organic compounds
6-Nitro-1,3-benzoxazole-2(3H)-thione
aLaboratoire de Chimie Bioorganique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_ahbala@yahoo.com
In the title compound, C7H4N2O3S, the dihedral angle between the fused ring system (r.m.s. deviation = 0.008 Å) and the nitro group at the 6-position is 7.3 (2)°. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds link the molecules into [010] chains. The chains are cross-linked by π–π stacking interactions to form (001) sheets.
Keywords: enzoxazole derivative; benzoxazole-2-thione; crystal structure.
CCDC reference: 1946542
Structure description
The mono-nitration of some benzimidazole derivatives has been reported (Benchidmi et al., 1995; El Kihel et al., 1999). In this work, the nitration of benzoxazole-2-thione has been carried out and the determined to establish the location of the NO2 group (the 5- or 6-position) in the product (Fig. 1).
The plane of the fused ring system (r.m.s. deviation = 0.008 Å) is slightly inclined to the plane of the nitro group [dihedral angle = 7.3 (2)°]. In the crystal, the molecules are linked by bifurcated N—H⋯(O,O) hydrogen bonds (Table 1) to form [010] chains (Fig. 2). The chains are cross-linked by weak aromatic π–π stacking between the benzene ring and oxazole ring to form (001) sheets, the inter-centroid distance being 3.646 (3) Å (Fig. 3).
Synthesis and crystallization
To benzoxazole-2-thione (0.025 mol) in 92% H2SO4 (10 ml) was added dropwise with stirring a cooled mixture of 42% HNO3 (2.5 ml) and 92% H2SO4 (1 ml). The resulting mixture was allowed to stand for 1 h at 273–278 K and then poured in an ice–water mixture (50 g – 50 g). After addition of NaCl (10 g), the solution, maintained at 273–283 K, deposited solid material, which was filtered off, washed with cold water and dissolved in hot water. The pH of the resulting solution was adjusted to 7.5–8 with 3 M NH3. 6-Nitrobenzoxazole-2-thione was filtered off and recrystallized several times from methanol solution to give yellow blocks.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1946542
https://doi.org/10.1107/S2414314619011192/hb4314sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619011192/hb4314Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619011192/hb4314Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: WinGX and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).C7H4N2O3S | F(000) = 400 |
Mr = 196.18 | Dx = 1.651 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 4.576 (4) Å | Cell parameters from 1870 reflections |
b = 15.755 (13) Å | θ = 2.6–27.9° |
c = 11.134 (9) Å | µ = 0.38 mm−1 |
β = 100.45 (3)° | T = 296 K |
V = 789.3 (11) Å3 | Block, yellow |
Z = 4 | 0.35 × 0.28 × 0.21 mm |
Bruker D8 VENTURE Super DUO diffractometer | 1870 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 1538 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.032 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.9°, θmin = 2.6° |
φ and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −20→20 |
Tmin = 0.668, Tmax = 0.747 | l = −14→14 |
17038 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3797P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
1870 reflections | Δρmax = 0.30 e Å−3 |
118 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.18641 (11) | 0.72656 (3) | 0.51464 (5) | 0.05120 (19) | |
O1 | 0.8774 (3) | 0.58902 (7) | 0.44023 (12) | 0.0400 (3) | |
O2 | 0.2383 (5) | 0.33844 (10) | 0.26846 (17) | 0.0859 (7) | |
O3 | −0.1051 (4) | 0.39654 (11) | 0.1403 (2) | 0.0766 (6) | |
N1 | 0.7184 (3) | 0.70175 (9) | 0.33226 (14) | 0.0374 (3) | |
H1 | 0.688902 | 0.753157 | 0.314460 | 0.045* | |
N2 | 0.1258 (4) | 0.40037 (11) | 0.21413 (16) | 0.0500 (4) | |
C1 | 0.9228 (4) | 0.67448 (11) | 0.42680 (16) | 0.0360 (4) | |
C2 | 0.6377 (4) | 0.56547 (10) | 0.35289 (15) | 0.0325 (4) | |
C3 | 0.5143 (4) | 0.48630 (11) | 0.33371 (16) | 0.0383 (4) | |
H3 | 0.586671 | 0.439175 | 0.380032 | 0.046* | |
C4 | 0.2721 (4) | 0.48278 (11) | 0.23917 (17) | 0.0379 (4) | |
C5 | 0.1602 (4) | 0.55204 (13) | 0.16860 (18) | 0.0429 (4) | |
H5 | −0.004636 | 0.545447 | 0.106807 | 0.051* | |
C6 | 0.2929 (4) | 0.63094 (12) | 0.18979 (18) | 0.0425 (4) | |
H6 | 0.223268 | 0.678035 | 0.142831 | 0.051* | |
C7 | 0.5340 (4) | 0.63613 (10) | 0.28427 (16) | 0.0331 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0455 (3) | 0.0438 (3) | 0.0604 (4) | −0.0078 (2) | −0.0005 (2) | −0.0129 (2) |
O1 | 0.0442 (7) | 0.0267 (6) | 0.0445 (7) | 0.0005 (5) | −0.0042 (5) | 0.0015 (5) |
O2 | 0.1327 (18) | 0.0374 (8) | 0.0735 (12) | −0.0331 (10) | −0.0189 (11) | 0.0090 (8) |
O3 | 0.0572 (10) | 0.0574 (10) | 0.1077 (15) | −0.0142 (8) | −0.0056 (10) | −0.0284 (10) |
N1 | 0.0369 (8) | 0.0232 (6) | 0.0508 (9) | 0.0024 (6) | 0.0043 (6) | 0.0038 (6) |
N2 | 0.0596 (11) | 0.0418 (9) | 0.0495 (10) | −0.0154 (8) | 0.0120 (8) | −0.0138 (8) |
C1 | 0.0364 (9) | 0.0285 (8) | 0.0437 (10) | 0.0021 (7) | 0.0093 (7) | −0.0027 (7) |
C2 | 0.0345 (8) | 0.0279 (8) | 0.0343 (8) | 0.0019 (6) | 0.0044 (7) | −0.0001 (6) |
C3 | 0.0493 (10) | 0.0257 (8) | 0.0392 (9) | −0.0012 (7) | 0.0061 (8) | 0.0015 (7) |
C4 | 0.0428 (9) | 0.0308 (8) | 0.0419 (10) | −0.0062 (7) | 0.0125 (8) | −0.0071 (7) |
C5 | 0.0378 (9) | 0.0453 (10) | 0.0432 (10) | 0.0001 (8) | 0.0009 (8) | −0.0049 (8) |
C6 | 0.0422 (10) | 0.0351 (9) | 0.0471 (10) | 0.0049 (7) | −0.0005 (8) | 0.0053 (8) |
C7 | 0.0332 (8) | 0.0248 (7) | 0.0418 (9) | 0.0023 (6) | 0.0078 (7) | 0.0015 (6) |
S1—C1 | 1.630 (2) | C2—C3 | 1.370 (3) |
O1—C1 | 1.375 (2) | C2—C7 | 1.384 (2) |
O1—C2 | 1.378 (2) | C3—C4 | 1.384 (3) |
O2—N2 | 1.212 (3) | C3—H3 | 0.9300 |
O3—N2 | 1.217 (3) | C4—C5 | 1.387 (3) |
N1—C1 | 1.346 (2) | C5—C6 | 1.385 (3) |
N1—C7 | 1.379 (2) | C5—H5 | 0.9300 |
N1—H1 | 0.8389 | C6—C7 | 1.382 (3) |
N2—C4 | 1.464 (2) | C6—H6 | 0.9300 |
C1—O1—C2 | 107.67 (13) | C2—C3—H3 | 123.0 |
C1—N1—C7 | 110.69 (15) | C4—C3—H3 | 123.0 |
C1—N1—H1 | 123.5 | C3—C4—C5 | 124.17 (17) |
C7—N1—H1 | 124.8 | C3—C4—N2 | 117.11 (17) |
O2—N2—O3 | 122.37 (19) | C5—C4—N2 | 118.72 (18) |
O2—N2—C4 | 118.72 (19) | C6—C5—C4 | 120.28 (18) |
O3—N2—C4 | 118.91 (19) | C6—C5—H5 | 119.9 |
N1—C1—O1 | 107.49 (14) | C4—C5—H5 | 119.9 |
N1—C1—S1 | 129.98 (14) | C7—C6—C5 | 116.58 (17) |
O1—C1—S1 | 122.54 (13) | C7—C6—H6 | 121.7 |
C3—C2—O1 | 127.43 (15) | C5—C6—H6 | 121.7 |
C3—C2—C7 | 123.77 (17) | N1—C7—C6 | 133.39 (16) |
O1—C2—C7 | 108.80 (15) | N1—C7—C2 | 105.34 (16) |
C2—C3—C4 | 113.92 (16) | C6—C7—C2 | 121.27 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.84 | 2.41 | 3.068 (3) | 135 |
N1—H1···O3i | 0.84 | 2.36 | 3.137 (3) | 154 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray measurements and Chouaib Doukkali University (El Jadida Morocco) for support.
References
Benchidmi, M., El Kihel, A., Essassi, E. M., Knouzi, N., Toupet, L., Danion-Bougot, R. & Carrié, R. (1995). Bull. Soc. Chim. Belg. 104, 605–611. CrossRef CAS Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El Kihel, A., Benchidmi, M., Essassi, E. M. & Danion-Bougot, R. (1999). Synth. Commun. 29, 387–397. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.