—C5179.43 (19)C6—C5—C7—O1177.38 (16)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.732.4659 (18)148
C3—H3···O3ii0.932.573.420 (2)152
C8—H8A···O2iii0.962.553.278 (2)133
C8—H8B···O30.962.052.821 (3)136
Symmetry codes: (ii) x, y+1, z1/2; (iii) x, y, z+1/2.
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray measurements and Chouaib Doukkali University (El Jadida Morocco) for support.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastillo, S., Ouaddahi, H. & Hérault, V. (1982). Bull. Soc. Chim. Fr. 11, 257–261.  Google Scholar
First citationDjerrari, B., Essassi, E. M. & Fifani, J. (1993). Bull. Soc. Chim. Belg. 102, 565–573.  CrossRef CAS Google Scholar
First citationDjerrari, B., Essassi, E. M., Fifani, J. & Garrigues, B. (2002). C. R. Chim. 5, 177–183.  Web of Science CrossRef CAS Google Scholar
First citationEl Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069–7070.  CrossRef CAS Web of Science Google Scholar
First citationEl Abbassi, M., Essassi, E. M. & Fifani, J. (1997). Bull. Soc. Chim. Belg. 106, 205–210.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFettouhi, M., Boukhari, A., El Otmani, B. & Essassi, E. M. (1996). Acta Cryst. C52, 1031–1032.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl Kihel, A., Benchidmi, M., Essassi, E. M., Bauchat, P. & Danion-Bougot, R. (1999). Synth. Commun. 29, 2435–2445.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVenkatachalam, G. & Ramesh, R. (2005). Inorg. Chem. Commun. 8, 1009–1013.  Web of Science CrossRef CAS Google Scholar
First citationWang, C. S., Easterly, J. P. & Skelly, N. E. (1971). Tetrahedron, 27, 2581–2589.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds