organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Bromo­pyridine-2-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Kingdom of Saudi Arabia, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: msharif@kfupm.edu.sa

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 18 September 2019; accepted 27 September 2019; online 3 October 2019)

The title compound, C6H3BrN2, also known as 3-bromo­picolino­nitrile, was synthesized by cyanation of 2,3-di­bromo­pyridine. In the solid state, short inter­molecular Br⋯N contacts are observed. Additionally, the crystal packing is consolidated by ππ stacking inter­actions with centroid–centroid distances of 3.7893 (9) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The new title compound is a pyridine derivative with a cyano group in the ortho and a bromine atom in the meta position. Its mol­ecular structure is shown in Fig. 1[link]. Non-H short inter­molecular contacts along the b axis are observed [Br1⋯N2 = 3.1237 (17) Å, Fig. 2[link]]. Additionally the crystal packing is stabilized by ππ stacking inter­actions between the pyridine rings along the c axis [centroid–centroid distance: 3.7893 (9) Å, dihedral angle between the planes of the pyridine rings: 4.01 (7)°, ring slippage 1.32 and 1.16 Å, respectively; Fig. 3[link]].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Partial packing diagram of the title compound showing the inter­molecular Br⋯N contacts as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Packing diagram of the title compound showing the ππ stacking inter­actions (dashed lines). Displacement ellipsoids are drawn at the 30% probability level.

Synthesis and crystallization

The title compound was obtained as the main product by synthesizing the mono- and di­cyano derivatives of 2,3-di­bromo­pyridine. The reaction was carried out in an Ace pressure tube. A mixture of 2,3-di­bromo­pyridine (1.0 mmol, 237 mg), K4[Fe(CN)6]·3H2O (0.4 mmol, 169 mg), Na2CO3 (1.2 mmol, 127 mg), CuI (0.1 mmol, 19 mg), 1-butyl-imidazole (2.0 mmol, 248 mg) and o-xylene (2 ml) was stirred at 160°C for 24 h. Afterwards the reaction mixture was quenched with water and diluted with di­chloro­methane. The organic layer was separated and the aqueous layer was extracted with di­chloro­methane (3 × 20 ml). The combined organic layers were dried on anhydrous Na2SO4. After filtering, the solvent was removed in vacuo, and the product was purified by column chromatography (silica gel, ethyl acetate/n-hexane 1:1 v/v; yield: 20%, 37 mg). Crystals suitable for X-ray analysis were obtained by recrystallization from an ethyl acetate/n-heptane (1:1 v/v) solution. 1H NMR (300 MHz, CDCl3): δ = 7.43 (dd, 1H, J = 744 Hz), 2.09 (s, 3H), 8.03 (dd, 1H, J = 8.03 Hz), 8.63 (dd, 1H, J = 744 Hz); 13C NMR (CDCl3): δ = 115.7 (C), 124.6 (C), 127.8 (CH), 135.1 (C), 149.2 (CH), 149.2 (CH); GC–MS (EI, 70 eV): m/z = 184 (M+, 96), 181 (100), 103 (99), 76 (49), 75 (29), 51 (22), 50 (21).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One outlier (100) was omitted in the last cycles of refinement.

Table 1
Experimental details

Crystal data
Chemical formula C6H3BrN2
Mr 183.01
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 7.8821 (2), 11.7480 (3), 7.4169 (2)
β (°) 113.906 (1)
V3) 627.88 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.44
Crystal size (mm) 0.43 × 0.39 × 0.22
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.17, 0.34
No. of measured, independent and observed [I > 2σ(I)] reflections 18621, 1637, 1577
Rint 0.020
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.16
No. of reflections 1637
No. of parameters 82
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.37
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

3-Bromopyridine-2-carbonitrile top
Crystal data top
C6H3BrN2F(000) = 352
Mr = 183.01Dx = 1.936 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8821 (2) ÅCell parameters from 9981 reflections
b = 11.7480 (3) Åθ = 2.8–28.8°
c = 7.4169 (2) ŵ = 6.44 mm1
β = 113.906 (1)°T = 150 K
V = 627.88 (3) Å3Part of a needle, colourless
Z = 40.43 × 0.39 × 0.22 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
1637 independent reflections
Radiation source: fine-focus sealed tube1577 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.020
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 3.3°
ω and phi scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1515
Tmin = 0.17, Tmax = 0.34l = 108
18621 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0198P)2 + 0.3045P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
1637 reflectionsΔρmax = 0.38 e Å3
82 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were refined as riding, with C–H = 0.95 Å and Uiso(H) = -1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30145 (2)0.36783 (2)0.19853 (2)0.02306 (6)
C10.0879 (2)0.16246 (12)0.1697 (2)0.0229 (3)
C20.08389 (19)0.28060 (12)0.1631 (2)0.0219 (3)
C30.0811 (2)0.33623 (13)0.1323 (2)0.0272 (3)
H30.08850.41700.12740.033*
C40.2344 (2)0.27070 (14)0.1088 (2)0.0286 (3)
H40.34990.30580.08600.034*
C50.2173 (2)0.15295 (14)0.1192 (3)0.0287 (3)
H50.32350.10900.10370.034*
C60.2574 (2)0.10001 (14)0.2049 (2)0.0274 (3)
N10.05951 (18)0.09830 (12)0.1497 (2)0.0280 (3)
N20.3907 (2)0.05012 (14)0.2363 (2)0.0384 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02029 (8)0.02140 (8)0.02829 (9)0.00458 (5)0.01069 (6)0.00295 (5)
C10.0233 (6)0.0217 (6)0.0235 (7)0.0023 (5)0.0094 (5)0.0002 (5)
C20.0219 (6)0.0213 (6)0.0222 (6)0.0009 (5)0.0087 (5)0.0011 (5)
C30.0277 (7)0.0211 (6)0.0314 (8)0.0040 (5)0.0104 (6)0.0003 (6)
C40.0226 (6)0.0301 (8)0.0330 (8)0.0053 (6)0.0110 (6)0.0015 (6)
C50.0231 (7)0.0278 (7)0.0354 (8)0.0006 (6)0.0121 (6)0.0022 (6)
C60.0273 (7)0.0238 (7)0.0320 (8)0.0017 (6)0.0129 (6)0.0017 (6)
N10.0255 (6)0.0233 (6)0.0362 (7)0.0013 (5)0.0136 (5)0.0023 (5)
N20.0311 (7)0.0354 (8)0.0485 (9)0.0077 (6)0.0161 (7)0.0040 (7)
Geometric parameters (Å, º) top
Br1—C21.9220 (14)C3—H30.9500
C1—N11.3418 (19)C4—C51.389 (2)
C1—C21.389 (2)C4—H40.9500
C1—C61.452 (2)C5—N11.335 (2)
C2—C31.390 (2)C5—H50.9500
C3—C41.382 (2)C6—N21.141 (2)
N1—C1—C2123.46 (14)C3—C4—C5119.18 (14)
N1—C1—C6115.37 (13)C3—C4—H4120.4
C2—C1—C6121.15 (14)C5—C4—H4120.4
C1—C2—C3118.83 (13)N1—C5—C4123.44 (15)
C1—C2—Br1121.45 (11)N1—C5—H5118.3
C3—C2—Br1119.71 (11)C4—C5—H5118.3
C4—C3—C2118.08 (14)N2—C6—C1178.55 (19)
C4—C3—H3121.0C5—N1—C1117.00 (14)
C2—C3—H3121.0
N1—C1—C2—C30.6 (2)C2—C3—C4—C50.7 (2)
C6—C1—C2—C3178.91 (14)C3—C4—C5—N10.4 (3)
N1—C1—C2—Br1178.61 (11)C4—C5—N1—C10.5 (2)
C6—C1—C2—Br10.3 (2)C2—C1—N1—C51.0 (2)
C1—C2—C3—C40.3 (2)C6—C1—N1—C5179.35 (14)
Br1—C2—C3—C4179.52 (12)
 

Funding information

The authors acknowledge research funding from the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) via project No. IN161012.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds