organic compounds
3,3′-[(1E,1′E)-Hydrazine-1,2-diylidenebis(ethan-1-yl-1-ylidene)]bis(4-hydroxy-6-methyl-2H-pyran-2-one)
aLaboratoire de Chimie Bioorganique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abouelhaoul12@yahoo.com
The title compound, C16H16N2O6, lies about an inversion centre at the mid-point of the N—N bond. The molecule features two intramolecular O—H⋯N and two C—H⋯O hydrogen bonds, each of which forms an S(6) ring motif. In the crystal, molecules are linked by C—H⋯O hydrogen bonds into infinite zigzag chains propagating along the c-axis direction. π–π stacking interactions between the pyrone rings [centroid–centroid distances = 3.975 (2) Å] stack the molecules along b.
Keywords: bispyrone derivative; heterocyclic compounds; crystal structure.
Structure description
The condensation of primary amine with several et al., 1982; Wang et al., 1971; Djerrari et al., 1993; El Kihel et al., 1999; Djerrari et al., 2002). Other authors have investigated the condensation of bis-nucleophiles with 4-hydroxy-6-methyl-2-pyrone and dehydroacetic acid (3-acetyl-4-hydroxy-6-methyl-2-pyrone) and had to postulate a ring opening of these pyrones to account for the experimental results (El Abbassi et al., 1997; Fettouhi et al., 1996; El Abbassi et al., 1989). Some bis-pyrone derivatives have been reported to be excellent ligands for complexation with ruthenium metal (Venkatachalam et al., 2005). The present work reports the synthesis of a bis-pyrone derivative from the condensation of hydrated hydrazine with dehydroacetic acid. The NMR and mass spectra cannot confirm the structure of the product (either a bis-pyrone or a bis-pyridone). In order to establish the structure of this product, single crystals were prepared for X-ray analysis.
has been reported. Ammonia and primary react with 2-pyrones to afford the corresponding 2-pyridones (CastilloThe S(6) ring motifs as shown in Fig. 1. All non-hydrogen atoms of the molecule are almost coplanar, the maximum deviation from the mean plane through all of the non hydrogen atoms being 0.082 (2) Å for atom C1.
of the title compound contains half of the molecule with the other half generated by inversion symmetry. Two strong intramolecular hydrogen bonds complete theIn the crystal, the molecules are linked by C3—H3⋯O3 and C8—H8A⋯O2 hydrogen bonds (Table 1), forming zigzag chains running along the c-axis direction as shown in Fig. 2. In addition, molecules are stacked along b by π–π interactions between the pyridone rings with a centroid–centroid distance of 3.975 (2) Å, Fig. 3.
Synthesis and crystallization
A mixture of dehydroacetic acid (20 mmol) and hydrazine monohydrate (10 mmol) was heated under reflux in n-butanol (30 ml) for 24 h. The solid was separated by filtration and recrystallized several times from CHCl3 to give crystals, yield (52.1%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
https://doi.org/10.1107/S2414314619013488/sj4210sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619013488/sj4210Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: WinGX and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).C16H16N2O6 | F(000) = 696 |
Mr = 332.31 | Dx = 1.477 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.797 (3) Å | Cell parameters from 1626 reflections |
b = 3.9750 (4) Å | θ = 3.0–27.1° |
c = 14.4569 (15) Å | µ = 0.12 mm−1 |
β = 110.642 (4)° | T = 296 K |
V = 1494.8 (3) Å3 | Block, colourless |
Z = 4 | 0.32 × 0.25 × 0.19 mm |
Bruker D8 VENTURE Super DUO diffractometer | 1627 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 1221 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.043 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.1°, θmin = 3.0° |
φ and ω scans | h = −34→34 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −5→5 |
Tmin = 0.678, Tmax = 0.746 | l = −18→18 |
15395 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.050 | w = 1/[σ2(Fo2) + (0.0725P)2 + 1.6983P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.148 | (Δ/σ)max = 0.003 |
S = 1.03 | Δρmax = 0.33 e Å−3 |
1627 reflections | Δρmin = −0.23 e Å−3 |
112 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.009 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31666 (5) | 0.5614 (4) | 0.29992 (10) | 0.0404 (4) | |
O2 | 0.44045 (5) | 0.0821 (4) | 0.27764 (9) | 0.0486 (5) | |
H2 | 0.462232 | 0.040600 | 0.331799 | 0.073* | |
O3 | 0.34743 (6) | 0.5875 (5) | 0.46061 (11) | 0.0582 (5) | |
N1 | 0.47971 (5) | 0.0522 (4) | 0.45929 (10) | 0.0318 (4) | |
C1 | 0.27228 (8) | 0.5809 (6) | 0.12749 (15) | 0.0467 (6) | |
H1A | 0.277478 | 0.547070 | 0.065932 | 0.070* | |
H1C | 0.265360 | 0.814272 | 0.134436 | 0.070* | |
H1B | 0.243653 | 0.447745 | 0.128495 | 0.070* | |
C2 | 0.31917 (7) | 0.4781 (5) | 0.21031 (13) | 0.0340 (5) | |
C3 | 0.35979 (7) | 0.3216 (5) | 0.20315 (13) | 0.0365 (5) | |
H3 | 0.360757 | 0.268689 | 0.141167 | 0.044* | |
C4 | 0.40194 (7) | 0.2338 (5) | 0.28963 (13) | 0.0331 (5) | |
C5 | 0.40009 (6) | 0.3095 (5) | 0.38391 (12) | 0.0289 (4) | |
C6 | 0.44140 (7) | 0.2111 (5) | 0.47291 (12) | 0.0286 (4) | |
C7 | 0.35581 (7) | 0.4878 (5) | 0.38895 (13) | 0.0350 (5) | |
C8 | 0.44100 (8) | 0.2785 (6) | 0.57414 (14) | 0.0462 (6) | |
H8A | 0.445878 | 0.071299 | 0.610416 | 0.069* | |
H8B | 0.408612 | 0.375886 | 0.569385 | 0.069* | |
H8C | 0.468260 | 0.431695 | 0.607768 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0338 (7) | 0.0534 (9) | 0.0312 (7) | 0.0104 (6) | 0.0080 (6) | 0.0023 (6) |
O2 | 0.0377 (8) | 0.0835 (12) | 0.0236 (6) | 0.0184 (8) | 0.0095 (6) | −0.0017 (7) |
O3 | 0.0504 (9) | 0.0911 (13) | 0.0341 (8) | 0.0279 (9) | 0.0161 (7) | −0.0045 (8) |
N1 | 0.0281 (8) | 0.0433 (10) | 0.0218 (7) | 0.0037 (6) | 0.0061 (6) | 0.0014 (6) |
C1 | 0.0391 (11) | 0.0533 (14) | 0.0381 (11) | 0.0050 (10) | 0.0015 (9) | 0.0075 (10) |
C2 | 0.0328 (10) | 0.0379 (11) | 0.0279 (9) | −0.0028 (8) | 0.0063 (7) | 0.0045 (8) |
C3 | 0.0352 (10) | 0.0510 (13) | 0.0216 (8) | −0.0004 (9) | 0.0078 (7) | 0.0028 (8) |
C4 | 0.0299 (9) | 0.0440 (11) | 0.0253 (9) | 0.0002 (8) | 0.0096 (7) | 0.0012 (8) |
C5 | 0.0289 (9) | 0.0348 (10) | 0.0231 (8) | 0.0006 (7) | 0.0092 (7) | 0.0008 (7) |
C6 | 0.0307 (9) | 0.0319 (10) | 0.0239 (8) | −0.0024 (7) | 0.0105 (7) | 0.0006 (7) |
C7 | 0.0314 (9) | 0.0432 (11) | 0.0294 (9) | 0.0046 (8) | 0.0095 (7) | 0.0027 (8) |
C8 | 0.0489 (12) | 0.0662 (15) | 0.0236 (9) | 0.0188 (11) | 0.0130 (8) | 0.0027 (9) |
O1—C2 | 1.363 (2) | C2—C3 | 1.325 (3) |
O1—C7 | 1.392 (2) | C3—C4 | 1.423 (2) |
O2—C4 | 1.293 (2) | C3—H3 | 0.9300 |
O2—H2 | 0.8200 | C4—C5 | 1.414 (2) |
O3—C7 | 1.206 (2) | C5—C6 | 1.444 (2) |
N1—C6 | 1.311 (2) | C5—C7 | 1.444 (3) |
N1—N1i | 1.376 (3) | C6—C8 | 1.492 (2) |
C1—C2 | 1.483 (3) | C8—H8A | 0.9600 |
C1—H1A | 0.9600 | C8—H8B | 0.9600 |
C1—H1C | 0.9600 | C8—H8C | 0.9600 |
C1—H1B | 0.9600 | ||
C2—O1—C7 | 122.85 (15) | C5—C4—C3 | 119.73 (17) |
C4—O2—H2 | 109.5 | C4—C5—C6 | 120.89 (16) |
C6—N1—N1i | 118.75 (18) | C4—C5—C7 | 118.31 (16) |
C2—C1—H1A | 109.5 | C6—C5—C7 | 120.80 (15) |
C2—C1—H1C | 109.5 | N1—C6—C5 | 115.43 (15) |
H1A—C1—H1C | 109.5 | N1—C6—C8 | 121.41 (16) |
C2—C1—H1B | 109.5 | C5—C6—C8 | 123.15 (16) |
H1A—C1—H1B | 109.5 | O3—C7—O1 | 113.60 (16) |
H1C—C1—H1B | 109.5 | O3—C7—C5 | 129.10 (17) |
C3—C2—O1 | 121.28 (16) | O1—C7—C5 | 117.30 (15) |
C3—C2—C1 | 126.66 (18) | C6—C8—H8A | 109.5 |
O1—C2—C1 | 112.07 (17) | C6—C8—H8B | 109.5 |
C2—C3—C4 | 120.47 (17) | H8A—C8—H8B | 109.5 |
C2—C3—H3 | 119.8 | C6—C8—H8C | 109.5 |
C4—C3—H3 | 119.8 | H8A—C8—H8C | 109.5 |
O2—C4—C5 | 122.80 (16) | H8B—C8—H8C | 109.5 |
O2—C4—C3 | 117.46 (16) | ||
C7—O1—C2—C3 | −0.3 (3) | N1i—N1—C6—C8 | −0.2 (3) |
C7—O1—C2—C1 | 179.27 (17) | C4—C5—C6—N1 | 0.4 (3) |
O1—C2—C3—C4 | 0.5 (3) | C7—C5—C6—N1 | −179.64 (17) |
C1—C2—C3—C4 | −179.1 (2) | C4—C5—C6—C8 | −178.80 (18) |
C2—C3—C4—O2 | −179.86 (19) | C7—C5—C6—C8 | 1.2 (3) |
C2—C3—C4—C5 | 1.0 (3) | C2—O1—C7—O3 | 178.35 (18) |
O2—C4—C5—C6 | −1.6 (3) | C2—O1—C7—C5 | −1.2 (3) |
C3—C4—C5—C6 | 177.46 (17) | C4—C5—C7—O3 | −176.9 (2) |
O2—C4—C5—C7 | 178.38 (19) | C6—C5—C7—O3 | 3.1 (3) |
C3—C4—C5—C7 | −2.5 (3) | C4—C5—C7—O1 | 2.6 (3) |
N1i—N1—C6—C5 | −179.43 (19) | C6—C5—C7—O1 | −177.38 (16) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.82 | 1.73 | 2.4659 (18) | 148 |
C3—H3···O3ii | 0.93 | 2.57 | 3.420 (2) | 152 |
C8—H8A···O2iii | 0.96 | 2.55 | 3.278 (2) | 133 |
C8—H8B···O3 | 0.96 | 2.05 | 2.821 (3) | 136 |
Symmetry codes: (ii) x, −y+1, z−1/2; (iii) x, −y, z+1/2. |
Acknowledgements
The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray measurements and Chouaib Doukkali University (El Jadida Morocco) for support.
References
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castillo, S., Ouaddahi, H. & Hérault, V. (1982). Bull. Soc. Chim. Fr. 11, 257–261. Google Scholar
Djerrari, B., Essassi, E. M. & Fifani, J. (1993). Bull. Soc. Chim. Belg. 102, 565–573. CrossRef CAS Google Scholar
Djerrari, B., Essassi, E. M., Fifani, J. & Garrigues, B. (2002). C. R. Chim. 5, 177–183. Web of Science CrossRef CAS Google Scholar
El Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069–7070. CrossRef CAS Web of Science Google Scholar
El Abbassi, M., Essassi, E. M. & Fifani, J. (1997). Bull. Soc. Chim. Belg. 106, 205–210. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fettouhi, M., Boukhari, A., El Otmani, B. & Essassi, E. M. (1996). Acta Cryst. C52, 1031–1032. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
El Kihel, A., Benchidmi, M., Essassi, E. M., Bauchat, P. & Danion-Bougot, R. (1999). Synth. Commun. 29, 2435–2445. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Venkatachalam, G. & Ramesh, R. (2005). Inorg. Chem. Commun. 8, 1009–1013. Web of Science CrossRef CAS Google Scholar
Wang, C. S., Easterly, J. P. & Skelly, N. E. (1971). Tetrahedron, 27, 2581–2589. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.