organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9α-Hy­dr­oxy-4,8-di­methyl-3′-phenyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one-12-spiro-5′-isoxazole monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Beni-Mellal, BP 523, Morocco, bLaboratoire de Chimie Physique et Chimie Biorganique, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, BP 146 Mohammedia, Morocco, and cLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: fatimaoutahar@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 September 2019; accepted 15 October 2019; online 29 October 2019)

In the title compound, C22H25NO5·H2O, the ten-membered ring displays an approximate chair–chair conformation, whereas the five-membered furan ring has an envelope conformation, with the C atom of the methine group adjacent to the spiro C atom as the flap. The isoxazole ring is almost planar and its plane is slightly inclined to the plane of the attached phenyl ring. The mean plane of the furan ring is nearly perpendicular to that of the isoxazole ring, as indicated by the dihedral angle between them of 89.39 (12)°. In the crystal, the organic mol­ecules are linked into [010] chains by O—H⋯O hydrogen bonds. The water mol­ecule forms O—H⋯O and O—H⋯N hydrogen bonds and a weak C—H⋯O inter­action is also observed. Together, these lead to a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata (Quezel & Santa, 1963[Quezel, P. & Santa, S. (1963). Nouvelle flore de l'Algérie et des régions désertiques méridionales, p. 949. Paris: Editions du CNRS.]; Ozenda, 1958[Ozenda, P. (1958). Flore du Sahara septentrional et central. Centre National de la Recherche Scientifique Imprimerie, p. 434. Louis-Jean Gap (H. A.).]). Our work lies within the framework of the evaluation of medicinal plants and, in particular, Anvillea radiata. The main constituent of the chloro­form extract of the aerial parts of this plant is 9α-hy­droxy­partenolide (El Hassany et al., 2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). The reactivities of this sesquiterpene lactone and its derivatives have been the subject of several studies (Castaneda-Acosta et al., 1997[Castaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635-639.]; Neukirch et al., 2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]; Der-Ren et al., 2006[Der-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83-91.]; Neelakantan et al., 2009[Neelakantan, S., Nasim, Sh., Guzman, M.-L., Jordan, C.-T. & Crooks, P.-A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]), in order to prepare products with potential use in industrial pharmacology. In this context, we have developed a synthesis of new spiro-isoxazolines by 1,3-dipolar cyclo­addition reactions. We report here the crystal structure of the product arising from the treatment of 9α-hy­droxy­parthenolide with 1.5 equivalents of benzaldoxime in the presence of tetra­hydro­furan (THF) and bleach (sodium hypochlorite) at room temperature, which crystallized as a monohydrate.

The organic mol­ecule is built from fused five- and ten-membered rings, with an additional ep­oxy ring system and a 4,5-di­hydro-3-phenyl­isoxazole group as a substituent (Fig. 1[link]). The ten-membered ring adopts an approximate chair–chair conformation, while the furan ring displays an envelope conformation, with atom C9 as the flap. The dihedral angles between the isoxazole ring, the mean plan of the furan ring and the phenyl ring are 89.39 (12) and 15.45 (13)°, respectively. In the crystal, mol­ecules are connected by four hydrogen bonds (Table 1[link]), as shown in Fig. 2[link]. The packing is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.97 2.56 3.251 (3) 128
O2—H2⋯O4ii 0.82 2.03 2.822 (3) 163
O6—H6A⋯O1iii 0.82 2.03 2.848 (3) 173
O6—H6B⋯N1ii 0.82 2.08 2.863 (3) 159
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A fragment of the title structure, showing mol­ecules connected by hydrogen bonds (dashed cyan lines).
[Figure 3]
Figure 3
The crystal packing for the title compound, showing mol­ecules linked by hydrogen bonds (dashed cyan lines).

Synthesis and crystallization

9α-Hy­droxy­parthenolide (500 mg, 1.89 mmol) was treated with benzaldoxime (344 mg, 2.84 mmol) diluted in THF (10 ml) and 12% sodium hypochlorite solution (5 ml) was added dropwise. The reaction mixture was stirred at room temperature for 12 h. The mixture was diluted with water (10 ml) and extracted with CH2Cl2 (3 × 10 ml). The combined organic layers were dried with MgSO4, filtered and concentrated under reduced pressure, providing a crude product. Chromatography of the residue obtained on a column of silica gel, eluting with hexa­ne–ethyl acetate (70:30 v/v), allowed the isolation of the title compound in a yield of 67%. Crystallization of this product was carried out at room temperature from an ethyl acetate solution (m.p. 453–455 K) and the water mol­ecule of crystallization was presumably incorporated from the surroundings.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The absolute structure could not be reliably established in the present experiment, but the relative configurations of the stereogenic centres are: C1 R, C2 R, C7 R, C9 R, C10 S and C13 R.

Table 2
Experimental details

Crystal data
Chemical formula C22H25NO5·H2O
Mr 401.44
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 9.8947 (4), 10.6554 (4), 19.0286 (8)
V3) 2006.22 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.35 × 0.30 × 0.22
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.667, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 60442, 5184, 4262
Rint 0.049
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.04
No. of reflections 5184
No. of parameters 265
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.24
Absolute structure Flack x determined using 1582 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (3)
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: WinGX and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

9α-Hydroxy-4,8-dimethyl-3'-phenyl-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one-12-spiro-5'-isoxazole monohydrate top
Crystal data top
C22H25NO5·H2ODx = 1.329 Mg m3
Mr = 401.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5184 reflections
a = 9.8947 (4) Åθ = 2.3–28.7°
b = 10.6554 (4) ŵ = 0.10 mm1
c = 19.0286 (8) ÅT = 296 K
V = 2006.22 (14) Å3Block, colourless
Z = 40.35 × 0.30 × 0.22 mm
F(000) = 856
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
5184 independent reflections
Radiation source: INCOATEC IµS micro-focus source4262 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.049
Detector resolution: 10.4167 pixels mm-1θmax = 28.7°, θmin = 2.3°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.667, Tmax = 0.746l = 2525
60442 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2739P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.107Δρmax = 0.24 e Å3
S = 1.03Δρmin = 0.24 e Å3
5184 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
265 parametersExtinction coefficient: 0.020 (3)
3 restraintsAbsolute structure: Flack x determined using 1582 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.2 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1760 (2)0.7227 (2)0.90463 (10)0.0404 (5)
H10.2243920.6426470.9079930.048*
C20.0347 (2)0.7171 (2)0.92900 (12)0.0462 (5)
C30.0159 (3)0.5912 (3)0.95379 (14)0.0591 (7)
H3A0.0884150.6035570.9874040.071*
H3B0.0567250.5469680.9774230.071*
C40.0679 (3)0.5109 (3)0.89225 (16)0.0586 (7)
H4A0.0850000.4261280.9086190.070*
H4B0.1525310.5453440.8752620.070*
C50.0324 (2)0.5072 (2)0.83321 (14)0.0464 (5)
H50.1081150.4569490.8400910.056*
C60.0255 (2)0.5666 (2)0.77299 (13)0.0392 (5)
C70.1445 (2)0.5737 (2)0.72326 (12)0.0401 (5)
H70.1113550.5558120.6757860.048*
C80.2097 (2)0.7044 (2)0.72228 (11)0.0395 (5)
H8A0.2663250.7106660.6808110.047*
H8B0.1385570.7664830.7177300.047*
C90.29549 (19)0.7378 (2)0.78669 (10)0.0317 (4)
H90.3337750.6597630.8052730.038*
C100.2273 (2)0.8075 (2)0.84807 (11)0.0370 (5)
H100.1542400.8612660.8305950.044*
C110.0696 (3)0.8083 (3)0.90614 (19)0.0681 (8)
H11A0.1336700.8207080.9433980.102*
H11B0.1154520.7763450.8654210.102*
H11C0.0273410.8867870.8948060.102*
C120.0961 (2)0.6355 (3)0.74590 (16)0.0631 (8)
H12A0.1744870.6104430.7720920.095*
H12B0.1090880.6159380.6971160.095*
H12C0.0824760.7242230.7511450.095*
C130.41259 (19)0.82485 (19)0.76828 (11)0.0338 (4)
C140.4417 (2)0.8933 (2)0.83647 (12)0.0399 (5)
C150.5313 (2)0.76769 (19)0.72907 (11)0.0347 (4)
H15A0.6155240.7806200.7541710.042*
H15B0.5182510.6785940.7211400.042*
C160.5286 (2)0.83963 (19)0.66158 (11)0.0325 (4)
C170.61864 (19)0.8169 (2)0.60106 (11)0.0357 (4)
C180.6899 (3)0.7063 (3)0.59685 (14)0.0546 (6)
H180.6815970.6466530.6322720.065*
C190.7743 (3)0.6833 (4)0.53986 (17)0.0759 (9)
H190.8217280.6081730.5370200.091*
C200.7875 (3)0.7709 (4)0.48818 (15)0.0757 (10)
H200.8450540.7558490.4504920.091*
C210.7160 (3)0.8817 (3)0.49142 (14)0.0655 (8)
H210.7252730.9408250.4558010.079*
C220.6309 (3)0.9053 (3)0.54724 (12)0.0490 (6)
H220.5818240.9796750.5490410.059*
N10.43860 (18)0.92543 (17)0.65917 (10)0.0391 (4)
O10.1401 (2)0.7760 (2)0.97130 (8)0.0669 (6)
O20.23970 (18)0.47987 (17)0.74102 (10)0.0558 (5)
H20.2995600.4878470.7115600.084*
O30.33524 (17)0.88429 (16)0.87917 (9)0.0476 (4)
O40.53835 (19)0.95705 (17)0.85124 (10)0.0552 (5)
O50.36483 (15)0.92729 (14)0.72264 (9)0.0430 (4)
O60.5694 (3)0.6818 (2)0.88559 (11)0.0820 (7)
H6A0.5947780.6987180.9255090.123*
H6B0.5801710.6058070.8818330.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (10)0.0553 (13)0.0276 (10)0.0055 (10)0.0049 (8)0.0042 (10)
C20.0436 (11)0.0602 (14)0.0349 (11)0.0079 (11)0.0160 (9)0.0065 (10)
C30.0559 (14)0.0747 (18)0.0466 (14)0.0101 (14)0.0208 (12)0.0105 (13)
C40.0570 (15)0.0557 (15)0.0631 (17)0.0149 (12)0.0187 (13)0.0042 (13)
C50.0442 (12)0.0403 (12)0.0547 (14)0.0023 (10)0.0068 (11)0.0014 (10)
C60.0313 (9)0.0413 (11)0.0450 (12)0.0039 (9)0.0000 (9)0.0066 (10)
C70.0388 (10)0.0470 (12)0.0347 (11)0.0010 (9)0.0001 (9)0.0078 (9)
C80.0383 (10)0.0523 (13)0.0279 (10)0.0054 (9)0.0013 (8)0.0040 (9)
C90.0310 (9)0.0375 (10)0.0267 (9)0.0025 (8)0.0037 (7)0.0034 (8)
C100.0347 (10)0.0447 (12)0.0316 (10)0.0044 (9)0.0064 (8)0.0003 (9)
C110.0536 (15)0.0609 (16)0.090 (2)0.0054 (13)0.0273 (15)0.0072 (16)
C120.0371 (12)0.084 (2)0.0683 (19)0.0054 (13)0.0057 (12)0.0081 (15)
C130.0339 (9)0.0350 (10)0.0324 (10)0.0010 (8)0.0068 (8)0.0048 (8)
C140.0420 (11)0.0363 (10)0.0413 (12)0.0062 (9)0.0103 (9)0.0013 (9)
C150.0323 (9)0.0378 (10)0.0341 (10)0.0025 (8)0.0071 (8)0.0037 (8)
C160.0292 (8)0.0382 (10)0.0303 (10)0.0047 (8)0.0016 (8)0.0000 (8)
C170.0305 (9)0.0498 (12)0.0269 (9)0.0024 (9)0.0011 (8)0.0039 (9)
C180.0500 (13)0.0685 (17)0.0452 (13)0.0169 (12)0.0063 (11)0.0025 (12)
C190.0748 (19)0.095 (2)0.0578 (18)0.0356 (18)0.0136 (15)0.0078 (17)
C200.0653 (17)0.124 (3)0.0379 (14)0.0260 (19)0.0184 (13)0.0058 (17)
C210.0696 (17)0.094 (2)0.0328 (13)0.0055 (16)0.0166 (12)0.0089 (14)
C220.0523 (13)0.0594 (14)0.0354 (12)0.0009 (12)0.0082 (10)0.0022 (11)
N10.0381 (9)0.0437 (10)0.0354 (9)0.0024 (8)0.0100 (8)0.0089 (8)
O10.0700 (12)0.1009 (16)0.0300 (8)0.0317 (12)0.0150 (8)0.0098 (9)
O20.0506 (9)0.0519 (10)0.0648 (12)0.0128 (8)0.0138 (9)0.0071 (9)
O30.0479 (9)0.0534 (9)0.0415 (8)0.0148 (8)0.0152 (7)0.0135 (7)
O40.0526 (10)0.0539 (10)0.0590 (11)0.0206 (8)0.0117 (9)0.0098 (8)
O50.0450 (8)0.0406 (8)0.0433 (9)0.0102 (7)0.0181 (7)0.0135 (7)
O60.133 (2)0.0567 (11)0.0562 (12)0.0122 (13)0.0280 (14)0.0094 (10)
Geometric parameters (Å, º) top
C1—O11.435 (3)C11—H11C0.9600
C1—C21.474 (3)C12—H12A0.9600
C1—C101.494 (3)C12—H12B0.9600
C1—H10.9800C12—H12C0.9600
C2—O11.459 (3)C13—O51.473 (2)
C2—C111.483 (4)C13—C141.516 (3)
C2—C31.508 (4)C13—C151.519 (3)
C3—C41.539 (4)C14—O41.206 (3)
C3—H3A0.9700C14—O31.334 (3)
C3—H3B0.9700C15—C161.496 (3)
C4—C51.499 (4)C15—H15A0.9700
C4—H4A0.9700C15—H15B0.9700
C4—H4B0.9700C16—N11.277 (3)
C5—C61.311 (3)C16—C171.476 (3)
C5—H50.9300C17—C181.376 (3)
C6—C121.501 (3)C17—C221.396 (3)
C6—C71.513 (3)C18—C191.390 (4)
C7—O21.414 (3)C18—H180.9300
C7—C81.535 (3)C19—C201.362 (5)
C7—H70.9800C19—H190.9300
C8—C91.533 (3)C20—C211.377 (5)
C8—H8A0.9700C20—H200.9300
C8—H8B0.9700C21—C221.379 (3)
C9—C131.525 (3)C21—H210.9300
C9—C101.540 (3)C22—H220.9300
C9—H90.9800N1—O51.411 (2)
C10—O31.470 (3)O2—H20.8199
C10—H100.9800O6—H6A0.8202
C11—H11A0.9600O6—H6B0.8203
C11—H11B0.9600
O1—C1—C260.19 (14)C2—C11—H11A109.5
O1—C1—C10118.8 (2)C2—C11—H11B109.5
C2—C1—C10124.9 (2)H11A—C11—H11B109.5
O1—C1—H1114.1C2—C11—H11C109.5
C2—C1—H1114.1H11A—C11—H11C109.5
C10—C1—H1114.1H11B—C11—H11C109.5
O1—C2—C158.56 (14)C6—C12—H12A109.5
O1—C2—C11112.2 (2)C6—C12—H12B109.5
C1—C2—C11122.8 (2)H12A—C12—H12B109.5
O1—C2—C3116.6 (2)C6—C12—H12C109.5
C1—C2—C3116.7 (2)H12A—C12—H12C109.5
C11—C2—C3116.3 (2)H12B—C12—H12C109.5
C2—C3—C4111.6 (2)O5—C13—C14102.06 (16)
C2—C3—H3A109.3O5—C13—C15104.81 (15)
C4—C3—H3A109.3C14—C13—C15117.79 (18)
C2—C3—H3B109.3O5—C13—C9110.02 (16)
C4—C3—H3B109.3C14—C13—C9103.90 (16)
H3A—C3—H3B108.0C15—C13—C9117.18 (17)
C5—C4—C3111.3 (2)O4—C14—O3121.7 (2)
C5—C4—H4A109.4O4—C14—C13128.4 (2)
C3—C4—H4A109.4O3—C14—C13109.67 (17)
C5—C4—H4B109.4C16—C15—C13101.66 (16)
C3—C4—H4B109.4C16—C15—H15A111.4
H4A—C4—H4B108.0C13—C15—H15A111.4
C6—C5—C4127.4 (2)C16—C15—H15B111.4
C6—C5—H5116.3C13—C15—H15B111.4
C4—C5—H5116.3H15A—C15—H15B109.3
C5—C6—C12125.3 (2)N1—C16—C17120.69 (18)
C5—C6—C7122.0 (2)N1—C16—C15114.23 (17)
C12—C6—C7112.6 (2)C17—C16—C15125.09 (18)
O2—C7—C6109.50 (19)C18—C17—C22119.4 (2)
O2—C7—C8111.38 (18)C18—C17—C16119.7 (2)
C6—C7—C8112.32 (18)C22—C17—C16120.9 (2)
O2—C7—H7107.8C17—C18—C19120.3 (3)
C6—C7—H7107.8C17—C18—H18119.9
C8—C7—H7107.8C19—C18—H18119.9
C9—C8—C7115.70 (18)C20—C19—C18120.0 (3)
C9—C8—H8A108.4C20—C19—H19120.0
C7—C8—H8A108.4C18—C19—H19120.0
C9—C8—H8B108.4C19—C20—C21120.4 (2)
C7—C8—H8B108.4C19—C20—H20119.8
H8A—C8—H8B107.4C21—C20—H20119.8
C13—C9—C8112.22 (16)C20—C21—C22120.3 (3)
C13—C9—C10102.36 (16)C20—C21—H21119.9
C8—C9—C10118.42 (16)C22—C21—H21119.9
C13—C9—H9107.8C21—C22—C17119.6 (3)
C8—C9—H9107.8C21—C22—H22120.2
C10—C9—H9107.8C17—C22—H22120.2
O3—C10—C1107.07 (17)C16—N1—O5109.87 (16)
O3—C10—C9104.78 (15)C1—O1—C261.26 (13)
C1—C10—C9113.77 (18)C7—O2—H2104.1
O3—C10—H10110.3C14—O3—C10111.65 (16)
C1—C10—H10110.3N1—O5—C13109.17 (14)
C9—C10—H10110.3H6A—O6—H6B104.9
C10—C1—C2—O1106.1 (3)C15—C13—C14—O435.8 (3)
O1—C1—C2—C1197.6 (3)C9—C13—C14—O4167.2 (2)
C10—C1—C2—C118.4 (4)O5—C13—C14—O395.55 (19)
O1—C1—C2—C3106.2 (2)C15—C13—C14—O3150.37 (19)
C10—C1—C2—C3147.7 (2)C9—C13—C14—O318.9 (2)
O1—C2—C3—C4151.8 (2)O5—C13—C15—C164.7 (2)
C1—C2—C3—C485.5 (3)C14—C13—C15—C16117.29 (19)
C11—C2—C3—C472.2 (3)C9—C13—C15—C16117.54 (19)
C2—C3—C4—C549.3 (3)C13—C15—C16—N13.4 (2)
C3—C4—C5—C6105.1 (3)C13—C15—C16—C17176.11 (18)
C4—C5—C6—C1210.3 (4)N1—C16—C17—C18163.4 (2)
C4—C5—C6—C7168.7 (2)C15—C16—C17—C1816.1 (3)
C5—C6—C7—O217.6 (3)N1—C16—C17—C2215.5 (3)
C12—C6—C7—O2163.2 (2)C15—C16—C17—C22165.0 (2)
C5—C6—C7—C8106.7 (2)C22—C17—C18—C190.6 (4)
C12—C6—C7—C872.5 (3)C16—C17—C18—C19179.5 (2)
O2—C7—C8—C948.7 (3)C17—C18—C19—C200.5 (5)
C6—C7—C8—C974.5 (2)C18—C19—C20—C211.0 (5)
C7—C8—C9—C13148.31 (18)C19—C20—C21—C220.3 (5)
C7—C8—C9—C1092.7 (2)C20—C21—C22—C170.8 (4)
O1—C1—C10—O350.1 (3)C18—C17—C22—C211.3 (4)
C2—C1—C10—O3122.2 (2)C16—C17—C22—C21179.8 (2)
O1—C1—C10—C9165.37 (18)C17—C16—N1—O5179.14 (17)
C2—C1—C10—C9122.6 (2)C15—C16—N1—O50.3 (2)
C13—C9—C10—O325.46 (19)C10—C1—O1—C2116.0 (2)
C8—C9—C10—O3149.44 (18)C11—C2—O1—C1115.9 (2)
C13—C9—C10—C1142.07 (18)C3—C2—O1—C1106.4 (2)
C8—C9—C10—C194.0 (2)O4—C14—O3—C10176.6 (2)
C8—C9—C13—O545.8 (2)C13—C14—O3—C102.3 (2)
C10—C9—C13—O582.22 (18)C1—C10—O3—C14136.3 (2)
C8—C9—C13—C14154.41 (17)C9—C10—O3—C1415.1 (2)
C10—C9—C13—C1426.4 (2)C16—N1—O5—C133.0 (2)
C8—C9—C13—C1573.8 (2)C14—C13—O5—N1128.28 (17)
C10—C9—C13—C15158.24 (17)C15—C13—O5—N14.9 (2)
O5—C13—C14—O478.3 (3)C9—C13—O5—N1121.88 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.972.563.251 (3)128
O2—H2···O4ii0.822.032.822 (3)163
O6—H6A···O1iii0.822.032.848 (3)173
O6—H6B···N1ii0.822.082.863 (3)159
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+2.
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco, for the X-ray measurements.

References

First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635–639.  Web of Science CSD CrossRef CAS Google Scholar
First citationDer-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83–91.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M.-L., Jordan, C.-T. & Crooks, P.-A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzenda, P. (1958). Flore du Sahara septentrional et central. Centre National de la Recherche Scientifique Imprimerie, p. 434. Louis-Jean Gap (H. A.).  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQuezel, P. & Santa, S. (1963). Nouvelle flore de l'Algérie et des régions désertiques méridionales, p. 949. Paris: Editions du CNRS.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds